導航:首頁 > 數字科學 > 數學排列組合c怎麼算

數學排列組合c怎麼算

發布時間:2022-05-11 01:29:48

① 排列組合中的C和A怎麼算

排列組合中的C和A計算方法如下:

排列:

A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)

組合:

C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!

例如:

A(4,2)=4!/2!=4*3=12

C(4,2)=4!/(2!*2!)=4*3/(2*1)=6

排列組合注意:

對於某幾個要求相鄰的排列組合問題,可將相鄰的元素看做一個「元」與其他元素排列,然後對「元」的內部進行排列。注意事項: 對於某幾個元素不相鄰的排列問題,可先講其他元素排好,再將不相鄰的元素在已排列好的元素之間空隙中及兩端插入即可。

② 數學排列組合怎麼學C和A的公式都是什麼意思怎麼用

C是組合,與次序無關,A是排列,與次序有關;C的意思就是沒有排列,組合到一起就行,與他們的次序沒有關系;A的排列,就是有排列順序。

C是組合,就是給你N個選擇,你從中選擇出不重復的K個,這就組合,比如說有一周有七天,讓你選兩天放假,這里有多少種可能的選擇就有多少種組合。就以上面這個為例,怎麼計算七天選兩天,也就是C(7,2)。

(2)數學排列組合c怎麼算擴展閱讀:

組合就到這里,接下來是排列組合,排列組合是在組合的基礎上多了一個變化,它是有順序的,比如剛才所說的,一周有七天,讓你選兩天放假,那麼星期六、星期天和星期天、星期六實質上是同一種選擇,因為它們沒有順序。

7*6是從7開始乘也就是C7的7,從7往下一共是2項,也就是C7取2的2,比如說如果改成C8取3,那麼分子就是3*2*1=6,2這里的分母是2,實際上要分解為2*1,實質上分母就是2的階乘,CN取K就是K的階乘,比如說這里是C8取3那麼分子就是3*2*1=6。

③ 排列組合中A和C怎麼算啊

排列:

A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)

組合:

C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!

例如:

A(4,2)=4!/2!=4*3=12

C(4,2)=4!/(2!*2!)=4*3/(2*1)=6

(3)數學排列組合c怎麼算擴展閱讀:

排列組合的基本計數原理:

1、加法原理和分類計數法

加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法。

那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。

第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。

分類的要求 :每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)。

2、乘法原理和分步計數法

乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法。

合理分步的要求:

任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。

與後來的離散型隨機變數也有密切相關。

④ 排列組合中那個C怎麼算

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)


組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;


例如A(4,2)=4!/2!=4*3=12


C(4,2)=4!/(2!*2!)=4*3/(2*1)=6

(4)數學排列組合c怎麼算擴展閱讀:

排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示。

計算公式:

;C(n,m)=C(n,n-m)。(n≥m)

其他排列與組合公式 從n個元素中取出m個元素的循環排列數=A(n,m)/m=n!/m(n-m)!. n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為 n!/(n1!×n2!×...×nk!). k類元素,每類的個數無限,從中取出m個元素的組合數為C(m+k-1,m)。

⑤ 數學的排列組合公式C(n,m)的計算

公式中,前面列出三項是要讓人看出規律,真正的項數未必有這么多。錯誤是最後多寫了(5-3+1),也就是前面寫了 (5-2)後,後面就沒有了,因為它就是最後一項 5-3+1 。

排列a與組合c計算方法

計算方法如下:

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)。

組合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!

例如A(4,2)=4!/2!=4*3=12。

C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。

排列組合中的基本計數原理

(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。

(2)第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。

(3)分類的要求 :每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)。

⑥ 排列組合A幾幾C幾幾的,有什麼區別,都怎麼計算來的

1、區別

排列數就是從n個不同元素中,任取m(m≤n)個元素(被取出的元素各不相同),按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。

組合數是指從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做n個不同元素中取出m個元素的組合數。用符號c(m,n) 表示。

例:從26個字母中選5個

排列:A(26,5)表示的是從26個字母中選5個排成一列;即ABCDE與ACBDE與ADBCE等這些是不一樣的。

組合:C(26,5)表示的是從26個字母中選5個沒有順序;即ABCDE與ACBDE與ADBCE等這些是一樣的。

2、計算

(1)排列數公式

排列用符號A(n,m)表示,m≦n。

計算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!

此外規定0!=1,n!表示n(n-1)(n-2)…1

例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。

(2)組合數公式

組合用符號C(n,m)表示,m≦n。

公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。

例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。

(6)數學排列組合c怎麼算擴展閱讀:

排列有兩種定義,但計算方法只有一種,凡是符合這兩種定義的都用這種方法計算;定義的前提條件是m≦n,m與n均為自然數。

(1)從n個不同元素中,任取m個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。

(2)從n個不同元素中,取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數。

排列組合是組合學最基本的概念。所謂排列,就是指從給定個數的元素中取出指定個數的元素進行排序。組合則是指從給定個數的元素中僅僅取出指定個數的元素,不考慮排序。

排列組合的中心問題是研究給定要求的排列和組合可能出現的情況總數。 排列組合與古典概率論關系密切。

⑦ 排列組合A幾幾的 C幾幾的怎麼算

計算方式如下:

C(r,n)是「組合」,從n個數據中選出r個,C(r,n)=n!/[r!(n-r)!]

A(r,n)是「選排列」,從n個數據中選出r個,並且對這r個數據進行排列順序,A(r,n)=n!/(n-r)!

A(3,2)=A(3,1)=(3x2x1)/1=6

C(3,2)=C(3,1)=(3x2)/(2x1)=3

(7)數學排列組合c怎麼算擴展閱讀:

排列有兩種定義,但計算方法只有一種,凡是符合這兩種定義的都用這種方法計算。

定義的前提條件是m≦n,m與n均為自然數。

1、從n個不同元素中,任取m個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。

2、從n個不同元素中,取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數。

3、用具體的例子來理解上面的定義:4種顏色按不同顏色,進行排列,有多少種排列方法,如果是6種顏色呢。從6種顏色中取出4種進行排列呢。

解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。

A(6,6)=6x5x4x3x2x1=720。

A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。

參考資料:網路:排列組合

⑧ 排列組合A幾幾的 C幾幾的怎麼算比如A 3 2

A(3,2)=3×2。

組合數學的重要概念之一。從n個不同元素中每次取出m個不同元素(0≤m≤n),不管其順序合成一組,稱為從n個元素中不重復地選取m個元素的一個組合。所有這樣的組合的總數稱為組合數,這個組合數的計算公式為

n元集合A中不重復地抽取m個元素作成的一個組合實質上是A的一個m元子集合。


排列組合計算方法如下:

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)

組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;

例如:

A(4,2)=4!/2!=4*3=12

C(4,2)=4!/(2!*2!)=4*3/(2*1)=6

⑨ 關於數學排列組合,A什麼的C什麼的到底怎麼算舉個例子。。

A開頭的叫排列,C開頭的叫組合。

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)

組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。

註:當且僅當兩個排列的元素完全相同,且元素的排列順序也相同,則兩個排列相同。例如,abc與abd的元素不完全相同,它們是不同的排列;又如abc與acb,雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列。

⑩ 排列組合公式誰知道,就是c幾幾的,怎麼算

大寫字母C,下標n,上標m,表示從n個元素中取出m 個元素的不同的方法數.如從5個人中選2人去開會,不同的選法有C(5,2)=10種。

C(n,m)的計算方法是C(n,m)=n!/[m!(n-m)!]=n*(n-1)*...*(n-m+1)/[1*2*...*m],如C(5,2)=[5*4]/[1*2]=10。

(10)數學排列組合c怎麼算擴展閱讀:

1772年,法國數學家范德蒙德(Vandermonde, A. - T.)以[n]p表示由n個不同的元素中每次取p個的排列數。

瑞士數學家歐拉(Euler, L.)則於1771年以 及於1778年以 表示由n個不同元素中每次取出p個元素的組合數。

1830年,英國數學家皮科克(Peacock, G)引入符號Cr表示n個元素中每次取r個的組合數。

1869年或稍早些,劍橋的古德文以符號nPr 表示由n個元素中每次取r個元素的排列數,這用法亦延用至今。按此法,nPn便相當於n!。

1872年,德國數學家埃汀肖森(Ettingshausen,B. A. von)引入了符號(np)來表示同樣的意義,這組合符號(Signs of Combinations)一直沿用至今。

1880年,鮑茨(Potts , R.)以nCr及nPr分別表示由n個元素取出r個的組合數與排列數。

1886年,惠特渥斯(Whit-worth, A. W.)用Cnr和Pnr表示同樣的意義,他還用Rnr表示可重復的組合數。

1899年,英國數學家、物理學家克里斯托爾(Chrystal,G.)以nPr,nCr分別表示由n個不同元素中每次取出r個不重復之元素的排列數與組合數,並以nHr表示相同意義下之可重復的排列數,這三種符號也通用至今。

1904年,德國數學家內托(Netto, E.)為一本網路辭典所寫的辭條中,以Arn表示上述nPr之意,以Crn表示上述nCr之意,後者亦也用符號(n r)表示。這些符號也一直用到現代。

參考資料來源:網路-排列組合

閱讀全文

與數學排列組合c怎麼算相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:747
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1364
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1037
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1008
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1669
下列哪個水飛薊素化學結構 瀏覽:1431
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1072