『壹』 小學數學的論文到底怎麼寫
第一步,選題、選材。
要想寫什麼內容的文章,無論是理論探討方面,還是教材教法方面和解題方法技巧方面,以及教學經驗總結方面,對闡述問題的深度、廣度等,要心中有數,具有明確的目的性和主題性。無論選擇哪方面的內容與具體題材,都必須力求具有先進性、針對性和實踐性,要想做到這一點,首先,根據文獻檢索方法,盡可能多地查閱資料,掌握國內外最新研究動態。其次,深入鑽研這些文獻資料,看看能否得到進一步啟發,有無新的見解。盡管選題可能重復類似的題材較多,但也可以從不同側面結合不同實例,根據不同對象寫出一定的新意來,使觀點更明確,方法更有效,使其先進性、針對性、實用性更強。第三,選題要從實際出發,題目大小、題材的深度和廣度要恰當。
第二步,擬綱、執筆。
論文選題確定後,就要注意寫好提綱,這是寫好文章的基礎。首先,要將內容、結構布局好,要擬定一個寫作提綱,准備分幾個部分,各個部分集中講幾個問題,這些部分與問題之間的關系如何,都需要進一步精心設計,使其結構嚴謹、層次分明,具有科學性、邏輯性。其次,要注意各種文章的特點。寫理論性的文章,最好能再確定大小標題,敘述上力求論點明確,可信度強,便於別人借鑒;寫教材分析方面的文章,應進行比較,提出改進意見或提示值得深入研究的問題等。
第三步,修改、定稿。
修改是文章初稿完成後的一個加工過程,它包括對論文文字的修飾,以及科學性的推敲等。論文初稿形成後,應從頭至尾反復地閱讀,逐句逐段推敲,審核一下文中的論點是否明確,論據是否充分,論證是否合理,結構是否嚴謹,計算是否正確等。一篇好的小學數學論文,應該是數文並茂。就是說,既要有好的數學內容,又要有好的文字表達。所以,文字的工夫對數學論文來說很為重要。數學論文,貴在朴實,少用浮詞,免得沖淡文章的中心,文字應通俗易懂,簡明扼要,用詞應准確簡煉,表達完整,特別是中心內容一定要闡述透徹清楚。此外,書寫要規范,題號、圖號、標點也要正確。修改是一項細致的工作,只有對文稿反復推敲、修改,才能消除不應有的錯誤。只有經過反復修改加工,文章的質量才會不斷提高
『貳』 數學論文怎麼寫
數學小論文一
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
數學小論文二
各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.
數學小論文三
數學是什麼
什麼是數學?有人說:「數學,不就是數的學問嗎?」
這樣的說法可不對。因為數學不光研究「數」,也研究「形」,大家都很熟悉的三角形、正方形,也都是數學研究的對象。
歷史上,關於什麼是數學的說法更是五花八門。有人說,數學就是關聯;也有人說,數學就是邏輯,「邏輯是數學的青年時代,數學是邏輯的壯年時代。」
那麼,究竟什麼是數學呢?
偉大的革命導師恩格斯,站在辯證唯物主義的理論高度,通過深刻分析數學的起源和本質,精闢地作出了一系列科學的論斷。恩格斯指出:「數學是數量的科學」,「純數學的對象是現實世界的空間形式和數量關系」。根據恩格斯的觀點,較確切的說法就是:數學——研究現實世界的數量關系和空間形式的科學。
數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學。
純粹數學也叫基礎數學,專門研究數學本身的內部規律。中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學。純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式。例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系。
應用數學則是一個龐大的系統,有人說,它是我們的全部知識中,凡是能用數學語言來表示的那一部分。應用數學著限於說明自然現象,解決實際問題,是純粹數學與科學技術之間的橋梁。大家常說現在是信息社會,專門研究信息的「資訊理論」,就是應用數學中一門重要的分支學科, 數學有3個最顯著的特徵。
高度的抽象性是數學的顯著特徵之一。數學理論都算有非常抽象的形式,這種抽象是經過一系列的階段形成的,所以大大超過了自然科學中的一般抽象,而且不僅概念是抽象的,連數學方法本身也是抽象的。例如,物理學家可以通過實驗來證明自己的理論,而數學家則不能用實驗的方法來證明定理,非得用邏輯推理和計算不可。現在,連數學中過去被認為是比較「直觀」的幾何學,也在朝著抽象的方向發展。根據公理化思想,幾何圖形不再是必須知道的內容,它是圓的也好,方的也好,都無關緊要,甚至用桌子、椅子和啤酒杯去代替點、線、面也未嘗不可,只要它們滿足結合關系、順序關系、合同關系,具備有相容性、獨立性和完備性,就能夠構成一門幾何學。
體系的嚴謹性是數學的另一個顯著特徵。數學思維的正確性表現在邏輯的嚴謹性上。早在2000多年前,數學家就從幾個最基本的結論出發,運用邏輯推理的方法,將豐富的幾何學知識整理成一門嚴密系統的理論,它像一根精美的邏輯鏈條,每一個環節都銜接得絲絲入扣。所以,數學一直被譽為是「精確科學的典範」。
廣泛的應用性也是數學的一個顯著特徵。宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。20世紀里,隨著應用數學分支的大量涌現,數學已經滲透到幾乎所有的科學部門。不僅物理學、化學等學科仍在廣泛地享用數學的成果,連過去很少使用數學的生物學、語言學、歷史學等等,也與數學結合形成了內容豐富的生物數學、數理經濟學、數學心理學、數理語言學、數學歷史學等邊緣學科。
各門科學的「數學化」,是現代科學發展的一大趨勢。
『叄』 怎麼寫數學論文
旨在教會學生會學習、提高學生自學能力的學法指導的研究和實踐已是基礎教育改革的一個熱門課題。這一課題的提出和研究,不僅對當前提高基礎教育質量、實施素質教育具有現實意義,而且對培養未來社會發展所需要的人才、促進科教興國具有歷史意義。
隨著社會、經濟、科技的高速發展,數學的應用越來越廣,地位越來越高,作用越來越大。不僅如此,數學教育的實踐和歷史還表明,數學作為一種文化,對人的全面素質的提高具有巨大的影響。因此,提高基礎教育中的數學教學質量,就顯得尤為重要。可目前由於受「應試教育」的影響,數學教學中違背教育規律的現象和做法時有發生,為此更新數學教學思想、完善數學教學方法就顯得更加迫切。在數學教學中,開展學法指導,正是改革數學教學的一個突破口。
一
對數學教學如何實施數學學習方法的指導,人們進行了許多有益的探索和實驗。首先是通過觀察、調查,歸納總結了中學生數學學習中存在的問題,如「學習懶散,不肯動腦;不訂計劃,慣性運轉;忽視預習,坐等上課;不會聽課,事倍功半;死記硬背,機械模仿;不懂不問,一知半解;不重基礎,好高騖遠;趕做作業,不會自學;不重總結,輕視復習」〔1〕等等。針對這些問題,提出了相應的數學學法指導的途徑和方法,如數學全程滲透式(將學法指導滲透於制訂計劃、課前預習、課堂學習、課後復習、獨立作業、學習總結、課外學習等各個學習環節之中)〔2〕;建立數學學習常規(課堂常規———情境美,參與高,求卓越,求效率;課後常規———認真讀書,整理筆記,深思熟慮,勇於質疑;作業常規———先復習,後作業,字跡清楚,表述規范,計算正確,填好《作業檢測表》,重做錯題)〔3〕等等。誠然,這對於端正學習態度、養成學習習慣、提高學業成績、優化學習品質,采勸對症下葯」的策略,開展對學習常規的指導,無疑會收到較好的效果。但是,數學學習方法的指導,決不能忽視數學所特有的學習方法的指導。可以說,這才是數學學法指導之內核和要害。也就是說,數學學法指導應該著重指導學生學會理解數學知識、學會解決數學問題、學會數學地思維、學會數學交流、學會用數學解決實際問題等。有鑒於此,筆者主要從「數學」、「數學學習」出發,來闡釋數學學習方法,論述數
『肆』 數學論文怎麼寫
隨著教育科研意識的不斷提高,很多教師希望把自己培養成學者型教師,把自己的教育、教學研究成果寫成論文. 根據本人的粗淺經歷,我認為注意以下幾點,與同事們討論,旨在共同進步。
一、借鑒成果,博採眾長——先粗保存,再歸類保存,整理中頓生靈感
對他人的研究成果,進行吸收消化,為我所用,這是每一個科研工作者都在做、並且必須做的事情. 一個人的精力、能力、水平等畢竟是有限的,要彌補這個「先天性缺陷」,就一定要向他人學習借鑒. 就初中數學教師而言,我們所涉獵的范圍自然應以初中數學的教育教學科研信息為主,但還應兼顧高中和小學的數學,以及計算機、物理、化學等相關學科的信息,特別是教育學、心理學方面的知識和信息,信息的採集形式多種多樣,大致可以分為三類:
(一)書面形式,比如各種書籍、報紙、刊物等;
(二)口頭形式,比如各種會議、聽課、交流、咨詢等;
(三)電子形式,比如網路。
這些信息採集後的保存方式也各不相同,先粗保存。主要有四種方式:
(1)制卡片,簡要註明作者、題目、出處、摘要、編號、日期等項內容;(2)做摘記,寫在本上;(3)復印或收藏;(4)電子信息存檔。
再歸類保存。電腦的使用可以把這些寶貴的文獻資料,全部化為電子信息存檔,並整理歸類。整理歸類的過程,即便是文字輸入的過程都能夠使你頓生靈感,我記得一位台灣女詩人創作了一首詩《一生都在整理一張書桌》,我想,做學問人都應該「一生都在忙碌中整理一張書桌」。這樣為論文寫作,提供了強大的理論支持和眾多的珍貴例子,從而萌生對某一題材的進一步研究和發掘,撰寫成了論文。所以論文不是誰刻意寫出來的,有一點瓜熟蒂落的感覺,無病呻吟成不了好文章。
二、完備素材,厚積薄發——論文還自教研始,處處留心皆學問
「論文還自教研始」、「論文在研不在寫」等觀點,有一定的道理。「厚積」是基礎,沒有來源於實踐的經驗教訓、數據統計等素材的積累,想要寫出比較有價值的論文,幾乎是不可能的. 這些素材源於何處?如何去發現這些素材呢?答案是那句古話「處處留心皆學問」. 具體說來,素材的來源主要有以下幾方面:
(1)課堂教學,它是教研工作的主陣地,也是素材最重要的來源,這不但是一個教學實踐的過程,還是一個發現問題的過程,是一個向學生學習、自己提高的過程;
(2)課後反思;
(3)作業記錄,從學生作業中不但能發現具有共性的問題,還提示我們教研的改革方向;
(4)考試總結;
(5)解題分析,並從中探索解題規律和命題趨勢;
(6)調查反饋,可以用談心、問卷等多種形式進行,從中反饋的信息是難得的寫作素材;
(7)成果質疑,學習他人但不要迷信,發現不足甚至是錯誤之處,理由不充分的就要敢於質疑;
(8)探討爭論,在日常探討問題的過程中,持有不同觀點的人發生激烈爭論是常有的事,從中往往加深了對問題的理解程度;
(9)靈感頓悟,事實上很多自選課題的素材是平時工作、學習、生活甚至睡夢中突然想到的,這種靈感是對問題深入思考的結果,如果沒有自覺教研的精神,靈感就無從談起.。
三、立足實踐,提煉新意——「冷點」、「熱點」
初中數學教師都從事著一線教學工作,最清楚教學中的困惑和喜悅,最了解學生的想法和看法,最直接的進行著實踐和改革,這些是專門從事教育科研工作的專家、學者和部門所難以具備的.正因如此,一線教師的論文多數源於實踐,具有強烈的實用性和鮮明的針對性,對於我們的這些優勢應該有充分的認識,並不斷保持和發展.
再比如,教學中的一些「冷點」問題雖不常見,但一旦出現便會使學生無從插手。論文的新意如何出?我認為有兩點非常重要:
一是在主題上,立意新穎,視角獨特;
二是在時間上,意識超前,創作及時。
四、從小到大,循序漸進——先文章、再論文,從小中見大好成文
寫論文需要一個過程,循序漸進,不可能一蹴而就. 按照一般情況,初寫者先嘗試以下兩個步驟:
第一步:練習寫學習輔導類的文章.這些雖然一般稱不上「論文」,但是進行這樣的寫作,既可以當作練筆,又可以用於教學,還可以視為一次小小的課題研究,通常有1000字左右;要求與教學同步。
第二步,進行教學研究類論文的寫作,先側重於解題方法研究等實踐性強的,由淺入深,不要急於寫理論性太強的論文. 可以先探討解題技巧,再挖掘思想方法,後深究素質能力,進而分析命題原則,預測趨勢走向等。
如果寫有些理論性的文章,可以從教學實踐中去尋找適應教育發展趨勢的新課題,需要指出的是,一篇論文的范圍不求廣,但求分析透徹,凝練精華,小中見大;論文篇幅不求長,一般在3000字左右;此類論文與學習輔導類的文章相比,格式要規范得多,應認真研讀報刊風格。
五、技巧和經驗——復制、刪除、添加
當文思涌動,意欲寫作時,先應確立文稿的題目,用小標題清晰地表達想寫的幾個方面。例如:我寫《數學建構主義學習的探索和實踐》一文時,根據建構主義學習的三大特徵——自主學習、合作活動、個人體驗,列出三個小標題,然後分別展開。
(1)為了借鑒別人的成果,有必要復制相關的文章段落,作為你的理論依據或論述的素材、旁例。但要講究文德,切勿剽竊抄襲他人論文。這就要參考多遍文章,復制多款內容,不怕內容多,只怕內容不全,然後去粗取精,大刀闊斧地刪除。留下的骨架再添加自己的思想,教學實踐中的例證,自己平時積累的成果等,但文章一定要有更多自己的東西,這樣才是真正自己的文章。
(2)做有心人。經常閱讀,選擇有關書刊放在床頭、沙發邊或辦公桌上,只要有空經常翻閱。一旦有想法,及時記錄,並經常向這個方向思考和研究,再參考他人成果必能成就自己的文章。堅持不懈,持之以恆,「功夫不負有心人」。
(3)抓住熱點、冷點。例如:我寫《數學探究性學習策略》(市一等獎),就是抓住新教材契機,對《課程標准》進行仔細地學習,結合平時的教學經驗和資料收集完成的。另外,聽課、聽報告等,往往有許多新的思想、新的觀念,同樣是論文研究的好題材,例如:我寫《數學建構主義學習的探索和實踐》(市二等獎),所選擇的內容就是計算機本科函授時,老師的講課內容。當然,開始對這個問題還意識模糊,只覺得是一個好題材,但後來經過了許多文章的閱讀,才清晰地認識了「建構主義學習」所具備的三個主要特徵,於是文章頭緒也理清了。再者,我寫《學困生元認知的培養》(全國二等獎),就是偶然看到「元認知」的概念,是一種「對認知的認知」,再搜索引擎得相關資料,結合本人體驗成文的。
以上所談是我對初中數學論文寫作的幾點看法,希望能給朋友們帶來一些幫助,所涉及的內容較為膚淺,如要在論文寫作的道路上不斷提高,還需要借鑒更多人的成功之道,但無論如何,個人的實踐創新才是最重要的因素之一,同行們一定會寫出比我更好的文章。
選我
『伍』 如何寫好數學論文
第一部分:題頭
題頭含標題、作者,各單獨佔一至二行。
標題要求直接、具體、醒目、簡明扼要,小2號宋體加粗,居中編排;
作者,小4號仿宋體,居中編排;
作者單位,單位名稱(學校),省市,郵政編碼,5號楷體,居中編排。
第二部分:提要
提要部分含摘要、關鍵詞等。分別以【摘要】、【關鍵詞】(小4號楷體加粗)開頭,內文用5號楷體,各空2字格編排。
摘要是論文內容的高度概要,是不加註釋和評論的簡短陳述,具有獨立性和自含性。其內容應說明論文的主要研究內容、研究方法、研究結論等。論文中文摘要一般以3—5行為宜。
關鍵詞3-5個,應能反映全文的主題、主要內容、主要思想、主要觀點等,關鍵詞之間以分號隔開,關鍵詞結束不用標點符號。
第三部分:正文
正文是論文的核心內容,含引言與本論。
引言,或稱小引,要簡要說明論文話題的緣起、價值與意義、研究方法等,直接「引入」本論。本論是主體部分,內容須觀點明確、論據充分、論證嚴密、邏輯清晰、層次分明、語言流暢、結構嚴謹。
正文應按照內容層次分節,編號,要層次分明,用5號宋體。各種標題要求如下:
1. 一級標題:以阿拉伯數字排序標號,數字後用英文句號「.」,如:1. …。一級標題標號與標題採用3號黑體,單獨一行,居左頂格編排。
2. 二級標題:用阿拉伯數字在一級標號後增第二層標號順序標注,兩層標號之間用英文句號「.」分割,第二層標號後不使用任何符號,如:2.3 …。二級標題標號與標題採用小3號黑體,單獨一行,居左頂格編排。
3. 三級標題:用阿拉伯數字在二級標號後增第三層標號順序標注,各層標號之間用英文句號「.」分割,第三層標號後不使用任何符號,如:1.2.4…。三級標題標號與標題採用4號黑體,單獨一行,居左頂格編排。
各級標題字數均以不超過1行為限,標題結束處不使用任何標點符號。
4.定義:定義在各一級標題下順序標號,比如,第1節第二個定義為定義1.2。
5.結論與說明:定理、引理、推論、注記等結論與說明在各一級標題下按順序統一標號,比如,第2節第3個上述定理、引理、推論或注記,如果是引理則標注為引理2.3,如果是推論則標注為推論2.3。
6.教學案例示例:各種舉例在各一級標題下按順序統一標號,比如,第2節第3個例子應標注為例2.3。定義、定理、引理、推論、注記、示例等均空2格編排,各字頭(推論2.3、引理2.3等)為小4號黑體,其後空一字格。其內容採用5號楷體。
7.公式:獨立的數學公式要居中排列,在各一級標題下在最右邊按順序標號,並用括弧括住,比如,第2節第5個公式標注為(2.5)。多行公式的各行應當按照第一行的第一個等號對齊,各行的開頭應該是等號或其它運算符號。
『陸』 如何寫數學論文的結尾
結尾處可以運用總結性的話語讀數學進行總結,具體如下:
數學[英語:mathematics,源自古希臘語μθημα(máthēma);經常被縮寫為math或maths],是研究數量、結構、變化、空間以及信息等概念的一門學科。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
在人類歷史發展和社會生活中,數學發揮著不可替代的作用,同時也是學習和研究現代科學技術必不可少的基本工具。
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」。可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起。從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程與三角函數。而其後更發展出更加精微的微積分。
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。他們認為,數學有三種基本的母結構:代數結構(群、環、域、格,……)、序結構(偏序、全序,……)、拓撲結構(鄰域、極限、連通性、維數,……)。
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等。數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。
具體地,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學)。
就縱度而言,在數學各自領域上的探索亦越發深入。
『柒』 高中數學論文怎麼寫
淺析高中數學創新能力
高中學生的數學創新能力貫穿於高中整個數學教學過程之中,在數學教學過程中,教師應注重培養學生的創新能力,使學生能夠獨立的分析問題,思考問題,解決問題並能夠延伸問題,達到舉一反三的目的。教師不僅僅要傳授給學生知識,更重要的是要培養學生的創新能力,而數學創新能力的培養有利於學生養成良好的數學思維品質和嚴密的思維邏輯能力。
首先教師要更新教學觀念。
高中數學是一門極靈活的學科,而不只是幾個概念,原理和公式而已。高中數學教師應當更新教育觀念,教師既不是傳授知識的機器,學生也不是被動接受知識的容納器。教師要從教學的「指揮者」轉向「引導者」,由重教學的「結論」轉向教學的「過程」,由重教師「教」轉向重學生「學」。教師在教學過程中,應當引導學生逐步的發現問題,分析問題,解決問題,並啟發學生的思維,讓學生通過一個問題能夠發現其中的規律並加以總結歸納。
在教學過程中,教師要樹立師生平等、民主的觀念。美國紐約道爾頓學校的校長理查德. 布盧姆索聯系中國和美國學校教育的實際指出,在美國的學校里,教師是在學生圈子中的,甚至在課堂上你分辨不出哪個是老師;而在中國,老師常常是站在全班學生的面前,成為學生門的中心。而在美國,大多數教師總是鼓勵學生提出問題,共同研究,解決問題,假如把老師問倒了,老師非但不會不高興,反而會表揚這個學生,這樣一來,學生受到鼓勵,學習上更加自主,學習效果更加良好。我們可以吸取國外好的教學方式,先進的教學觀念,因此對老師來說,建立一種民主化的觀念是非常重要的;老師甚至也要向學生學習,從學生身上吸取智慧力量。
其次教師要在教學活動中突出對學生的創新能力培養。
中學階段是青少年成長的關鍵時期,學生心理和生理發育趨於成熟,具有一定的獨立思考能力與判斷能力,思想活躍,接納信息量大,求知慾強,可塑性較大,為培養創新能力提供了心理和生理基礎,因此,在高中數學教學中要突出對學生的創新能力的培養,活躍學生的思維,這樣一來,能夠有效地提高學生的學習效率。
努力提高學生的自學能力是創新能力培養的基礎。自學是一種重要的學習方式,人的一生畢竟是有限的,能夠得到教師指導的階段更是有限的,許多知識必須靠學生自學,積極思考,主動學習,才能夠獲得新的知識。所以教師應當倡導學生自學,並給予一定的指導,提高學生的自學能力和創新能力,讓學生在自學中發現問題,並能夠自主解決。在發現問題的過程中,教師還應當引導學生進行逆向思考,傳統的思維定勢有時候並不能有效的解決問題,可如果換個角度或從對立面來看,可能就可以獲得解決的方案。因此,教師還應當培養學生逆向思維的能力,引導學生打破傳統的、固定的思維的束縛,從不同的角度深入探索和挖掘問題的本質,得出正確的答案。
第三,教師應當創造一個活潑輕松的教學環境。
心理學研究證明:一個人的感知、注意、記憶、思維、想像等智力因素,都受主體情緒的影響。在極其輕松自如的環境下,人的自主探索和體驗生命本體的狀態最富有創造性和開拓性。也就是說,只有當課堂充滿生動活潑的心理氣氛時,學生的精神才會飽滿,情緒才會高漲,興趣才會濃厚,思維才會活躍,接受能力才會增強,學習效率才會提高。
在輕松活躍的教學環境中,學生的思維能力和創新能力才能夠得到最大限度的發揮。因此,教師應當設計多種教學方式,優化教學活動,創造一個活潑有序而有利於學生發展的教學環境。教師要充分利用高中數學教材中的探究式活動,使學生在探究式活動中培養創新能力,因為創新能力是在實踐的過程中得來的,而不是依靠背誦和記憶。探究式學習可以讓學生在實踐活動中獲得研究探索的體驗,養成善於發現問題,樂於思索,勤於動手的習慣,激發學生對數學問題進行探索創新的積極性。
最後,教師應充分保護學生的學習興趣和創新興趣。
教師在教學過程中,應積極激發學生的學習興趣,而創新的過程需要興趣來維持。同時,教師應當根據教學目標、內容和學生的接受能力來設計教學,提出難度適中的問題,啟發學生進行思考。這樣才會激發學生學習的興趣,引發強烈的求知慾望,從而進行創新性的思考。
在教學中,教師單從提高語言表達能力和語言直觀上下工夫是不夠的,還應充分利用直觀教學的各種手段。「直觀」具有看的見,摸得到的優點,它有時能直接說明問題,有時能幫助理解問題,會給學生留下深刻的印象,使學生從學習中得到無窮樂趣。如在教學中要盡量舉一些學生熟悉的實例,運用幻燈、模型、實物等教具,形象而又直觀地引導學生去觀察、分析、綜合,從而激發學生學習知識的興趣,使學生在輕松愉快的環境中能化繁為簡,化難為易地掌握所學知識。
總之,高中學生的創新能力是貫穿於整個數學教學活動中的,要善於引導學生進行發現問題,分析問題,解決問題,並能夠總結問題,從而在此基礎上,培養學生的數學創新能力,為終身的學習打下良好的基礎。
『捌』 如何寫數學論文
1、數學論文的組成
數學論文具有類型多樣、形式活潑等特點,有的側重於經驗的總結,實驗結果的闡述,包括實驗過程、手段、方法和結果的記錄;有的側重於理論性的研究,包括對研究課題的提出,對研究成果的分析、推導、論證和應用等。但不論哪類論文,主要由標題、摘要、前言、正文、結論、參考文獻等部分組成。
標題就是論文的總題目,是文章基本內容的縮影,古人雲:「立片言以居要,乃全篇之警策。」所以擬定標題應該力求簡短、明確、質朴、醒目,既要防止太冗長,又要避免太概括,使人不明了;既要防止文不對題或過於陳舊,又要避免追求新穎、空泛而沒有實際的內容。
摘要一般包括本課題研究的意義,研究的內容與方法,研究的成果或價值等,便於讀者迅速了解全文的概貌。所以摘要應簡明扼要,引人入勝,內容全面,重點突出,且能獨立使用。
前言也稱引言或緒言,一般包括本課題研究的背景或起點,需要研究的問題,研究的方法、手段,研究的意義或價值。需要注意的是,對研究的意義或價值應力求實事求是,既不可拔高,也不可貶低或過分謙虛。
正文是論文的主體,作為表達作者個人研究成果的部分,所佔篇幅較大,有時還必須輔以必要的小標題,應力求概念清晰,論點明確,論證嚴密,論據充分,具有科學性、准確性和創新性,同時條理要清楚,文字應通俗簡明。
結論是對正文中所分析論證的問題加以綜合,概括出基本點,這是課題解決的答案。結論作為理論分析和實驗的邏輯發展,是論述的概括集中和升華,由局部到一般,由具體事實、經驗,上升到理論概括,是整篇論文的歸宿,所以應力求完整、准確、鮮明,還應如實指出本理論的使用范圍和成果的意義,以及本文尚未解決的問題和繼續研究的方向。
參考文獻是反映作者嚴肅的科學態度和研究工作的依據,其中包括撰寫該論文所參考的書籍(作者姓名、書名、版次、頁數、出版者、出版年份)或期刊(作者姓名、標題、刊物名稱、卷或期、頁數、年份)。
2、小學數學論文的撰寫過程
第一步,選題、選材。
要想寫什麼內容的文章,無論是理論探討方面,還是教材教法方面和解題方法技巧方面,以及教學經驗總結方面,對闡述問題的深度、廣度等,要心中有數,具有明確的目的性和主題性。
無論選擇哪方面的內容與具體題材,都必須力求具有先進性、針對性和實踐性,要想做到這一點,首先,根據文獻檢索方法,盡可能多地查閱資料,掌握國內外最新研究動態。其次,深入鑽研這些文獻資料,看看能否得到進一步啟發,有無新的見解。盡管選題可能重復,類似的題材較多,但也可以從不同側面結合不同實例,根據不同對象寫出一定的新意來,使觀點更明確,方法更有效,使其先進性、針對性、實用性更強。第三,選題要從實際出發,題目大小、題材的深度和廣度要恰當。
第二步,擬綱、執筆。
論文選題確定後,就要注意寫好提綱,這是寫好文章的基礎。首先,要將內容、結構布局好,要擬定一個寫作提綱,准備分幾個部分,各個部分集中講幾個問題,這些部分與問題之間的關系如何,都需要進一步精心設計,使其結構嚴謹、層次分明,具有科學性、邏輯性。其次,要注意各種文章的特點。寫理論性的文章,最好能再確定大小標題,敘述上力求論點明確,可信度強,便於別人借鑒;寫教材分析方面的文章,應進行比較,提出改進意見或提示值得深入研究的問題等。
第三步,修改、定稿。
修改是文章初稿完成後的一個加工過程,它包括對論文文字的修飾,以及科學性的推敲等。論文初稿形成後,應從頭至尾反復地閱讀,逐句逐段推敲,審核一下文中的論點是否明確,論據是否充分,論證是否合理,結構是否嚴謹,計算是否正確等。一篇好的小學數學論文,應該是數文並茂。就是說,既要有好的數學內容,又要有好的文字表達。所以,文字的工夫對數學論文來說很為重要。數學論文,貴在朴實,少用浮詞,免得沖淡文章的中心,文字應通俗易懂,簡明扼要,用詞應准確簡煉,表達完整,特別是中心內容一定要闡述透徹清楚。此外,書寫要規范,題號、圖號、標點也要正確。修改是一項細致的工作,只有對文稿反復推敲、修改,才能消除不應有的錯誤。只有經過反復修改加工,文章的質量才會不斷提高。
『玖』 怎麼樣寫數學論文
寫數學論文的話,首先你要選擇一個你想要選擇的數學研究方向,要選擇一個具體的題目研究過程的話,肯定是要用數學的方法去研究,然後要把內容寫出來。