Ⅰ 圓周率計算方法和公式是
圓周率(Pi)是圓的周長與直徑的比值,公式為:
代數
π是個無理數,即不可表達成兩個整數之比,是由德國科學家約翰·海因里希·蘭伯特於1761年證明的。1882年,林德曼(Ferdinand von Lindemann)更證明了π是超越數,即π不可能是任何整系數多項式的根。
圓周率的超越性否定了化圓為方這古老尺規作圖問題的可能性,因所有尺規作圖只能得出代數數,而超越數不是代數數。
Ⅱ 圓周率的計算方法
圓周率的計算方法
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。Archimedes用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;Ludolph Van Ceulen用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其他公式和由這些經典公式衍生出來的公式,就不一一列舉了。
Machin公式
這個公式由英國天文學教授John Machin於1706年發現。他利用這個公式計算到了100位的圓周率。Machin公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。
Machin.c 源程序
還有很多類似於Machin公式的反正切公式。在所有這些公式中,Machin公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,Machin公式就力不從心了。下面介紹的演算法,在PC機上計算大約一天時間,就可以得到圓周率的過億位的精度。這些演算法用程序實現起來比較復雜。因為計算過程中涉及兩個大數的乘除運算,要用FFT(Fast Fourier Transform)演算法。FFT可以將兩個大數的乘除運算時間由O(n2)縮短為O(nlog(n))。
Ⅲ 圓周率的計算公式
圓周率(Pi)是圓的周長與直徑的比值,公式為:
(3)數學公式圓周率怎麼算擴展閱讀
把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果以39位精度的圓周率值,來計算宇宙(observable universe)的大小,誤差還不到一個原子的體積 。
以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。
π在許多數學領域都有非常重要的作用。
Ⅳ 數學中的圓周率是怎麼算出來的
圓周率是用圓的周長除以它的直徑計算出來的。
「圓周率」即圓的周長與其直徑之間的比率。關於它的計算問題,歷來是中外數學家極感興趣、孜孜以求的問題。德國的一位數學家曾經說過:「歷史上一個國家所算得的圓周率的准確程度,可以作為衡量這個國家當時數學發展的一個標志。」我國古代在圓周率的計算方面長期領先於世界水平,這應當歸功於魏晉時期數學家劉徽所創立的新方法——「割圓術」。
所謂「割圓術」,是用圓內接正多邊形的周長去無限逼近圓周並以此求取圓周率的方法。這個方法,是劉徽在批判總結了數學史上各種舊的計算方法之後,經過深思熟慮才創造出來的一種嶄新的方法。
中國古代從先秦時期開始,一直是取「周三徑一」(即 )的數值來進行有關圓的計算。但用這個數值進行計算的結果,往往誤差很大。正如劉徽所說,用「周三徑一」計算出來的圓周長,實際上不是圓的周長而是圓內接正六邊形的周長,其數值要比實際的圓周長小得多。東漢的張衡不滿足於這個結果,他從研究圓與它的外切正方形的關系著手得到圓周率。這個數值比「周三徑一」要好些,但劉徽認為其計算出來的圓周長必然要大於實際的圓周長,也不精確。劉徽以極限思想為指導,提出用「割圓術」來求圓周率,既大膽創新,又嚴密論證,從而為圓周率的計算指出了一條科學的道路。
在劉徽看來,既然用「周三徑一」計算出來的圓周長實際上是圓內接正六邊形的周長,與圓周長相差很多;那麼我們可以在圓內接正六邊形把圓周等分為六條弧的基礎上,再繼續等分,把每段弧再分割為二,做出一個圓內接正十二邊形,這個正十二邊形的周長不就要比正六邊形的周長更接近圓周了嗎?如果把圓周再繼續分割,做成一個圓內接正二十四邊形,那麼這個正二十四邊形的周長必然又比正十二邊形的周長更接近圓周。這就表明,越是把圓周分割得細,誤差就越少,其內接正多邊形的周長就越是接近圓周。如此不斷地分割下去,一直到圓周無法再分割為止,也就是到了圓內接正多邊形的邊數無限多的時候,它的周長就與圓周「合體」而完全一致了。
按照這樣的思路,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,並由此而求得了圓周率 為3.14和 3.1416這兩個近似數值。這個結果是當時世界上圓周率計算的最精確的數據。劉徽對自己創造的這個「割圓術」新方法非常自信,把它推廣到有關圓形計算的各個方面,從而使漢代以來的數學發展大大向前推進了一步。
以後到了南北朝時期,祖沖之在劉徽的這一基礎上繼續努力,終於求得了圓周率:精確到了小數點以後的第七位。在西方,這個成績是由法國數學家韋達於1593年取得的,比祖沖之要晚了一千一百多年。祖沖之還求得了圓周率的兩個分數值,一個是「約率」22/7 ,另一個是「密率」355/113,其中 355/113 這個值,在西方是由德國的奧托和荷蘭的安東尼茲在16世紀末才得到的,都比祖沖之晚了一千一百年。劉徽所創立的「割圓術」新方法對中國古代數學發展的重大貢獻,歷史是永遠不會忘記的。
Ⅳ 圓周率是怎麼計算出來的啊
圓周率π的值是怎樣計算出來的呢?
在半徑為r的圓中,作一個內接正六邊形(如圖)。這時,正六邊形的邊長等於圓的半徑r,因此,正六邊形的周長等於6r。如果把圓內接正六邊形的周長看作圓的周長的近似值,然後把圓內接正六邊形的周長與圓的直徑的比看作為圓的周長與圓直徑的比,這樣得到的圓周率是3,顯然這是不精確的。
如果把圓內接正六邊形的邊數加倍,可以得到圓內接正十二邊形;再加倍,可以得到圓內接正二十四邊形……不難看出,當圓內接正多邊形的邊數不斷地成倍增加時,它們的周長就越來越接近於圓的周長,也就是說它們的周長與圓的直徑的比值,也越來越接近於圓的周長與圓的直徑的比值。根據計算,得到下列數據:
圓內接正多邊形的邊數
內接正多邊形
邊長
內接正多邊形
周長
內接正多邊形周長與圓直徑的比
6
12
24
48
96
192
384
768
……
1.r
0.r
0.r
0.r
0.r
0.r
0.r
0.r
……
6.r
6.r
6.r
6.r
6.r
6.r
6.r
6.r
……
3.
3.
3.
3.
3.
3.
3.
3.
……
對不起,我巴圖搞掉了.
這樣,我們就得到了一種計算圓周率π的近似值的方法。
早在一千七百多年前,我國古代數學家劉徽曾用割圓術求出圓周率是3.。繼劉徽之後,我國古代數學家祖沖之在推求圓周率的研究方面,又有了重要發展。他計算的結果共得到兩個數:一個是盈數(即過剩的近似值),為3.;另一個是(nǜ)數(即不足的近似值),為3.。圓周率的真值正好在盈兩數之間。祖沖之還採用了兩個分數值:一個是22/7(約等於3.14),稱之為「約率」;另一個是355/113(約等於3.),稱之為「密率」。祖沖之求得的密率,比外國數學家求得這個值,至少要早一千年。
⑴ 2∕π=√2∕2*√(2+√2)∕2*√(2+√(2+√2))∕2……
⑵ π∕2=2*2*4*4*6*6*8*8……∕(1*3*3*3*4*5*5*7*7……)
⑶ π∕4=4arctg(1∕5)-arctg(1∕239) (註:tgx=…………)
⑷ π=√10005∕(∑((6n)!*(n ))
∕((n!)*(3n)!*(-)^(3n)))
(0≤n→∞)
現代數學家計算圓周率大多採用此類公式,普通人是望塵莫及的。
而中國圓周率公式的使用就簡單多了,普通中學生使用常規計算工具就能輕松解決問題。
Ⅵ 圓周率到底怎麼算啊
周率是數學上常用到的一個值....,約等於3.142592625.
Ⅶ 圓周率計算公式
圓周率計算公式:
圓周率用希臘字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。
圓周率的特性:
把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果以39位精度的圓周率值,來計算可觀測宇宙的大小,誤差還不到一個原子的體積。
以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。
Ⅷ 圓周率是怎麼計算出來的
每年的3月14號對於大多數人來說只是平凡的一天,而在數學界可是非凡的一天,加拿大的一位音樂家更是更是將π譜成了樂曲,讓人們欣賞π的聲音,那你肯定也好奇圓周率π究竟是怎麼算出來的呢?
阿基米德的夾逼法
早在古時候人們就發現了一個神奇的規律,隨便畫幾個圓,無論圓的大小如何變化,而圓的周長與直徑的比值總是不變的,想要求出這個比值,就必須精確地算出圓的周長。
在電子計算機出現,更是讓圓周率計算突飛猛進的發展,在2019年3月14日,工程師愛瑪在谷歌雲平台的協助下,將圓周率精確到了小數點後31.4萬億位。
π其實就是一個無限不循環小數,在通常情況下有10位小數就能滿足幾乎所有的計算需要, 完全不必為了它的計算和背誦浪費時間。
Ⅸ 圓周率的記算公式
圓周率(