導航:首頁 > 數字科學 > 高中生怎麼學好數學

高中生怎麼學好數學

發布時間:2022-05-15 13:38:24

Ⅰ 高中生怎樣才能提高數學成績呢

本人親身試驗
如果LZ你是新高一,那就好辦。
1.其實我覺得最重要的就是自信。不管你初中怎樣,高中的數學是不一樣的,初中很死很呆。如果只是按照初中的方法,學不好高中數學,至少不會拔尖。所以,給自己信心!這樣才有動力啊。
2.有自信,那就拿出行動。在高一時,最好自學完大部分課程,不用鑽得很深,把參考書的知識提綱看看,大致掌握。然後,看教科書(現在高考題蠻多技巧都是課本上的,比如放縮法的一個公式),把書上的練習做一做,做簡單的,不需要很深。
3.在自學的同時,最最重要的是老師講的課程,講到哪裡,你就要鑽研到哪裡。若是條件可以的話,可以跟個輔導班,我之前就是這么過來的,分享一家口碑不錯的pan/http://www.wpjj.cn/a/1.html,僅供參考。伴隨著老師的步伐,在已經自學的基礎上,開始做一些高考題,有些題一開始或許有些難度,或許有些知識點的技巧老師沒講到,但是,你要鑽研,探尋知識的本質是什麼。
4.筆記本,這個當初我沒注意到,很是後悔。筆記本記什麼,記你自己的技巧與老師的技巧(最好配上題),記錯題(不要錯一題寫一題,把錯誤分類,每一類後寫明自己錯的原因)
5.如上所做,在高二,上課會很輕松,你只要學習技巧與思維,這時開始,一題多解的訓練,一道題,盡可能想多一點方法,還可以與同學交流。
6.在高一,一開始學集合可能會很暈,這很正常,初中與高中的銜接是這樣的,你一定要給自己信心,努力鑽研,這個過渡期就很快度過的。
7.下面給出 我自己曾經遇到的問題。
a.立體幾何(血的教訓,記住啊),一開始學的是「綜合法」(是什麼你先不用管),很簡單, 是簡單的立體幾何,在高二時,又會學到「坐標法」(這個基本是萬能方法),坐標法,是萬金油,但是,你要記住,千萬不要用泛濫了。我在學習坐標法後,立體幾何題都用坐標法,不用思考,提筆就算。最後,我發現我不會用綜合法了......現在高考趨勢於綜合法,坐標法對付幾年前高考題,很快。但是,坐標法最近不好用啊,甚至用不了。綜合法,是思維,坐標法,是計算。
兩者過關,萬無一失。所以,建議你兩種方法都練,但綜合法為主,坐標法為輔。
b.圓錐曲線,通常是高考最後3題,較難,剛學不建議馬上做高考題,基礎一點要牢(一定,一定,切記切記).
c.導數, 通常較難,也是基礎要牢,導數題,通常比較活,題海戰術似乎沒什麼用(不要深陷其中),要掌握思維與技巧,才可能學好導數。
總結來說:自信(任何時候都要對自己說:我可以的),基礎(一切之源,要牢),鑽研(我曾經為了尋找一個規律,弄到凌晨3點),歸納(就是你的筆記本)
做到上面這幾點,堅持3年,高考至少135,若是加一點競賽思想,保140沒問題.

Ⅱ 高中生怎樣學好數學

一、該記的記,該背的背,不要以為理解了就行
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9*9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
二、幾個重要的數學思想
1、「方程」的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、「數形結合」的思想
大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的思維訓練,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。
3、「對應」的思想
「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。這就是運用「對應」的思想和方法來解題。初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應。「對應」的思想在今後的學習中將會發揮越來越大的作用。
三、自學能力的培養是深化學習的必經之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班裡幾十個學生,同一個老師教,差異那麼大,這就是學習主動性問題了。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結合新課中的新規定去分析、理解新的學習內容。由於數學知識的無矛盾性,你所學過的數學知識永遠都是有用的,都是正確的,數學的進一步學習只是加深拓廣而已。因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什麼聽老師講新課時總有一種似懂非懂的感覺,或者是「一聽就懂、一做就錯」,就是因為沒有預習,沒有帶著問題學,沒有將「要我學」真正變為「我要學」,力求把知識變為自己的。學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
四、自信才能自強
在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎麼知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復你。也同樣要先分析、研究,找到正確的思路後才向你講授。不敢去做稍為復雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現。在數學解題中,自信心是相當重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學過的知識把它解出來。要敢於去做題,要善於去做題。這就叫做「在戰略上藐視敵人,在戰術上重視敵人」。

Ⅲ 怎樣學好高中數學

如何學好高中數學

高中數學的學習,最好能夠從基礎學起,在課堂上仔細做筆記,把老師講的重要知識點都記一下,課後的時候,多看看,做題鞏固,高中數學的知識點,不是我們學一下就能夠會的,是需要我們重復的去學習,重復的去做題,才能把基礎知識學好,高中課程很緊張,老師講課的速度也是很快的,有些時候,同學們可能會跟不上老師講課的速度,這個時候就需要同學們在課下的時候,多問老師了。

做題的時候要多思考,知道這道題涉及哪方面的內容,做題的過程中就間接復習了知識內容,這樣對自己記憶數學知識,幫助是很大的。

主動的去復習我們今天所要學習的內容,進行章節的總結是非常重要的,我們在初中的時候,可能都是老師給我們進行總結的,但是到了高中,是需要我們自己總結的,高中生一定要盡快適應,這樣數學成績才能快速提高。



學好高中數學成績的竅門

要經常的去積累一些經典的題型做,整理一些錯題的資料,每隔一段時間反復看一下,整理一下思路,這樣再遇到相似的題型的時候,才能做出來,考試的時候,出同樣的題型,才能更好的解答出來,一定要好好選擇課外題,不要什麼題都做,這樣對你數學成績的提高幫助並不大。

如果你能夠主動的去幫助老師學習,你的成績會更好,高中生學習的主動性一定要強,也要把數學公式都掌握,數學題中,所有的題都是需要用到公式的。在平時做題的時候,一定要不斷的去提高自己做題的速度,而且也要分配好做題時間,在一道題上不要浪費太多時間,這樣對自己數學成績的提高沒有幫助,在平時的時候,鍛煉一下自己數學的思維能力。

(3)高中生怎麼學好數學擴展閱讀

高中數學知識概括

高中數學知識總結歸納(列印版)

引言

1.課程內容:

必修課程由5個模塊組成:

必修1:集合、函數概念與基本初等函數(指、對、冪函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:演算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上是每一個高中學生所必須學習的。

上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。

此外,基礎內容還增加了向量、演算法、概率、統計等內容。

選修課程有4個系列:

系列1:由2個模塊組成。

選修1—1:常用邏輯用語、圓錐曲線與方程、導數及其應用。

選修1—2:統計案例、推理與證明、數系的擴充與復數、框圖

系列2:由3個模塊組成。

選修2—1:常用邏輯用語、圓錐曲線與方程、

空間向量與立體幾何。

選修2—2:導數及其應用,推理與證明、數系的擴充與復數

選修2—3:計數原理、隨機變數及其分布列,統計案例。

系列3:由6個專題組成。

選修3—1:數學史選講。

選修3—2:信息安全與密碼。

選修3—3:球面上的幾何。

選修3—4:對稱與群。

選修3—5:歐拉公式與閉曲面分類。

選修3—6:三等分角與數域擴充。

系列4:由10個專題組成。

選修4—1:幾何證明選講。

選修4—2:矩陣與變換。

選修4—3:數列與差分。

選修4—4:坐標系與參數方程。

選修4—5:不等式選講。

選修4—6:初等數論初步。

選修4—7:優選法與試驗設計初步。

選修4—8:統籌法與圖論初步。

選修4—9:風險與決策。

選修4—10:開關電路與布爾代數。

2.重難點及考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數、圓錐曲線

高考相關考點:

⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

1/100

⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用

⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用

⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用

⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用

⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系

⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用

⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量

⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用

⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布

⑿導數:導數的概念、求導、導數的應用

⒀復數:復數的概念與運算

Ⅳ 自己是一名高中生每天數學課都很認真聽講,但不會做題,該怎麼辦

自己是一名高中生,每天數學課都很認真地聽講但就是不會做題,在這個時候一定要提升自己對於習題的練習。有些同學會發現自己在上課的時候什麼都能夠聽得懂,但是在寫題的時候什麼都寫不出來,這很有可能就是一種假性聽講的現象。在上課的時候跟著老師的節奏走會很容易的就知道這道題該怎麼解,但是如果沒有老師的引導的話,那麼自己很有可能就會陷入思想的誤區,久而久之就不知道到底該如何解題了。

而且學習數學的時候也一定要記住多做題,做題永遠是最快解決問題的辦法,而且在這個過程當中也要有針對性地做題。如果發現自己最開始的時候總是寫不出來的話,可以選擇先做一些基礎題。這些基礎題就能夠讓自己對於知識點的掌握更為牢固一些,等自己會做題的時候,就可以挑選一些比較難的題來寫這些題,會讓自己收獲到更大的成就。

Ⅳ 高中生怎麼學好數學

首先,自我介紹一下,我是一名高三數學老師,通過多年的教學,我總結了如下幾點,以幫助你學好數學課!具體如下:課下要學會「三種復習」(1)及時復習——每天課後,要通過閱讀課本和整理筆記完成兩項任務:①深摳理論(概念、定理、公式、法則)。②深摳例題。要做到「知其然更知其所以然」,才能舉三反一和舉一反三。(2)單元復習——每個單元學完後,要做單元復習,完成以下任務:①整理、串聯知識點,形成單元的理論系統。②歸納單元理論的數學思想和數學方法,使理解達到更高的層面。③篩選單元中的典型例題和習題,以利於進一步研究和以後的復習。通過單元復習,徹底解決周清問題。(3)考前復習與考後總結。很多學生考前不會復習,只知道找題做,記題型。這樣往往會使知識系統記憶不全、丟三落四,沒有練過的不敢做,平時做過的題不一定做對。因此,考前的系統復習很重要。通過復習,使學生能發現知識之間的內在聯系,掌握各種概念、原理的豐富內涵和本質,將分散的知識整合為系統知識,進而形成一種新的「自主型」知識結構。①把單元的理論系統及其內涵合上書從頭到尾說一遍,說不上來時,打開書看一看,繼續往下說,直到能全部說清楚;②把單元復習整理過的中心課題、數學思想和方法照上面的法也說一遍,這樣重點突出,針對性強。③把典型例題和習題分析一遍或者做一遍。考試後要做總結,既要總結成功的經驗,更要總結失分的原因,找出改進的方法,並把失分點記在「錯題本」上,力爭做到對失分點日後「不二錯」。解決月清問題(不要求月考,但要求章節過關)。祝你愉快

Ⅵ 高中生的數學應該怎麼學呢

高中生的數學其實應該要多記一些數學公式,然後多去刷題目,這樣才會更加熟練。

Ⅶ 高中數學其實難度也不小,應該如何學好數學

高考是每位學生都需要面對的人生考驗,它不僅是一個人未來道路的轉折點,更是一個人命運的新起點,所以高考在所有人眼裡都是那麼的重要。

不過在所有的學科當中,最難學的也是分數佔比極高的科目就是數學,而數學也成為了很多同學的噩夢,那麼應該如何才能學好數學呢?看看學霸怎麼說。



3、從考試中總結經驗

自從上了高中之後,尤其是高三階段,考驗同學們的知識水平就是一次又一次的模擬考試,自然就會有很多同學感覺到厭煩。

其實考試不僅僅是考察分數,也是綜合能力的檢驗,像心態、時間規劃等,同學們要從考試中總結出相應的經驗。

寄語:

其實想要學好數學並沒有太多華麗的技巧,也並沒有能夠快速提升成績的奧秘,是要腳踏實地,從最近本的開始做起,再一點點的增加難度。

Ⅷ 怎麼樣才能學好高中數學

1、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。

2、學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。

3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。

4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。

閱讀全文

與高中生怎麼學好數學相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:747
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1364
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1037
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1008
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1669
下列哪個水飛薊素化學結構 瀏覽:1431
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1072