導航:首頁 > 數字科學 > 中國古代數學對世界文化貢獻最大的是什麼

中國古代數學對世界文化貢獻最大的是什麼

發布時間:2022-05-27 03:02:51

Ⅰ 數學的發展對人類文明的貢獻

數學是人類的第二語言。社會自然科學的發展都離不開數學。商業航海、歷法計算、橋梁、寺廟、宮殿建造、武器與工事的設計等等,數學往往能對所有的這些問題做出令人滿意的解決。數學對人類物質文明的影響,最突出的是反映在它與能根本改變人類物質生活方式的產業革命的關繫上:人類歷史上先後共有三次重大產業革命,這三次產業革命主體技術都與數學的新理論、新方法的應用有直接或間接的關系。數學對人類認識自然和改造自然起著重要作用,數學是研究世界的空間形式和數量關系的科學。義大利數學家伽利略說「數學是書寫宇宙的文字」,物理學家狄拉克說:「上帝使用了美麗的數學來創造這個世界」。
作為人類精神、智慧與理性的最高代表之一,數學文化是人類文化的重要組成部分,是促進物質文明和強化精神文明的重要基礎,因而在文化發展中占據著舉足輕重的地位,是推進人類文明的不可或缺的重要因素。

Ⅱ 中國數學對世界數學發展的影響

中國從明代開始進入了封建社會的晚期,16世紀末以後,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰爭以後,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初,近代數學研究才真正開始。 從明初到明中葉,商品經濟有所發展,和這種商業發展相適應的是珠算的普及。明初《魁本對相四言雜字》和《魯班木經》的出現,說明珠算已十分流行。前者是兒童看圖識字的課本,後者把算盤作為家庭必需用品列入一般的木器傢具手冊中。 隨著珠算的普及,珠算演算法和口訣也逐漸趨於完善。例如王文素和程大位增加並改善撞歸、起一口訣;徐心魯和程大位增添加、減口訣並在除法中廣泛應用歸除,從而實現了珠算四則運算的全部口訣化;朱載墒和程大位把籌算開平方和開立方的方法應用到珠算,程大位用珠算解數字二次、三次方程等等。程大位的著作在國內外流傳很廣,影響很大。 1582年,義大利傳教士利瑪竇到中國,1607年以後,他先後與徐光啟翻譯了《幾何原本》前六卷、《測量法義》一卷,與李之藻編譯《圜容較義》和《同文算指》。1629年,徐光啟被禮部任命督修歷法,在他主持下,編譯《崇禎歷書》137卷。《崇禎歷書》主要是介紹歐洲天文學家第谷的地心學說。作為這一學說的數學基礎,希臘的幾何學,歐洲玉山若乾的三角學,以及納皮爾算籌、伽利略比例規等計算工具也同時介紹進來。 在傳入的數學中,影響最大的是《幾何原本》。《幾何原本》是中國第一部數學翻譯著作,絕大部分數學名詞都是首創,其中許多至今仍在沿用。徐光啟認為對它「不必疑」、「不必改」,「舉世無一人不當學」。滿清侵入中原之後,科學再度被打入了「冷宮」。不但書的後半部分遲遲不能翻譯,就連徐光啟已經譯出的上半部分也不再發行。西方傳教士帶來的科技著作,成為康熙、雍正或乾隆皇帝獨享的業余愛好。 其次應用最廣的是三角學,介紹西方三角學的著作有《大測》《割圓八線表》和《測量全義》。《大測》主要說明三角八線(正弦、餘弦、正切、餘切、正割、餘割、正矢、余矢)的性質,造表方法和用表方法。《測量全義》除增加一些《大測》所缺的平面三角外,比較重要的是積化和差公式和球面三角。所有這些,在當時歷法工作中都是隨譯隨用的。 1646年,波蘭傳教士穆尼閣來華,跟隨他學習西方科學的有薛鳳柞、方中通等。穆尼閣去世後,薛鳳柞據其所學,編成《歷學會通》,想把中法西法融會貫通起來。《歷學會通》中的數學內容主要有比例對數表》《比例四線新表》和《三角演算法》。前兩書是介紹英國數學家納皮爾和布里格斯發明增修的對數。後一書除《崇禎歷書》介紹的球面三角外,尚有半形公式、半弧公式、德氏比例式、納氏比例式等。方中通所著《數度衍》對對數理論進行解釋。對數的傳入是十分重要,它在歷法計算中立即就得到應用。 清初學者研究中西數學有心得而著書傳世的很多,影響較大的有王錫闡《圖解》、梅文鼎《梅氏叢書輯要》(其中數學著作13種共40卷)、年希堯《視學》等。梅文鼎是集中西數學之大成者。他對傳統數學中的線性方程組解法、勾股形解法和高次冪求正根方法等方面進行整理和研究,年希堯的《視學》是中國第一部介紹西方透視學的著作。 清康熙重視西方科學,但只是作為自己的愛好。1712年康熙命梅彀成任蒙養齋匯編官,會同陳厚耀、何國宗、明安圖、楊道聲等編纂天文演算法書。1721年完成《律歷淵源》100卷,以康熙「御定」的名義於1723年出版。其中《數理精蘊》主要由梅彀成負責,分上下兩編,上編包括《幾何原本》、《演算法原本》,均譯自法文著作;下編包括算術、代數、平面幾何平面三角、立體幾何等初等數學,附有素數表、對數表和三角函數表。由於它是一部比較全面的初等數學網路全書,並有康熙「御定」的名義,因此對當時數學研究有一定影響。

Ⅲ 朱世傑我國古代數學科學做出了什麼貢獻

朱世傑,生平不詳,字漢卿,號松庭,燕山(今北京)人,元朝傑出的數學家。他長期從事數學研究和教育事業,主要著作有《四元玉鑒》和《算學啟蒙》。

13世紀末,中國為元朝所統一,遭到破壞的經濟和文化又很快繁榮起來。蒙古統治者為了興邦安國,開始尊重知識,大量選拔人才,把各科學的發展推向了新的高峰。

當時忽必烈網羅了一大批漢族知識分子組成智囊團,其中就有王恂、郭守敬、李治等人,這個智囊團中的人物,對數學和歷法都很精通。

這時的朱世傑也繼承了北方數學的主要成就——天元術,並將其由二元、三元推廣至四元方程組的解法。朱世傑除了接受北方的數學成就之外,他還吸收了南方的數學成就,尤其是各種日用演算法、商用算術和通俗化的歌訣等等。

在元滅南宋以前,南北之間的交往,特別是學術上的交往幾乎是斷絕的。南方的數學家對北方的天元術毫無所知,而北方的數學家也很少受到南方的影響。朱世傑曾「周遊四方」,經過20多年的游學、講學等活動,他終於在1299年和1303年,在揚州刊刻了他的兩部數學傑作——《算學啟蒙》和《四元玉鑒》。

《算學啟蒙》包括了從乘除法運算及其捷演算法到開方、天元術、方程術等當時數學各方面的內容,由淺入深,形成了一個較完整的體系。正文前,列出了九九歌訣、歸除歌訣、斤兩化零歌、籌算識位制度、大小數進位法、度量衡制度、圓周諸率、正負數加減乘法法則、開方法則等18條作為總括,作為全書的預備知識,其中正負數乘法法則不僅在中國數學著作中,在世界上也是首次出現。許多歌訣比楊輝的更加完整准確,有的已與現代珠算口訣幾乎完全一致。

《四元玉鑒》是朱世傑最傑出的作品,在這部書中記載了他對多元高次方程組解法、高階等差級數求和、高次內插法等問題的見解,受到近代數學史研究者的高度評價,認為是中國古代數學科學著作中最重要的、最有貢獻的一部數學名著。

朱世傑的另一重大貢獻是對於「垛積術」的研究。他對於一系列新的垛形的級數求和問題作了研究,從中歸納出「三角垛」的公式,實際上得到了這一類任意高階等差級數求和問題的系統、普遍的解法。朱世傑還把三角垛公式引用到「招差術」中,指出招差公式中的系數恰好依次是各三角垛的積,這樣就得到了包含有四次差的招差公式。他還把這個招差公式推廣為包含任意高次差的招差公式,這在世界數學史上是第一次。

在中國數學史上,朱世傑第一次正式提出了正負數乘法的正確法則;他對球體表面積的計算問題作了探討,這是我國古代數學典籍中唯一的一次討論,結論雖不正確,但創新精神是可貴的。在《算學啟蒙》中,他記載了完整的「九歸除法」口訣,和現在流傳的珠算歸除口訣幾乎完全一致。

總之,朱世傑繼承和發展了前人的數學成就,為推進我國古代數學科學的發展做出了不可磨滅的貢獻。朱世傑不愧是我國乃至世界數學史上負有盛名的數學家。

Ⅳ 中國古代數學對世界文化的貢獻首推十進位制,它出現於哪個朝代

夏朝發明了干支紀年,出現了十進位制。

Ⅳ 中國古代在數的發展方面的貢獻

算籌

根據史書的記載和考古材料的發現,古代的算籌實際上是一根根同樣長短和粗細的小棍子,一般長為13--14cm,徑粗0.2~0.3cm,多用竹子製成,也有用木頭、獸骨、象牙、金屬等材料製成的,大約二百七十幾枚為一束,放在一個布袋裡,系在腰部隨身攜帶。需要記數和計算的時候,就把它們取出來,放在桌上、炕上或地上都能擺弄。別看這些都是一根根不起眼的小棍子,在中國數學史上它們卻是立有大功的。而它們的發明,也同樣經歷了一個漫長的歷史發展過程。

在算籌計數法中,以縱橫兩種排列方式來表示單位數目的,其中1-5均分別以縱橫方式排列相應數目的算籌來表示,6-9則以上面的算籌再加下面相應的算籌來表示。表示多位數時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空。這種計數法遵循十進位制。

算籌的出現年代已經不可考,但據史料推測,算籌最晚出現在春秋晚期戰國初年(公元前722年~公元前221年),一直到算盤發明推廣之前都是中國最重要的計算工具。

算籌的發明就是在以上這些記數方法的歷史發展中逐漸產生的。它最早出現在何時,現在已經不可查考了,但至遲到春秋戰國;算籌的使用已經非常普遍了。前面說過,算籌是一根根同樣長短和粗細的小棍子,那麼怎樣用這些小棍子來表示各種各樣的數目呢?

那麼為什麼又要有縱式和橫式兩種不同的擺法呢?這就是因為十進位制的需要了。所謂十進位制,又稱十進位值制,包含有兩方面的含義。其一是"十進制",即每滿十數進一個單位,十個一進為十,十個十進為百,十個百進為千……其二是"位值制,即每個數碼所表示的數值,不僅取決於這個數碼本身,而且取決於它在記數中所處的位置。如同樣是一個數碼"2",放在個位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我國商代的文字記數系統中,就已經有了十進位值制的蔭芽,到了算籌記數和運算時,就更是標準的十進位值制了。

按照中國古代的籌算規則,算籌記數的表示方法為:個位用縱式,十位用橫式,百位再用縱式,千位再用橫式,萬位再用縱式……這樣從右到左,縱橫相間,以此類推,就可以用算籌表示出任意大的自然數了。由於它位與位之間的縱橫變換,且每一位都有固定的擺法,所以既不會混淆,也不會錯位。毫無疑問,這樣一種算籌記數法和現代通行的十進位制記數法是完全一致的。

中國古代十進位制的算籌記數法在世界數學史上是一個偉大的創造。把它與世界其他古老民族的記數法作一比較,其優越性是顯而易見的。古羅馬的數字系統沒有位值制,只有七個基本符號,如要記稍大一點的數目就相當繁難。古美洲瑪雅人雖然懂得位值制,但用的是20進位;古巴比倫人也知道位值制,但用的是60進位。20進位至少需要19個數碼,60進位則需要59個數碼,這就使記數和運算變得十分繁復,遠不如只用9個數碼便可表示任意自然數的十進位制來得簡捷方便。中國古代數學之所以在計算方面取得許多卓越的成就,在一定程度上應該歸功於這一符合十進位制的算籌記數法。馬克思在他的《數學手稿》一書中稱十進位記數法為"最妙的發明之一",確實是一點也不過分的。

二進制思想的開創國

著名的哲學家數學家萊布尼茨(1646-1716)發明了對現代計算機系統有著重要意義的二進制,不過他認為在此之前,中國的《易經》中已經提到了有關二進制的初步思想。當代的許多科學家認為易經中並不含有復雜的二進制思想,可是這本中國古籍中的一些基本思想和二進制在很大程度上仍然有著千絲萬縷的聯系。

元始的《靈寶經》裡面把陰陽定義為陽是自冬至到夏至的上升的氣,陰為從夏至到冬至下降的氣,這是對地球周期運動的最簡練認識。陰陽是一種物質認識,後來轉化為思想方式,反者道之動等等,都是這種思想的表現。從而開創了對立統一的思想方式,實際上計算機的電子脈沖的思想是與之一致的,采樣定律也是與之一致的。

《易經》是我國伏羲、周文王等當政者積累觀天測算經驗而成的關於天象氣象和人變易的經典,從八卦到六十四卦,就是二進制三位到六位表達,上世紀八十年代還有四位計算機,可以說,周文王的六十四卦在表達能力上已經高於四位計算機。

十進制的使用

《卜辭》中記載說,商代的人們已經學會用一、二、三、四、五、六、七、八、九、十、百、千、萬這13個單字記十萬以內的任何數字,但是現在能夠證實的當時最大的數字是三萬。甲骨卜辭中還有奇數、偶數和倍數的概念。

十進位位值制記數法包括十進位和位值制兩條原則,"十進"即滿十進一;"位值"則是同一個數位在不同的位置上所表示的數值也就不同,如三位數"111",右邊的"1"在個位上表示1個一,中間的"1"在十位上就表示1個十,左邊的"1"在百位上則表示1個百。這樣,就使極為困難的整數表示和演算變得如此簡便易行,以至於人們往往忽略它對數學發展所起的關鍵作用。

我們有個成語叫"屈指可數",說明古代人數數確實是離不開手指的,而一般人的手指恰好有十個。因此十進制的使用似乎應該是極其自然的事。但實際情況並不盡然。在文明古國巴比倫使用的是60進位制(這一進位制到現在仍留有痕跡,如一分=60秒等)另外還有採用二十進位制的。古代埃及倒是很早就用10進位制,但他們卻不知道位值制。所謂位值制就是一個數碼表示什麼數,要看它所在的位置而定。位值制是千百年來人類智慧的結晶。零是位值制記數法的精要所在。但它的出現卻並非易事。我國是最早使用十進制記數法,且認識到進位制的國家。我們的口語或文字表達的數字也遵守這一原則,比如一百二十七。同時我們對0的認識最早。

十進制是中國人民的一項傑出創造,在世界數學史上有重要意義。著名的英國科學史學家李約瑟教授曾對中國商代記數法予以很高的評價,"如果沒有這種十進制,就幾乎不可能出現我們現在這個統一化的世界了",李約瑟說"總的說來,商代的數字系統比同一時代的古巴比倫和古埃及更為先進更為科學。"

分數和小數的最早運用

分數的應用

最初分數的出現,並非由除法而來。分數被看作一個整體的一部分。"分"在漢語中有"分開""分割"之意。後來運算過程中也出現了分數,它表示兩整數比。分數的加減乘除運算我們小學就已完全掌握了。很簡單,是不是?不過在七、八百年以前的歐洲,如果你有這種水平那麼就可以說相當了不起了。那時精通自然數的四則運算就已達到了學者水平。至於分數,對當時人來說簡直難於上青天。德國有句諺語形容一個人陷入絕境,就說:"掉到分數里去了"。為什麼會如此呢?這都是笨拙的記數法導致的。在我國古代,《九章算術》中就有了系統的分數運算方法,這比歐洲大約早1400年。

西漢時期,張蒼、耿壽昌等學者整理、刪補自秦代以來的數學知識,編成了《九章算術》。在這本數學經典的《方田》章中,提出了完整的分數運演算法則。

從後來劉徽所作的《九章算術注》可以知道,在《九章算術》中,講到約分、合分(分數加法)、減分(分數減法)、乘分(分數乘法)、除分(分數除法)的法則,與我們現在的分數運演算法則完全相同。另外,還記載了課分(比較分數大小)、平分(求分數的平均值)等關於分數的知識,是世界上最早的系統敘述分數的著作。

分數運算,大約在15世紀才在歐洲流行。歐洲人普遍認為,這種演算法起源於印度。實際上,印度在七世紀婆羅門笈多的著作中才開始有分數運演算法則,這些法則都與《九章算術》中介紹的法則相同。而劉徽的《九章算術注》成書於魏景元四年(263年),所以,即使與劉徽的時代相比,我們也要比印度早400年左右。

小數的最早使用

劉徽在《九章算術注》中介紹,開方不盡時用十進分數(徽數,即小數)去逼近,首先提出了關於十進小數的概念。到公元 1300年前後,元代劉瑾所著《律呂成書》中,已將106368.6312寫成

把小數部分降低一行寫在整數部分的後邊。而西方的斯台汶直到1585年才有十進小數的概念,且他的表示方法遠不如中國先進,如上述的小數,他記成或106368。

九九表的使用

作為啟蒙教材,我們都背過九九乘法表:一一得一、一二得二……九九八十一。而古代是從"九九八十一"開始,因此稱"九九表"。九九表的使用,對於完成乘法是大有幫助的。齊恆公納賢的故事說明,到公元前7世紀時,九九歌訣已不希罕。也許有人認為這種成績不值一提。但在古代埃及作乘法卻要用倍乘的方式呢。舉個例子。如算23×13,就需要從23開始,加倍得到23×2,23×4,23×8,然後注意到13=1+4+8,於是23+23×4+23×8加起來的結果就是23×13。從比較中不難看出使用九九表的優越性了。

根據考古專家在湖南張家界古人堤漢代遺址出土的簡牘上發現的漢代"九九乘法表",竟與現今生活中使用的乘法口訣表有著驚人的一致。這枚記載有"九九乘法表"的簡牘是木質的,大約有22厘米長,殘損比較嚴重。此前在湘西里耶古城出土的一枚秦簡上也發現了距今2200多年的乘法口訣表,並被考證為中國現今發現的最早的乘法口訣表實物。

除了里耶秦簡外,與張家界古人堤遺址發現的這枚簡牘樣式基本一致的"九九乘法表"還曾在樓蘭文書中見到過,那是寫在兩張殘紙上的九九乘法表,為瑞典探險家斯文赫定在上個世紀初期發掘。

乘法表在古代並非中國一家獨有,古巴比倫的泥版書上也有乘法表。但漢字(包括數目字)單音節發聲的特點,使之讀起來朗朗上口;後來發展起來的珠算口訣也承繼了這一特點,對於運算速度的提高和演算法的改進起到一定作用。

負數的使用

人們在解方程或其它數的運算過程中,往往要碰到從較小數減去較大數的情形,另外,還遇到了增加與減小,盈餘與虧損等互為相反意義的量,這樣,人們自然地引進了負數。

負數的引進,是中國古代數學家對數學的一個巨大貢獻。在我國古代秦、漢時期的算經《九章算術》的第八章"方程"中,就自由地引入了負數,如負數出現在方程的系數和常數項中,把"賣(收入錢)"作為正,則"買(付出錢)"作為負,把"余錢"作為正,則"不足錢"作為負。在關於糧谷計算的問題中,是以益實(增加糧谷)為正,損實(減少糧谷)為負等,並且該書還指出:"兩算得失相反,要以正負以名之"。當時是用算籌來進行計算的,所以在算籌中,相應地規定以紅籌為正,黑籌為負;或將算籌直列作正,斜置作負。這樣,遇到具有相反意義的量,就能用正負數明確地區別了。

在《九章算術》中,除了引進正負數的概念外,還完整地記載了正負數的運演算法則,實際上是正負數加減法的運演算法則,也就是書中解方程時用到的"正負術"即"同名相除,異名相益,正無入正之,負無入負之;其異名相除,同名相益,正無入正之,負無入負之。"這段話的前四句說的是正負數減法法則,後四句說的是正負數加法法則。它的意思是:同號兩數相減,等於其絕對值相減;異號兩數相減,等於其絕對值相加;零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減;同號兩數相加,等於其絕對值相加;零加正數得正數,零加負數得負數,當然,從現代數學觀點看,古書中的文字敘述還不夠嚴謹,但直到公元17世紀以前,這還是正負數加減運算最完整的敘述。

在國外,負數出現得很晚,直至公元1150年(比《九章算術》成書晚l千多年),印度人巴土卡洛首先提到了負數,而且在公元17世紀以前,許多數學家一直採取不承認的態度。如法國大數學家韋達,盡管在代數方面作出了巨大貢獻,但他在解方程時卻極力迴避負數,並把負根統統捨去。有許多數學家由於把零看作"沒有",他們不能理解比"沒有"還要"少"的現象,因而認為負數是"荒謬的"。直到17世紀,笛卡兒創立了坐標系,負數獲得了幾何解釋和實際意義,才逐漸得到了公認。

從上面可以看出,負數的引進,是我國古代數學家貢獻給世界數學的一份寶貴財富。負數概念引進後,整數集和有理數集就完整地形成了。

圓周率的計算

圓周率是數學中最重要的常數之一。對它的計算,可以作為顯示出一個國家古代數學發展的水平的尺度之一。而我國古代數學在這方面取得了令世人矚目的成績。

我國古代最初把圓周率取作3,這雖應用起來簡便,但太不準確。在求准確圓周率值的征途中,首先邁出關鍵一步的是劉徽。他創立割圓術,用圓內接正多邊形無限逼近圓而求取圓周率值。用這種方法他求得圓周率的近似值為3.14,也有人認為他得到了更好的結果:3.1416。青出於藍,而勝於藍。後繼者祖沖之利用割圓術得出了正確的小數點後七位。而且他還給出了約率與密率。密率的發現是數學史上卓越的成就,保持了一千多年的世界紀錄,是一項空前傑作。

Ⅵ 中國古代有哪些數學成就是領先於當時世界其他地區且對世界數學史上有傑出貢獻的

中國古代在數學方面的傑出成就主要有:勾股定理、楊輝三角、圓周率,還有算盤

Ⅶ 中國數學的最大貢獻

古代:
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。 趙爽在《勾股圓方圖注》中,用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。
南北朝祖沖之、祖暅父子取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。
秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑著《四元玉鑒》,把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
現代:
1.國際著名數學大師,沃爾夫數學獎得主,陳省身
1931年入清華大學研究院,1934軍獲碩士學位.1934年去漢堡大學從Blaschke學習.1937年回國任西南聯合大學教授.1943年到1945年任普林斯頓高等研究所研究員.1949年初赴美,旋任芝加哥大學教授.1960年到加州大學伯克利分校任教授,1979年退休成為名譽教授,仍繼續任教到1984年.1981年到1984年任新建的伯克利數學研究所所長,其後任名譽所長。陳省身的主要工作領域是微分幾何學及其相關分支.還在積分幾何,射影微分幾何,極小子流形,網幾何學,全曲率與各種浸入理論,外微分形式與偏微分方程等諸多領域有開拓性的貢獻.陳省身本有極多榮譽,包括中央研究院院士(1948).美國國家科學院院士(1961)及國家科學獎章(1975),倫敦皇家學會國外會員(1985),法國科學院國外院士』(1989),中國科學院國外院士等。榮獲1983/1984年度Wolf獎,及1983年度美國科學會Steele獎中的終身成就獎.
2.享有國際盛譽的大數學家,新中國數學事業發展的重要奠基人,華羅庚
華羅庚是一位人生經歷傳奇的數學家,早年輟學,1930年因在《科學》上發表了關於代數方程式解法的文章,受到熊慶來的重視,被邀到清華大學學習和工作,在楊武之指引下,開始了數論的研究。1936年,作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應美國普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年開始,他為伊利諾伊大學教授。1950年回國,先後任清華大學教授,中國科學院數學研究所所長,數理化學部委員和學部副主任,中國科學技術大學數學系主任、副校長,中國科學院應用數學研究所所長,中國科學院副院長、主席團委員等職。還擔任過多屆中國數學會理事長。此外,華羅庚還是第一、二、三、四、五屆全國人民代表大會常務委員會委員和中國人民政治協商會議第六屆全國委員會副主席。華羅庚是在國際上享有盛譽的數學家,他的名字在美國施密斯松尼博物館與芝加哥科技博物館等著名博物館中,與少數經典數學家列在一起。他被選為美國科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士。又被授予法國南錫大學、香港中文大學與美國伊利諾伊大學榮譽博士。華羅庚在解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等廣泛數學領域中都作出卓越貢獻。由於華羅庚的重大貢獻,有許多用他他的名字命名的定理、引理、不等式、運算元與方法。他共發表專著與學術論文近三百篇。華羅庚還根據中國實情與國際潮流,倡導應用數學與計算機研製。他身體力行,親自去二十七個省市普及應用數學方法長達二十年之久,為經濟建設作出了重大貢獻。
3.僅次於哥德爾的邏輯數學大師,王浩
1943年於西南聯合大學數學系畢業。1945年於清華大學研究生院哲學部畢業。1948年獲美國哈佛大學哲學博士學位。1950~1951年在瑞士聯邦工學院數學研究所從事研究工作1951~1953年任哈佛大學助理教授。1954~1961年在英國牛津大學作第二套洛克講座講演,又任邏輯及數理哲學高級教職。1961~1967 年任哈佛大學教授。1967年後任美國洛克斐勒大學教授,主持邏輯研究室工作。1985年兼任中國北京大學名譽教授。1986年兼任中國清華大學名譽教授。50年代 初被選為美國國家科學院院士,後又被選為不列顛科學院外國院士,美籍華裔數學家、邏輯學家、計算機科學家、哲學家。
4.著名數學家力學家,美國科學院院士,林家翹
1937年畢業於清華大學物理系。1941年獲加拿大多倫多大學碩士學位。1944年獲美國加州理工學院博士學位。1953 年起先後擔任美國麻省理工學院數學教授、學院教授、榮譽退休教授。 林家翹教授曾獲:美國機械工程師學會Timoshenko獎,美國國家科學院應用數學和數值分析獎,美國物理學會流體力學獎。他是美國國家文理學院院士(1951),美國國家科學院院士(1962),台灣「中央研究院」院士(1960)。從40年代開始,林家翹教授在流體力學的流動穩定性和湍流理論方面的工作帶動了整整一代人在這一領域的研究探索。從60年代開始,他進入天體物理的研究領域,開創了星系螺旋結構的密度波理論,並為國際所公認。1994年6月8日當選為首批中國科學院外籍士。
5.我國泛函分析領域研究先驅者,曾遠榮
1919年入清華學校(清華大學前身)留美預備部,一直讀到1927年7月。由於學習成績優異,先後在美國芝加哥大學,普林斯頓大學及耶魯大學學習並研究數學,1933年取得博士學位。1934年8月至1942年7月一直任教於清華大學(1938年與北京大學、南開大學在昆明組成西南聯合大學)。1950年2月,受國立南京大學數學系系主任孫光遠教授寫信聘請到南京大學任教直至退休,曾在南京大學建立國內最早的計算數學專業。長期從事泛函分析研究,是我國開展這一領域研究的先驅者之一,在廣義逆等研究領域成就卓著。
6.我國最早提倡應用數學與計算數學的學者,趙訪熊
1922年考取北京清華學校。當時清華學校是公費留美預備學校,競爭激烈,在江蘇只招3名學生,他在眾多考生中名列榜首。畢業後即到美國麻省理工學院(MIT)電機系學習。他1930年在電機系畢業,被哈佛大學數學系錄取為研究生,且於1931年獲碩士學位。1933年他受聘回國在清華大學數學系任教,1935年被聘為教授,從此一直在清華大學任教,參與創辦國內第一個計算數學專業。趙訪熊於1962年和1978年先後兩次出任清華大學副校長,1980-1984年兼任新成立的應用數學系主任,並受聘擔任國務院學位委員會學科評議組委員。他擔任過中國數學會理事、名譽理事。1978年至1989年擔任第一、二屆計算數學學會理事長及第三屆名譽理事長和《計算數學學報》主編等一系列職務。數學家,數學教育家。我國最早提倡和從事應用數學與計算數學的教學與研究的學者之一。自編我國第一部工科《高等微積分》教材。在方程求根及應用數學研究方面頗有建樹。
7.著名數學家,數學教育家,吳大任
1930年與陳省身以最優等成績在南開大學畢業,考取清華大學研究生,1933年夏,在姜立夫的鼓勵下,吳大任參加了中英庚款第一屆公費留學考試,被錄取到英國學習。他本想到劍橋大學攻讀,因抵倫敦時間錯過了該校入學的時機,改入倫敦大學的大學學院,注冊為博士研究生。1937年9月初,吳大任到武漢大學任教,之後即隨武漢大學遷到四川樂山。後來長期擔任南開大學領導工作與教學工作,著、譯數學教材及名著多種。對我國高等教育事業作出了積極貢獻。研究領域涉及積分幾何、非歐幾何、微分幾何及其應用(齒輪理論)。1981年他任國家學位委員會第一屆數學組成員,《中國大網路全書數學卷》編委兼幾何拓撲學科的副主編以及全國自然科學名詞審定委員會第一和第二屆委員。
8.著名數學家,北大教授,庄圻泰
1927年考入清華學校,1932年畢業於清華大學數學系,1934年,熊慶來教授接受庄圻泰為自己的研究生,1936年於該校理科研究所畢業。1938年獲法國巴黎大學數學博士學位。曾任雲南大學教授。1952年院系調整後,庄圻泰留任北京大學。此後除繼續擔任復變函數課程的教學任務外,他還陸續講過保角變換,擬保角變換,整函數與亞純函數等專業課。九三學社社員。長期從事函數論研究,在整函數與亞純函數的值分布理論上取得重要成果。著有《亞純函數的奇異方向》,合編《AnalyticFunctionsOfOneCom·plexVariable》(在美國出版)
9.著名數學家,數學教育家,四川大學校長,柯召
1931年,入清華大學算學系。1933年,柯召以優異成績畢業。1935年,他考上了中英庚款的公費留學生,去英國曼徹斯特大學深造,在導師L.J.莫德爾(Mordell)的指導下研究二次型,在表二次型為線性型平方和的問題上,取得優異成績,回國後先後任教於重慶大學,四川大學。1953年,他調回四川大學任教至今。在這40餘年間,他以滿腔的熱情投入教學和科研工作,為國家培養了許多優秀數學人材,在科研上碩果累累。與此同時,他還先後擔任了四川大學教務長、副校長、校長、數學研究所所長等職,作為學術帶頭人和學校負責人,他卓有成效地抓了幾個重要方面的工作:努力提高教學質量,積極開展基礎理論研究,發展應用數學,培養一批高水平的人材。其研究領域涉及數論、組合數學與代數學。在二次型、不定方程領域獲眾多優秀成果。1955年選聘為中國科學院院士(學部委員)。
10.中央研究院院士,首批學部委員,許寶騄
1929年入清華大學數學系,1933年畢業獲理學士學位,1936年許寶騄考取赴英留學,派往倫敦大學學院,在統計系學習數理統計,攻讀博士學位。1940年到昆明,在西南聯合大學任教。1948年他當選為中央研究院院士。回國後不久就發現已患肺結核。他長期帶病工作,教學科研一直未斷,在矩陣論,概率論和數理統計方面發表了10餘篇論文。1955年,他當選為中國科學院學部委員。在中國開創了概率論、數理統計的教學與研究工作。在內曼-皮爾遜理論、參數估計理論、多元分析、極限理論等方面取得卓越成就,是多元統計分析學科的開拓者之一。1955年選聘為中國科學院院士(學部委員)。
11.中科院院士,原北大數學系主任,段學復
1932年考入了清華大學數學系(當時稱為「算學系」)。 1936年夏,段學復獲得理學士學位,畢業留校任助教。1941年8月進入美國普林斯頓大學數學系攻讀博士學位。1946年回國任清華大學教授,自1952年院系調整後,任北京大學數學系系主任近40年。長期從事代數學的研究。在有限群的模表示論特別是指標塊及其在有限單群和有限復線性群構造研究中的應用方面取得突出成果。指導學生用表示論和有限單群分類定理徹底解決了著名的Brauer第39問題、第40問題。在代數李群研究方面與國外學者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在數學應用於國防科研和國防建設方面作了大量工作。1955年選聘為中國科學院院士(學部委員)。
12.我國拓撲學的奠基人 江澤涵
畢業於南開大學,1927年參加清華大學留美專科生的考試,考取了那年唯一的學數學的名額,後在美國哈佛大學數學系留學,1930年獲得博士學位。1930在美國普林斯頓大學數學系做研究助教。1931年起,長期擔任任北京大學數學系教授,並任北京大學數學系主任,曾兼任理學院代理院長。數學家,數學教育家。早年長期擔任北京大學數學系主任,為該系樹立了優良的教學風尚。致力於拓撲學,特別是不動點理論的研究,是我國拓撲學研究的開拓者之一。1955年當選為中國科學院數理學部委員。

Ⅷ 談談中國古代的數學成就

1、等間距二次內插公式。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,唐代僧一行在其《大銜歷》中將其發展為不等間距二次內插公式。

2、測量太陽高度。陳子是周代的天文算學家,榮方是當時天文算學家的愛好者。陳子測量:太陽高度的方法可敘述為:當夏至太陽直射北回歸線時,在北方立一8尺高的標竿,觀其影長為6尺。

3、勾股定理。據《周髀算經》記載, 「故折矩以為句廣三,股 四,徑隅五。既方其外,半之者,此數之所由生也。」去,政頁井盤、得三、四、五。兩矩共長二十有五,是調積絕。

4、割圓術。所謂「割圓術」,是用圓內接正多邊形的周長去無限逼近圓周並以此求取圓周率的方法。這個方法,是劉徽在批判總結了數學史上各種舊的計算方法之後,經過深思熟慮才創造出來的一種嶄新的方法。

5、圓周率。魏晉時, 劉徽曾用使正多邊形的邊數逐漸增加去逼近圓周的方法(即「割圓術」),求得π 的近似值3. 1416。

(8)中國古代數學對世界文化貢獻最大的是什麼擴展閱讀:

1、在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).

2、算術是數學中最古老、最基礎和最初等的部分,它研究數的性質及其運算。把數和數的性質、數和數之間的四則運算在應用過程中的經驗累積起來,並加以整理,就形成了最古老的一門數學——算術。

Ⅸ 中國古代數學對世界的影響是什麼

中國是算盤之鄉,珠算最早產生於中國為世界聞名作出了重要貢獻!
《九章算術》是世界上最早的系統敘述了分數運算的著作,也是世界數學史上最早提出負數概念及正負數加減法法則!
中國古代數學對世界文化的重大貢獻首推「十進位值制計數法」祖沖之圓周率的推算等等

Ⅹ 中國古代數學取得了哪些世界領先的成績

中國古代數學的萌芽原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。

數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。

中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展。

閱讀全文

與中國古代數學對世界文化貢獻最大的是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:747
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1008
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1667
下列哪個水飛薊素化學結構 瀏覽:1431
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1072