導航:首頁 > 數字科學 > 數學思維有哪些

數學思維有哪些

發布時間:2022-01-29 09:02:40

① 數學思維十種思維方式是什麼

數學思維十種思維方式:

1、對照法

根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

2、公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。

3、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

4、分類法

根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。

5、分析法

把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的種思維方法叫做分析法。

6、綜合法

把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。

7、方程法

用字母表示未知數,並根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。

方程法最大的特點是把未知數等同於已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利於由已知向未知的轉化,從而提高了解題的效率和正確率。

8、參數法

用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的-種方法叫做參數法。參數又叫輔助未知數,也稱中間變數。參數法是方程法延伸、拓展的產物。

9、排除法

排除對立的結果叫做排除法。

排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。

這是一種不可缺少的形式思維方法。

10、特例法

對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。

特例法的邏輯原理是:事物的一.般性存在於特殊性之中。

② 小學中數學思維有哪些

羅博深小學數學青少年數學思維分級課程

鏈接:

提取碼: sgsg 復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題歡迎追問~

③ 數學思想有哪些

常用的數學思想(數學中的四大思想)

  1. 函數與方程的思想 用變數和函數來思考問題的方法就是函數思想,函數思想是函數概念、圖象和性質等知識更高層次的提煉和概括,是在知識和方法反復學習中抽象出的帶有觀念的指導方法。深刻理解函數的圖象和性質是應用函數思想解題的基礎,運用方程思想解題可歸納為三個步驟:①將所面臨的問題轉化為方程問題;②解這個方程或討論這個方程,得出相關的結論;③將所得出的結論再返回到原問題中去。

  2. 數形結合思想 在中學數學里,我們不可能把「數」和「形」完全孤立地割裂開,也就是說,代數問題可以幾何化,幾何問題也可以代數化,「數」和「形」在一定條件下可以相互轉化、相互滲透。

  3. 分類討論思想 在數學中,我們常常需要根據研究對象性質的差異。分各種不同情況予以考察,這是一種重要數學思想方法和重要的解題策略,引起分類討論的因素較多,歸納起來主要有以下幾個方面:
    (1)由數學概念、性質、定理、公式的限制條件引起的討論;
    (2)由數學變形所需要的限制條件所引起的分類討論;
    (3)由於圖形的不確定性引起的討論;
    (4)由於題目含有字母而引起的討論。分類討論的解題步驟一般是:(1)確定討論的對象以及被討論對象的全體;(2)合理分類,統一標准,做到既無遺漏又無重復;(3)逐步討論,分級進行;(4)歸納總結作出整個題目的結論。

  4. 等價轉化思想 等價轉化是指同一命題的等價形式.可以通過變數問題的條件和結論,或通過適當的代換轉化問題的形式,或利用互為逆否命題的等價關系來實現。常用的轉化策略有:已知與未知的轉化;正向與反向的轉化;數與形的轉化;一般於特殊的轉化;復雜與簡單的轉化。

④ 初中必備的數學思維有哪些

初中數學教材中體現出的基本數學思想
數學思想方法是數學學科的精髓,是數學素養的重要內容之一,只有充分掌握領會,才能用效地應用知識,形成能力。那麼,什麼是數學思想呢?數學思想是指現實世界的空間形式和數量關系不反映到人的意識之中,經過思維活動而產生結果,是對數學事實與理論的本質認識。
初中數學整套教材涉及的數學思想三十多種,這里就幾種主要的數學思想作一總結。
一、用字母表示數的思想,這是基本的數學思想之一
在代數第一冊第一章「代數初步知識」中,主要體現了這種思想。例如:
設甲數為a,乙數為b,用代數式表示:(1)甲乙兩數的和的2倍:2(a+b)(2)甲數的1/3與乙數的1/2差:1/3a-1/2b
二、數形結合的思想
「數形結合」是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。實中數學教材中下列內容體現了這種思想。
1、數軸上的點與實數的一一對應的關系。
2、平面上的點與有序實數對的一一對應的關系。
3、函數式與圖像之間的關系。
4、線段(角)的和、差、倍、分等問題,充分利用數來反映形。
5、解三角形,求角度和邊長,引入了三角函數,這是用代數方法解決何問題。6、「圓」這一章中,賀的定義,點與圓、直線與圓、圓與圓的位置關系等都是化為數量關系來處理的。
7、統計初步中統計的第二種方法是繪制統計圖表,用這些圖表的反映數據的分情況,發展趨勢等。實際上就是通過「形」來反映數據扮布情況,發展趨勢等。實際上就是通過「形」來反映數的特徵,這是數形結合思想在實際中的直接應用。
三、轉化思想
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,它是數學基本思想方法之一。下列內容體現了這種思想:
1、分式方程的求解是分式方程轉化為前面學過的一元二次方程求解,這里把待解決的新問題化為已解決的問題來求解,體現了轉化思想。
2、解直角三角形;把非直角三形問題化為直角三角形問題;把實際問題轉化為數學問題。
3、「圓」這一章中,證明圓周角定理進所做的分析:證明弦切角定理的思路:求兩圓的切線長的問題。這些轉化都是通過輔助線來完成的。
4、把三角形或多邊形中的某種線段或面積問題化為相似比問題來解決。
四、分類思想
集合的分類,有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關生活經驗等都是通過分類討論的。
五、特殊與一般化思想
1.「圓」這一章中,證明圓周角定理和弦切角定理時用的是特殊到一般的方法,而相交弦定理及其推論則是一般到特殊的思想運用。
2.「整式乘除」這一章,首先人數和的運算特例中,抽象概括出冪的一般運算性質。例:103 ×103 =(10×10×10)(10×10)=10×10×10×10=105 =103 + 2
a3 ??a3 =a3 + 2 am ??an am + n
乘法公式的推導則是採用一般到特殊的推導過程。
六、類比思想
1. 不等式的性質,一元一次不等式的解法等內容時多採取與等式的性質,一無一次方和的解法等做類比。
2. 通過有理數的相反數、絕對值、運算律等得到實靈敏的相反數、絕對值、運算律等知識。
3.
在二次根式加減的運算中,指出「合並同類二次根式與合並同類項」類似。因此,二次根式的加減可以對比整式的加減進行。
4.
「角的度量、角的比較大小、角的和、差及平他線」,可與線段的相關知識進行類比;度、分、秒的運算可與時、分、秒的運算進行類比。
5. 相似多邊形的性質和相似三角形的性質類比。
七、數式通性
用數的運算所具有的性質,去控索式的同類運算是否也具有這樣的性質,如具有,叫數式通性,整式的乘除這一章中,是由數的性質推知式的性質的;由數的國減推知式的加減的。
八、同類合並思想
這一思想在「整式的加減」這一章中的具體體現是合並同類項。「根式」這一章中的合並同類根式。
九、無逼近思想
在無限不循環小數以及用有理數逼近表示無理數時,體現了無限逼近的思想。
十、對稱變換思想


根式乘法、根式除法、√a2 =a(a=0)等內容中,多次運用等價轉化、對稱變化,反用公式的

⑤ 數學思維包括哪些方面

優質解答
思維是人腦對事物本質和事物之間規律性關系概括的間接的反映.思維是認知的核心成分,思維的發展水平決定著整個知識系統的結構和功能.因此,開發高中學生的思維潛能,提高思維品質,具有十分重大的意義.
思維品質主要包括思維的靈活性、廣闊性、敏捷供、深刻性、獨創性和批判性等幾個方面.思維的靈活性是建立在思維廣闊性和深刻性的基礎上,並為思維敏捷性、獨創性和批判性提供保證的良好品質.在人們的工作、生活中,照章辦事易,開拓創新難,難就難在缺乏靈活的思維.所以,思維靈活性的培養顯得尤為重要.
數學思維是人腦和數學對象交互作用並按一般思維規律認識數學規律的思維過程.其表現是學生從原有的認知結構出發,通過觀察、類比、聯想、猜想等一系列數學思維活動,立體式地展示問題、提出過程,在溫故知新的聯想過程中產生強烈的求知慾,盡可能地參與概念的形成和結論的發展過程,並掌握觀察、實驗、歸納、演繹、類比、聯想、一般化與特殊化等思考問題的方法.

⑥ 數學思維除了邏輯思維還有哪些

我個人認為還需:立體思維,要有立體建模感,理解立體幾何中數學原理;慣性思維,在數學里很多公式可以套用,很多數字組合具有慣性,需要數學者有一定的慣性思維;創新思維,突破陳規,另尋它路是數學者必備的素質之一。

⑦ 數學思考包括哪些內容

數學思考包括的內容:
1、建立數感、符號意識和空間觀念,初步形成幾何直觀和運算能力,發展形象思維和抽象思維。
2、體會統計方法的意義,發展數據分析觀念,感受隨機現象。
3、在參與觀察、實驗、猜想、證明、綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。
4、學會獨立思考,體會數學的基本思想和思維方式。

⑧ 數學思維都包括哪些思維 這些思維在生活學習中有什麼用

有反證法,排除法,推理,還有建模的思維。這些思維用來更好的處理事務,數學思維強的人在加油站加油時會選擇每次買固定價錢的油而不是買某升的油(算數平均數大於幾何平均數),再有旅遊時如何安排行程,花最少的錢,玩最多的景點(需要建模)等等。。

⑨ 小學數學中有哪些思維能力

一)從數學的特點看:數學具有抽象性和邏輯嚴密性。數學本身是由許多判斷組成的確定體系。這些判斷都是由數學術語和邏輯術語以及相應的符號所表示的語句來表達的,並且藉助邏輯推理由一些判斷形成新的判斷。而這些判斷的總和就構成了數學這門科學。小學數學內容雖然比較簡單,也沒有嚴格的推理論證,但都是經過人們抽象、概括、判斷、推理、論證得出的真正的科學結論,只是不給學生進行嚴密的合乎邏輯的論證。即使這樣,一時一刻也離不開判斷、推理。這就為培養學生的邏輯思維提供了十分有利的條件。
(二)從小學生的思維特點看:小學生正處在從具體形象思維向抽象邏輯思維過渡的階段。特別是中、高年級,學生的抽象思維發生了「飛躍」或「質變」。具體地說,10—11歲學生開始能逐步分出概念的本質特徵,能初步掌握比較科學的定義,能領會概念之間的邏輯關系,也能獨立進行一些簡單的邏輯分析,並進行間接的推理(即由幾個判斷推出新的判斷)。因此可以說,這一階段正是發展學生形式邏輯思維的有利時期。
由此可以看出,小學數學教學大綱中提出培養學生初步的邏輯思維能力,既符合數學學科的特點,又符合小學生的年齡特點。

⑩ 什麼是數學思維

數學思維就是數學地思考問題和解決問題的思維活動形式。數學思維教學,是老師在教學活動中,引導學生根據數學素材進行具體化的數學構思,形成數學運算,也就是我們常說的「數感」,是動態的數學活動。數學思維教程即《樂知數學》是優秀教育專家潛心研究並經過大量的測試和實踐,為了充分訓練兒童的個性化思維能力而推出的系列課程。

閱讀全文

與數學思維有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:700
乙酸乙酯化學式怎麼算 瀏覽:1369
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1007
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1366
中考初中地理如何補 瀏覽:1256
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:668
數學奧數卡怎麼辦 瀏覽:1346
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1445
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:818
武大的分析化學怎麼樣 瀏覽:1209
ige電化學發光偏高怎麼辦 瀏覽:1298
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1384
化學理學哪些專業好 瀏覽:1449
數學中的棱的意思是什麼 瀏覽:1015