導航:首頁 > 數字科學 > 怎麼學會高中數學幾何

怎麼學會高中數學幾何

發布時間:2022-05-29 15:51:19

❶ 如何學好高中數學的立體幾何

步驟/方法

1
第一要建立空間觀念,提高空間想像力。
從認識平面圖形到認識立體圖形是一次飛躍,要有一個過程。有的同學自製一些空間幾何模型並反復觀察,這有益於建立空間觀念,是個好辦法。有的同學有空就對一些立體圖形進行觀察、揣摩,並且判斷其中的線線、線面、面面位置關系,探索各種角、各種垂線作法,這對於建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中「證明」定理和構造定理的「圖」,對於建立空間觀念也是很有幫助的。

2
第二要掌握基礎知識和基本技能。
要用圖形、文字、符號三種形式表達概念、定理、公式,要及時不斷地復習前面學過的內容。這是因為《立體幾何》內容前後聯系緊密,前面內容是後面內容的根據,後面內容既鞏固了前面的內容,又發展和推廣了前面內容。在解題中,要書寫規范,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據,不論對於計算題還是證明題都應該如此,不能想當然或全憑直觀;對於文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數而不把它寫出來是不行的。要學會用圖(畫圖、分解圖、變換圖)幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。

3
第三要不斷提高各方面能力。
通過聯系實際、觀察模型或類比平面幾何的結論來提出命題;對於提出的命題,不要輕易肯定或否定它,要多用幾個特例進行檢驗,最好做到否定舉出反面例子,肯定給出證明。歐拉公式的內容是以研究性課題的形式給出的,要從中體驗創造數學知識。要不斷地將所學的內容結構化、系統化。所謂結構化,是指從整體到局部、從高層到低層來認識、組織所學知識,並領會其中隱含的思想、方法。所謂系統化,是指將同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認識。牢固地把握一些能統攝全局、組織整體的概念,用這些概念統攝早先偶爾接觸過的或是未察覺出明顯關系的已知知識間的聯系,提高整體觀念。
要注意積累解決問題的策略。如將立體幾何問題轉化為平面問題,又如將求點到平面距離的問題,或轉化為求直線到平面距離的問題,再繼而轉化為求點到平面距離的問題;或轉化為體積的問題。要不斷提高分析問題、解決問題的水平:一方面從已知到未知,另方面從未知到已知,尋求正反兩個方面的知識銜接點——一個固有的或確定的數學關系。要不斷提高反省認知水平,積極反思自己的學習活動,從經驗上升到自動化,從感性上升到理性,加深對理論的認識水平,提高解決問題的能力和創造性。

END
注意事項

一、立足課本,夯實基礎
直線和平面這些內容,是立體幾何的基礎,學好這部分的一個捷徑就是認真學習定理的證明,尤其是一些很關鍵的定理的證明。例如:三垂線定理。定理的內容都很簡單,就是線與線,線與面,面與面之間的關系的闡述。但定理的證明在出學的時候一般都很復雜,甚至很抽象。掌握好定理有以下三點好處:
(1)深刻掌握定理的內容,明確定理的作用是什麼,多用在那些地方,怎麼用。
(2)培養空間想像力。
(3)得出一些解題方面的啟示。
在學習這些內容的時候,可以用筆、直尺、書之類的東西搭出一個圖形的框架,用以幫助提高空間想像力。對後面的學習也打下了很好的基礎。
二、培養空間想像力
為了培養空間想像力,可以在剛開始學習時,動手製作一些簡單的模型用以幫助想像。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養自己對空間圖形的想像能力和識別能力。其次,要培養自己的畫圖能力。可以從簡單的圖形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最後要做的就是樹立起立體觀念,做到能想像出空間圖形並把它畫在一個平面(如:紙、黑板)上,還要能根據畫在平面上的「立體」圖形,想像出原來空間圖形的真實形狀。空間想像力並不是漫無邊際的胡思亂想,而是以提設為根據,以幾何體為依託,這樣就會給空間想像力插上翱翔的翅膀。
三、逐漸提高邏輯論證能力
立體幾何的證明是數學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到准確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然後用綜合法(「推出法」)形式寫出。
四、「轉化」思想的應用
我個人覺得,解立體幾何的問題,主要是充分運用「轉化」這種數學思想,要明確在轉化過程中什麼變了,什麼沒變,有什麼聯系,這是非常關鍵的。例如:
1.兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。
2.異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。
3.面和面平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。
4.三垂線定理可以把平面內的兩條直線垂直轉化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉化為平面內的兩條直線垂直。
以上這些都是數學思想中轉化思想的應用,通過轉化可以使問題得以大大簡化。
五、總結規律,規范訓練
立體幾何解題過程中,常有明顯的規律性。例如:求角先定平面角、三角形去解決,正餘弦定理、三角定義常用,若是餘弦值為負值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計算,經常用正餘弦定理、勾股定理,若是垂線難做出,用等積等高來轉換。不斷總結,才能不斷高。
還要注重規范訓練,高考中反映的這方面的問題十分嚴重,不少考生對作、證、求三個環節交待不清,表達不夠規范、嚴謹,因果關系不充分,圖形中各元素關系理解錯誤,符號語言不會運用等。這就要求我們在平時養成良好的答題習慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規范性在數學的每一部分考試中都很重要,在立體幾何中尤為重要,因為它更注重邏輯推理。對於即將參加高考的同學來說,考試的每一分都是重要的,在「按步給分」的原則下,從平時的每一道題開始培養這種規范性的好處是很明顯的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。
六、典型結論的應用
在平時的學習過程中,對於證明過的一些典型命題,可以把其作為結論記下來。利用這些結論可以很快地求出一些運算起來很繁瑣的題目,尤其是在求解選擇或填空題時更為方便。對於一些解答題雖然不能直接應用這些結論,但其也會幫助我們打開解題思路,進而求解出答案。

❷ 我該怎麼做才能學好高中數學的幾何部分呢

在復雜的圖形中找出基本圖形,掌握基本圖形中包含的基本結論;學會從結論中尋找思路,也就是說要想證明結論只需要證明什麼什麼這樣的思路;如果計算能力比較強的,可以採用解析幾何的演算法,也就是把整個圖形放入平面直角坐標系中進行表示和計算,計算量相對較大,但是能彌補空間想像能力的不足。

❸ 高中數學立體幾何怎麼學

高中的幾何其實也不是很難,想學好,那你必須掌握方法:
數學不是靠背的,你可以將他與生活聯系起來!當然,簡單的幾個公式你還是需要記住的
公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上的所有的點都在這個平面內。
公理2:如果兩個平面有一個公共點,那麼它們有且只有一條通過這個點的公共直線。
公理3:
過不在同一條直線上的三個點,有且只有一個平面。
推論1:
經過一條直線和這條直線外一點,有且只有一個平面。
推論2:經過兩條相交直線,有且只有一個平面。
推論3:經過兩條平行直線,有且只有一個平面。
公理4
:平行於同一條直線的兩條直線互相平行。
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行並且方向相同,那麼這兩個角相等。
只要記住上面幾條,多加應用,找點針對性強的題目做,很快就能補回來,加油哦!

❹ 如何學好高中數學的幾何部分

高中幾何有兩部分,立體和解析,方法各不一樣,立體幾何是延續了初中的平面幾何,要求將空間問題通過截平面換成平面問題,需要一定的想像力,但題型固定,建議多看一些固定題型以補充想像力的不足(我就是這樣一個人,我想像力一般,但通過題海使得這部分比想像力優秀的人還好)
而解析部分,則不推薦題海,重要的是要了解如何建立坐標系有利於解題,同時建議你多看看什麼問題才需要解析法

❺ 如何學好高中數學幾何

升入高中後,面對新的課程,新的知識,新的學習方法很多學生朋友多會感到無所適從,小編為大家整理了一些高中學習方法希望對大家有所幫助。

第一要建立空間觀念,提高空間想像力。

從認識平面圖形到認識立體圖形是一次飛躍,要有一個過程。有的同學自製一些空間幾何模型並反復觀察,這有益於建立空間觀念,是個好辦法。有的同學有空就對一些立體圖形進行觀察、揣摩,並且判斷其中的線線、線面、面面位置關系,探索各種角、各種垂線作法,這對於建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中「證明」定理和構造定理的「圖」,對於建立空間觀念也是很有幫助的。

第二要掌握基礎知識和基本技能。

要用圖形、文字、符號三種形式表達概念、定理、公式,要及時不斷地復習前面學過的內容。這是因為《立體幾何》內容前後聯系緊密,前面內容是後面內容的根據,後面內容既鞏固了前面的內容,又發展和推廣了前面內容。在解題中,要書寫規范,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據,不論對於計算題還是證明題都應該如此,不能想當然或全憑直觀;對於文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數而不把它寫出來是不行的。要學會用圖(畫圖、分解圖、變換圖)幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。

第三要不斷提高各方面能力。

通過聯系實際、觀察模型或類比平面幾何的結論來提出命題;對於提出的命題,不要輕易肯定或否定它,要多用幾個特例進行檢驗,最好做到否定舉出反面例子,肯定給出證明。歐拉公式的內容是以研究性課題的形式給出的,要從中體驗創造數學知識。要不斷地將所學的內容結構化、系統化。所謂結構化,是指從整體到局部、從高層到低層來認識、組織所學知識,並領會其中隱含的思想、方法。所謂系統化,是指將同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認識。牢固地把握一些能統攝全局、組織整體的概念,用這些概念統攝早先偶爾接觸過的或是未察覺出明顯關系的已知知識間的聯系,提高整體觀念。

要注意積累解決問題的策略。如將立體幾何問題轉化為平面問題,又如將求點到平面距離的問題,或轉化為求直線到平面距離的問題,再繼而轉化為求點到平面距離的問題;或轉化為體積的問題。要不斷提高分析問題、解決問題的水平:一方面從已知到未知,另方面從未知到已知,尋求正反兩個方面的知識銜接點 ——一個固有的或確定的數學關系。要不斷提高反省認知水平,積極反思自己的學習活動,從經驗上升到自動化,從感性上升到理性,加深對理論的認識水平,提高解決問題的能力和創造性。

❻ 怎麼學好高中數學的解析幾何(拋物線、雙曲線那些)

抓住基礎 數形結合

「數缺形時少直觀,形少數時難入微,數形結合百般好,隔裂分家萬事休.」——我國著名數學家華羅庚

作為學習解析幾何的開始,我們引入了我國著名的數學家華羅庚的一句話,他告訴了我們「數」和「形」各自的特點和不足,從而強調了數形結合的重要性,尤其是在解析幾何的學習過程中,我們始終都要注意運用數形結合的思想和方法。

當然,學習這一部分內容,只是了解這種思想也是不夠的,現在,就為大家介紹一下學習解析幾何的方法和需要注意的幾點。 基礎也很重要

幾種圓錐曲線的定義你能說得出嗎?

多同學對上面的這個問題可能會不屑一顧,但是,你能完整的回答出來嗎?

以橢圓的定義為例,我們引入橢圓的時候,是用了怎樣的定義?之後,我們是不是又給了橢圓一個第二定義呢?橢圓的第二定義又是以什麼為基礎呢?對於所有的圓錐曲線,我們是不是又有一個統一的定義呢?三種重要的圓錐曲線,又各有怎樣的性質,你能說出它們的異同點嗎?

這些問題,你都能回答出來嗎?

★定義不是用來背的

有些同學可能現在就會去翻書,去查定義,會說,回答這些問題還不容易嘛,我背一下不就可以了嗎。可是,我要告訴大家——定義不是用來背的。

可能大家還沒有理解這句話的意思,定義不是要你去死記硬背,而是要你去自己理解,去自己總結。

教材上引入橢圓定義的時候花費了很大的篇幅,可它的本質是什麼?與雙曲線的定義又有怎樣的相同點、不同點?橢圓、雙曲線和拋物線這三個重要的圓錐曲線的統一定義我們又該如何去理解?這些,只有靠你自己總結出來,才能真正成為你自己的東西,在做題的時候,你才能應用自如。看一遍書上的定義,合上課本,想一想,如果讓你來描述,你會怎麼說。當你能夠給別人將這些定義解釋清楚的時候,你就已經很好的理解了這些定義,做題時,你就不會因為忽略了定義中隱含的條件而一籌莫展了。

★比一比 學會總結

這一章我們介紹了三種圓錐曲線,它們有很多的相似之處,當然也有很多的不同,它們之間也有著千絲萬縷的聯系。學習完之後,自己比較一下,它們的定義、性質都有什麼異同,哪些量是它們共有的,哪些量是某個圓錐曲線所特有的。當你比較完之後,再回過頭來看這一章,你會發現,原來這一章的內容竟然如此的簡單和清晰。

記住,一定要自己去總結哦!!別人給你的東西永遠都是別人的,不是你自己的,只有自己總結過,才能清晰的把握問題的重點。

「數」與「形」緊密聯系

我們掌握了圓錐曲線的基礎之後,就好比為我們的大廈打下了一個堅實的基礎,現在,我們就可以正式建造我們的摩天大樓了!

★讓「數」直觀

如我們開始引言中所講「數缺形時少直觀」,我們如何讓「數」變得直觀呢?

給你 ,你會說這是一個等式,是一個二元二次方程。

給你 ,你會說這是一個方程組,一個二元一次的方程組。

如果我們把(x,y)看作是平面上的一點,你看到上面的式子又會想到什麼呢?

是不是我們的圓錐曲線的一種? 和 是不是平面內的兩條直線,而 所決定的(x,y)是不是兩條直線的交點?

可能通過上面的例子,你還看不出讓「數」直觀的重要性。那我們再舉一個例子:已知 ,求 的最小值。如果你不能讓「數」直觀,那麼這是一道非常復雜的計算題。但是,看到這樣的兩個式子,你又能想到怎樣的「形」呢? 很明顯是一個圓,而我們要求的最小值呢?你能不能想到,它其實是一個兩點距離的平方,要求它的最小,也就是求動點P(x,y)和定點A(3,-3)之間距離的最小,而這里的x,y需要滿足 ,也就是說點P一定要在這樣的一個圓上,求一定點A(3,-3)到一個圓上點的距離的最小值你又會不會求了呢?通過這樣的轉化,我們把「數」直觀,把一道很復雜的計算問題轉化為了一個非常簡單的幾何問題。

★讓「形」入微

如何將幾何圖形的性質用「數」的形式表示出來,這是我們學習這一部分內容需要解決的另一個重要的問題

如果告訴你兩條直線垂直,你會想到什麼?如果告訴你兩個圖形只有一個交點,你又會聯想到去用代數關系來表示它嗎?

這只是兩個很簡單的幾何關系,但是你能想到它們所代表的代數關系嗎?兩條直線垂直,實際上是斜率之積為-1,我們現在正在解析幾何的學習過程中,所以同學們這一點很容易想到,但是在綜合題中,涉及的知識點多了,你還能想到嗎?而關於兩個圖形位置關系的問題,我們如果只是用「形」去解釋,根本得不到任何精確的結論,但是與「數」結合,我們發現,兩圖形如果只有一個交點,實際上就是兩圖形的聯立方程只有一個解,根據這一點,我們便可以讓「形」入微,我們就可以得到精確的數量之間的關系了,這實際上是代數中方程的思想在解析幾何中最經典的應用。

雕蟲小技

基礎和思想我們都已經有了,現在再給大家介紹一下具體做題時的技巧,只是雕蟲小技,希望對同學們能夠有所啟發。

對於最令大家頭疼的綜合題,我們往往不能找到一個切入點,不知道從哪兒下手。有人說,多做題,沒錯,各種題型做得多了,自然拿過一道題來就知道應該先做什麼再做什麼。可是對於我們而言,不可能一下子有那麼多的經驗。這時候我們怎麼辦呢?

★知道什麼

我們知道什麼?拿到一道題目,看到題設,我們能知道些什麼,尤其是隱含的內容。題目中不可能直接告訴我們所有的信息,一定要挖掘出隱含的信息。知道了這些之後,我們能求出什麼,這個也一定要清楚。

★要求什麼

題目讓我們求什麼?這會兒我們不再看題設,我們從問題本身入手,看題目中讓我們求的是什麼,我們知道了哪些條件就可以得到問題的答案。在這里一定要注意利用數形結合的思想,其實有些問題轉換一下思考的角度就會變得非常簡單。

★重合!豁然開朗

這時候我們再反過來看我們剛剛從題設中得到的信息,有沒有發現實際上這些信息完全可以提供我們解決這個問題所需的所有條件。題目的已知和所求經過我們上面的思考過程變得重合,我們的問題實際上已經解決了。這么想想,你是不是豁然開朗了?

要學好高中數學的解析幾何,就要會用好的學習方法..

以下是我COPY的一些方法...

希望對你有用...

數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:

一、課內重視聽講,課後及時復習。

新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。

二、適當多做題,養成良好的解題習慣。

要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

三、調整心態,正確對待考試。

首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。

如何學好數學2

高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。

有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。

至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。

l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。

2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。

3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。

4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。就我的經驗看 只有多做 然後總結方法技巧

其實解幾的方法都大同小異

上課老師都會總結 然後就自己練習 然後才能達到看到題知道用什麼方法解

其實解幾大多時候都有思路 卻算不出來

這就要靠平時多練多算 然後不能急噪 靜下心漫漫算

另外熟練了之後就知道用什麼方法可以簡化計算

盡量用計算量小的方法 不容易錯

但一般計算量小的方法思維 難度大

在萬不得已的情況下 可以就用計算量大 思維難度小的方法 寫多少是多少 一般可以得4-5分

❼ 求數學學霸告訴我怎麼學好高中幾何部分啊,我本來必修一函數學得不錯,但到了必修二立體幾何那些概念理解

怎樣學好高中數學—立體幾何

高中數學立體幾何一直是數學的一大難點。因為它要求學生有立體感,在一個平面內把幾何圖形的立體感想像出來。怎樣才能學好立體幾何呢?請看我的經驗。

步驟/方法
1
第一要建立空間觀念,提高空間想像力。
從認識平面圖形到認識立體圖形是一次飛躍,要有一個過程。有的同學自製一些空間幾何模型並反復觀察,這有益於建立空間觀念,是個好辦法。有的同學有空就對一些立體圖形進行觀察、揣摩,並且判斷其中的線線、線面、面面位置關系,探索各種角、各種垂線作法,這對於建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中「證明」定理和構造定理的「圖」,對於建立空間觀念也是很有幫助的。

2
第二要掌握基礎知識和基本技能。
要用圖形、文字、符號三種形式表達概念、定理、公式,要及時不斷地復習前面學過的內容。這是因為《立體幾何》內容前後聯系緊密,前面內容是後面內容的根據,後面內容既鞏固了前面的內容,又發展和推廣了前面內容。在解題中,要書寫規范,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據,不論對於計算題還是證明題都應該如此,不能想當然或全憑直觀;對於文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數而不把它寫出來是不行的。要學會用圖(畫圖、分解圖、變換圖)幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。

3
第三要不斷提高各方面能力。
通過聯系實際、觀察模型或類比平面幾何的結論來提出命題;對於提出的命題,不要輕易肯定或否定它,要多用幾個特例進行檢驗,最好做到否定舉出反面例子,肯定給出證明。歐拉公式的內容是以研究性課題的形式給出的,要從中體驗創造數學知識。要不斷地將所學的內容結構化、系統化。所謂結構化,是指從整體到局部、從高層到低層來認識、組織所學知識,並領會其中隱含的思想、方法。所謂系統化,是指將同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認識。牢固地把握一些能統攝全局、組織整體的概念,用這些概念統攝早先偶爾接觸過的或是未察覺出明顯關系的已知知識間的聯系,提高整體觀念。
要注意積累解決問題的策略。如將立體幾何問題轉化為平面問題,又如將求點到平面距離的問題,或轉化為求直線到平面距離的問題,再繼而轉化為求點到平面距離的問題;或轉化為體積的問題。要不斷提高分析問題、解決問題的水平:一方面從已知到未知,另方面從未知到已知,尋求正反兩個方面的知識銜接點——一個固有的或確定的數學關系。要不斷提高反省認知水平,積極反思自己的學習活動,從經驗上升到自動化,從感性上升到理性,加深對理論的認識水平,提高解決問題的能力和創造性。


注意事項
一、立足課本,夯實基礎
直線和平面這些內容,是立體幾何的基礎,學好這部分的一個捷徑就是認真學習定理的證明,尤其是一些很關鍵的定理的證明。例如:三垂線定理。定理的內容都很簡單,就是線與線,線與面,面與面之間的關系的闡述。但定理的證明在出學的時候一般都很復雜,甚至很抽象。掌握好定理有以下三點好處:
(1)深刻掌握定理的內容,明確定理的作用是什麼,多用在那些地方,怎麼用。
(2)培養空間想像力。
(3)得出一些解題方面的啟示。
在學習這些內容的時候,可以用筆、直尺、書之類的東西搭出一個圖形的框架,用以幫助提高空間想像力。對後面的學習也打下了很好的基礎。
二、培養空間想像力
為了培養空間想像力,可以在剛開始學習時,動手製作一些簡單的模型用以幫助想像。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養自己對空間圖形的想像能力和識別能力。其次,要培養自己的畫圖能力。可以從簡單的圖形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最後要做的就是樹立起立體觀念,做到能想像出空間圖形並把它畫在一個平面(如:紙、黑板)上,還要能根據畫在平面上的「立體」圖形,想像出原來空間圖形的真實形狀。空間想像力並不是漫無邊際的胡思亂想,而是以提設為根據,以幾何體為依託,這樣就會給空間想像力插上翱翔的翅膀。
三、逐漸提高邏輯論證能力
立體幾何的證明是數學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到准確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然後用綜合法(「推出法」)形式寫出。
四、「轉化」思想的應用
我個人覺得,解立體幾何的問題,主要是充分運用「轉化」這種數學思想,要明確在轉化過程中什麼變了,什麼沒變,有什麼聯系,這是非常關鍵的。例如:
1.兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。
2.異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。
3.面和面平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。
4.三垂線定理可以把平面內的兩條直線垂直轉化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉化為平面內的兩條直線垂直。
以上這些都是數學思想中轉化思想的應用,通過轉化可以使問題得以大大簡化。
五、總結規律,規范訓練
立體幾何解題過程中,常有明顯的規律性。例如:求角先定平面角、三角形去解決,正餘弦定理、三角定義常用,若是餘弦值為負值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計算,經常用正餘弦定理、勾股定理,若是垂線難做出,用等積等高來轉換。不斷總結,才能不斷高。
還要注重規范訓練,高考中反映的這方面的問題十分嚴重,不少考生對作、證、求三個環節交待不清,表達不夠規范、嚴謹,因果關系不充分,圖形中各元素關系理解錯誤,符號語言不會運用等。這就要求我們在平時養成良好的答題習慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規范性在數學的每一部分考試中都很重要,在立體幾何中尤為重要,因為它更注重邏輯推理。對於即將參加高考的同學來說,考試的每一分都是重要的,在「按步給分」的原則下,從平時的每一道題開始培養這種規范性的好處是很明顯的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。
六、典型結論的應用
在平時的學習過程中,對於證明過的一些典型命題,可以把其作為結論記下來。利用這些結論可以很快地求出一些運算起來很繁瑣的題目,尤其是在求解選擇或填空題時更為方便。對於一些解答題雖然不能直接應用這些結論,但其也會幫助我們打開解題思路,進而求解出答案。

❽ 怎樣學好高中數學的空間幾何

首先得有一定的空間想像能力,熟悉點線面之間的關系還有各個相關的定理。幾何的內容出的一般是證明題,練題的時候拿各省的高考題練,然後養成解題模式(別死板就行)。我的經驗是向量法能解決絕大多數問題,所以學會用向量法是非常關鍵的。

❾ 怎樣學好高中數學幾何

解析幾何吧,其實這章內容不是很難學,高中階段最好學的應該就是幾何了。其次是方程,還有就是三角函數恆等變換吧。最難理解的應該就是函數了,函數覆蓋的范圍太廣泛了。滲透的思想太深入了。
幾何這章,首先要理解概念。概念是最關鍵的東西,其次是找到最核心的題型來做。

閱讀全文

與怎麼學會高中數學幾何相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:747
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1008
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1667
下列哪個水飛薊素化學結構 瀏覽:1431
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1072