導航:首頁 > 數字科學 > 數學知識集錦怎麼樣

數學知識集錦怎麼樣

發布時間:2022-05-29 23:58:04

㈠ 小學數學知識集錦

小學數學復習考試知識點匯總一、小學生數學法則知識歸類(一)筆算兩位數加法,要記三條1、相同數位對齊;2、從個位加起;3、個位滿10向十位進1。(二)筆算兩位數減法,要記三條1、相同數位對齊;2、從個位減起;3、個位不夠減從十位退1,在個位加10再減。(三)混合運算計演算法則1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;3、算式里有括弧的要先算括弧裡面的。(四)四位數的讀法1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;2、中間有一個0或兩個0隻讀一個「零」;3、末位不管有幾個0都不讀。(五)四位數寫法1、從高位起,按照順序寫;2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。(六)四位數減法也要注意三條1、相同數位對齊;2、從個位減起;3、哪一位數不夠減,從前位退1,在本位加10再減。(七)一位數乘多位數乘法法則1、從個位起,用一位數依次乘多位數中的每一位數;2、哪一位上乘得的積滿幾十就向前進幾。(八)除數是一位數的除法法則1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;2、除數除到哪一位,就把商寫在那一位上面;3、每求出一位商,餘下的數必須比除數小。(九)一個因數是兩位數的乘法法則1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;3、然後把兩次乘得的數加起來。(十)除數是兩位數的除法法則1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,2、除到被除數的哪一位就在哪一位上面寫商;3、每求出一位商,餘下的數必須比除數小。(十一)萬級數的讀法法則1、先讀萬級,再讀個級;2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。(十二)多位數的讀法法則1、從高位起,一級一級往下讀;2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。(十三)小數大小的比較比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。(十四)小數加減法計演算法則計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。(十五)小數乘法的計演算法則計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。(十六)除數是整數除法的法則除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。(十七)除數是小數的除法運演算法則除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。(十八)解答應用題步驟1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;

2、確定每一步該怎樣算,列出算式,算出得數;3、進行檢驗,寫出答案。(十九)列方程解應用題的一般步驟1、弄清題意,找出未知數,並用X表示;2、找出應用題中數量之間的相等關系,列方程;3、解方程;4、檢驗、寫出答案。(二十)同分母分數加減的法則同分母分數相加減,分母不變,只把分子相加減。(二十一)同分母帶分數加減的法則帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。(二十二)異分母分數加減的法則異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。(二十三)分數乘以整數的計演算法則分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。(二十四)分數乘以分數的計演算法則分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。(二十五)一個數除以分數的計演算法則一個數除以分數,等於這個數乘以除數的倒數。(二十六)把小數化成百分數和把百分數化成小數的方法把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。(二十七)把分數化成百分數和把百分數化成分數的方法把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。二、小學數學口決定義歸類1、什麼是圖形的周長?圍成一個圖形所有邊長的總和就是這個圖形的周長。2、什麼是面積?物體的表面或圍成的平面圖形的大小叫做他們的面積。3、加法各部分的關系:一個加數=和-另一個加數4、減法各部分的關系:減數=被減數-差 被減數=減數+差5、乘法各部分之間的關系:一個因數=積÷另一個因數6、除法各部分之間的關系:除數=被除數÷商 被除數=商×除數7、角(1)什麼是角?從一點引出兩條射線所組成的圖形叫做角。(2)什麼是角的頂點?圍成角的端點叫頂點。(3)什麼是角的邊?圍成角的射線叫角的邊。(4)什麼是直角?度數為90°的角是直角。(5)什麼是平角?角的兩條邊成一條直線,這樣的角叫平角。(6)什麼是銳角?小於90°的角是銳角。(7)什麼是鈍角?大於90°而小於180°的角是鈍角。(8)什麼是周角?一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.8、(1)什麼是互相垂直?什麼是垂線?什麼是垂足?兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。(2)什麼是點到直線的距離?從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。9、三角形(1)什麼是三角形?有三條線段圍成的圖形叫三角形。(2)什麼是三角形的邊?圍成三角形的每條線段叫三角形的邊。(3)什麼是三角形的頂點?每兩條線段的交點叫三角形的頂點。(4)什麼是銳角三角形?三個角都是銳角的三角形叫銳角三角形。(5)什麼是直角三角形?有一個角是直角的三角形叫直角三角形。(6)什麼是鈍角三角形?有一個角是鈍角的三角形叫鈍角三角形。(7)什麼是等腰三角形?兩條邊相等的三角形叫等腰三角形。(8)什麼是等腰三角形的腰?有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。(9)什麼是等腰三角形的頂點?兩腰的交點叫做等腰三角形的頂點。(10)什麼是等腰三角形的底?在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。

(11)什麼是等腰三角形的底角?底邊上兩個相等的角叫等腰三角形的底角。(12)什麼是等邊三角形?三條邊都相等的三角形叫等邊三角形,也叫正三角形。(13)什麼是三角形的高?什麼叫三角形的底?從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。(14)三角形的內角和是多少度?三角形內角和是180°.10、四邊形(1)什麼是四邊形?有四條線段圍成的圖形叫四邊形。(2)什麼是平等四邊形?兩組對邊分別平行的四邊形叫做平行四邊形。(3)什麼是平行四邊形的高?從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。(4)什麼是梯形?只有一組對邊平行的四邊形叫做梯形。(5)什麼是梯形的底?在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。(6)什麼是梯形的腰?在梯形里,不平等的一組對邊叫梯形的腰。(7)什麼是梯形的高?從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。(8)什麼是等腰梯形?兩腰相等的梯形叫做等腰梯形。11、什麼是自然數?用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。12、什麼是四捨五入法?求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。13、加法意義和運算定律(1)什麼是加法?把兩個數合並成一個數的運算叫加法。(2)什麼是加數?相加的兩個數叫加數。(3)什麼是和?加數相加的結果叫和。(4)什麼是加法交換律?兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。14、什麼是減法?已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。15、什麼是被減數?什麼是減數?什麼叫差?在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。16、加法各部分間的關系:和=加數+加數 加數=和-另一加數17、減法各部分間的關系:差=被減數-減數 減數=被減數-差 被減數=減數+差18、乘法(1)什麼是乘法?求幾個相同加數的和的簡便運算叫乘法。(2)什麼是因數?相乘的兩個數叫因數。(3)什麼是積?因數相乘所得的數叫積。(4)什麼是乘法交換律?兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。(5)什麼是乘法結合律?三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。19、除法(1)什麼是除法?已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。(2)什麼是被除數?在除法中,已知的積叫被除數。(3)什麼是除數?在除法中,已知的一個因數叫除數。(4)什麼是商?在除法中,求出的未知因數叫商。20、乘法各部分的關系:積=因數×因數 一個因數=積÷另一個因數21、(1)除法各部分間的關系:商=被除數÷除數 除數=被除數÷商(2)有餘數的除法各部分間的關系:被除數=商×除數+余數22、什麼是名數?通常量得的數和單位名稱合起來的數叫名數。23、什麼是單名數?只帶有一個單位名稱的數叫單名數。24、什麼是復名數?有兩個或兩個以上單位名稱的數叫復名數。25、什麼是小數?仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。

㈡ 高中知識清單 數學 和 高中數學知識大全 哪個好

從教師角度看:都可以,關鍵是取決於學生本身看不看,得吃透知識點,現在的資料都差不多,大同小異,很多都是雷同的,一本就可以,不用多買。數學是日積月累的,希望孩子好好學習,成績進步!

㈢ 數學知識點有哪些

數學知識點:

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:a + b = b + a。

3、乘法交換律:a × b = b × a。

4、乘法結合律:a × b × c = a ×(b × c)。

5、乘法分配律:a × b + a × c = a × b + c。

6、除法的性質:a ÷ b ÷ c = a ÷(b × c)。

7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

8、有餘數的除法:被除數=商×除數+余數。

㈣ 怎麼才能把數學知識點背會

數學學習方法
這里我們講一下數學學習的方法.這是我們應用國外的快速學習方法,根據數學學科特點提出來的.由於代數學習法和幾何學習法的不同,我們分別進行討論.
一、代數學習法.
抄標題,瀏覽定目標.
閱讀並記錄重點內容.
試作例題.
快做練習,歸納題型.
回憶小結
二、幾何學習四大步.
1.①書寫標題,瀏覽教材
②自我講授,寫出目錄
2.①按目錄,讀教材
②自我講授幾何概念及定理
3.①閱讀例題,形成思路
②寫出解答例題過程
4.①快做練習.
②小結解題方法.
三.數學概念學習方法.
數學中有許多概念,如何讓學生正確地掌握概念,應該指明學習概念需要怎樣的一個過程,應達到什麼程度.數學概念是反映數學對象本質屬性的思維形式,它的定義方式有描述性的,指明外種延的,有種概念加類差等方式.一個數學概念需要記住名稱,敘述出本質屬性,體會出所涉及的范圍,並應用概念准確進行判斷.這些問題老師沒有要求,不給出學習方法,學生將很難有規律地進行學習.
下面我們歸納出數學概念的學習方法:
閱讀概念,記住名稱或符號.
背誦定義,掌握特性.
舉出正反實例,體會概念反映的范圍.
進行練習,准確地判斷.
四、學公式的學習方法
公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數.有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里.教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式.
我們介紹的數學公式的學習方法是:
書寫公式,記住公式中字母間的關系.
懂得公式的來龍去脈,掌握推導過程.
用數字驗算公式,在公式具體化過程中體會公式中反映的規律.
將公式進行各種變換,了解其不同的變化形式.
將公式中的字母想像成抽象的框架,達到自如地應用公式.
五、數學定理的學習方法.
一個定理包含條件和結論兩部分,定理必須進行證明,證明過程是連接條件和結論的橋梁,而學習定理是為了更好地應用它解決各種問題.
下面我們歸納出數學定理的學習方法:
背誦定理.
分清定理的條件和結論.
理解定理的證明過程.
應用定理證明有關問題.
體會定理與有關定理和概念的內在關系.
有的定理包含公式,如韋達定理、勾股定理、正弦定理,它們的學習還應該同數公式的學習方法結合起來進行.
六、初學幾何證明的學習方法.
在初一第二學期,初二、高一立體幾何學習的開始,學生總感到難以入門,以下的方法是許多老教師十分認同的,無論是上課還是自學,均可以開展.
看題畫圖.(看,寫)
審題找思路(聽老師講解)
閱讀書中證明過程.
回憶並書寫證明過程.
七 .提高幾何證明能力的化歸法.
在掌握了幾何證明的基本知識和方法以後,在能夠較順利和准確地表述證明過程的基礎上,如何提高幾何證明能力?這就需要積累各種幾何題型的證明思路,需要懂得若干證明技巧.這樣我們可以通過老師集中講解,或者通過集中閱讀若干幾何證明題,而達到上述目的.
化歸法是將未知化歸為已知的方法,當我們遇到一個新的幾何證明題時,我們需要注意其題型,找到關鍵步驟,將它化歸為已知題型時就可結束.此時最重要的是記住化歸步驟及證題思路即可,不再重視祥細的表述過程.
提高幾何證明能力的化歸法:
1.審題,弄清已知條件和求證結論.
2.畫圖,作輔助線,尋找證題途徑.
3.記錄證題途徑的各個關鍵步驟.
4.總結證明思路,使證題過程在大腦中形成清淅的印象.
八、波利亞解題思考方法.
預見法
收集資料,進行組織.
辨認與回憶,充實與重新安排.
分離與組合.
回顧
解答問題法.
弄清問題.
擬定問題.
實現計劃.
回顧.
解題過程自問法.
我選擇的是怎樣的一條解題途徑.
我為什麼作出這樣的選擇?
我現在已進行到了哪一階段?
這一步的實施在整個解題過程中具有怎樣的地位?
我目前所面臨的主要困難是什麼?
解題的前景如何?
九 、數學學習的基本思維方法.
1. 觀察與實驗
2.分析與綜合
3.抽象與概括
4.比較與分類
5.一般化與特殊化
6.類比聯想與歸納猜想
十、理解、鞏固、應用、系統化四步學習法
1.理 內容,標志,階段,過程.
2.鞏 固:透徹理解,牢固記憶,多方聯想,合理復習.
3.應 用:理論,實踐,具體,綜合.
4.系統化: ①明確系統內部各要素的屬性.
②使各要素之間形成多方的聯系.
③概括各要素的各種屬性,形成整體性.
④同化於原知識系統之中.
十一、高效學習方法在數學學習中的應用
超級學習方法

請採納,謝謝

㈤ 小學數學知識集錦答案

9. 有7個數,它們的平均數是18。去掉一個數後,剩下6個數的平均數是19;再去掉一個數後,剩下的5個數的平均數是20。求去掉的兩個數的乘積。 解: 7*18-6*19=126-114=12 6*19-5*20=114-100=14 去掉的兩個數是12和14它們的乘積是12*14=168 10. 有七個排成一列的數,它們的平均數是 30,前三個數的平均數是28,後五個數的平均數是33。求第三個數。 解:28×3+33×5-30×7=39。 11. 有兩組數,第一組9個數的和是63,第二組的平均數是11,兩個組中所有數的平均數是8。問:第二組有多少個數? 解:設第二組有x個數,則63+11x=8×(9+x),解得x=3。 12.小明參加了六次測驗,第三、第四次的平均分比前兩次的平均分多2分,比後兩次的平均分少2分。如果後三次平均分比前三次平均分多3分,那麼第四次比第三次多得幾分? 解:第三、四次的成績和比前兩次的成績和多4分,比後兩次的成績和少4分,推知後兩次的成績和比前兩次的成績和多8分。因為後三次的成績和比前三次的成績和多9分,所以第四次比第三次多9-8=1(分)。 13. 媽媽每4天要去一次副食商店,每 5天要去一次百貨商店。媽媽平均每星期去這兩個商店幾次?(用小數表示) 解:每20天去9次,9÷20×7=3.15(次)。 14. 乙、丙兩數的平均數與甲數之比是13∶7,求甲、乙、丙三數的平均數與甲數之比。 解:以甲數為7份,則乙、丙兩數共13×2=26(份) 所以甲乙丙的平均數是(26+7)/3=11(份) 因此甲乙丙三數的平均數與甲數之比是11:7。 15. 五年級同學參加校辦工廠糊紙盒勞動,平均每人糊了76個。已知每人至少糊了70個,並且其中有一個同學糊了88個,如果不把這個同學計算在內,那麼平均每人糊74個。糊得最快的同學最多糊了多少個? 解:當把糊了88個紙盒的同學計算在內時,因為他比其餘同學的平均數多88-74=14(個),而使大家的平均數增加了76-74=2(個),說明總人數是14÷2=7(人)。因此糊得最快的同學最多糊了 74×6-70×5=94(個)。16. 甲、乙兩班進行越野行軍比賽,甲班以4.5千米/時的速度走了路程的一半,又以5.5千米/時的速度走完了另一半;乙班在比賽過程中,一半時間以4.5千米/時的速度行進,另一半時間以5.5千米/時的速度行進。問:甲、乙兩班誰將獲勝? 解:快速行走的路程越長,所用時間越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程長,所以乙班獲勝。 17. 輪船從A城到B城需行3天,而從B城到A城需行4天。從A城放一個無動力的木筏,它漂到B城需多少天? 解:輪船順流用3天,逆流用4天,說明輪船在靜水中行4-3=1(天),等於水流3+4=7(天),即船速是流速的7倍。所以輪船順流行3天的路程等於水流3+3×7=24(天)的路程,即木筏從A城漂到B城需24天。 18. 小紅和小強同時從家裡出發相向而行。小紅每分走52米,小強每分走70米,二人在途中的A處相遇。若小紅提前4分出發,且速度不變,小強每分走90米,則兩人仍在A處相遇。小紅和小強兩人的家相距多少米? 解:因為小紅的速度不變,相遇地點不變,所以小紅兩次從出發到相遇的時間相同。也就是說,小強第二次比第一次少走4分。由 (70×4)÷(90-70)=14(分) 可知,小強第二次走了14分,推知第一次走了18分,兩人的家相距 (52+70)×18=2196(米)。 19. 小明和小軍分別從甲、乙兩地同時出發,相向而行。若兩人按原定速度前進,則4時相遇;若兩人各自都比原定速度多1千米/時,則3時相遇。甲、乙兩地相距多少千米? 解:每時多走1千米,兩人3時共多走6千米,這6千米相當於兩人按原定速度1時走的距離。所以甲、乙兩地相距6×4=24(千米)20. 甲、乙兩人沿400米環形跑道練習跑步,兩人同時從跑道的同一地點向相反方向跑去。相遇後甲比原來速度增加2米/秒,乙比原來速度減少2米/秒,結果都用24秒同時回到原地。求甲原來的速度。 解:因為相遇前後甲、乙兩人的速度和不變,相遇後兩人合跑一圈用24秒,所以相遇前兩人合跑一圈也用24秒,即24秒時兩人相遇。 設甲原來每秒跑x米,則相遇後每秒跑(x+2)米。因為甲在相遇前後各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。 21. 甲、乙兩車分別沿公路從A,B兩站同時相向而行,已知甲車的速度是乙車的1.5倍,甲、乙兩車到達途中C站的時刻分別為5:00和16:00,兩車相遇是什麼時刻? 解:9∶24。解:甲車到達C站時,乙車還需16-5=11(時)才能到達C站。乙車行11時的路程,兩車相遇需11÷(1+1.5)=4.4(時)=4時24分,所以相遇時刻是9∶24。 22. 一列快車和一列慢車相向而行,快車的車長是280米,慢車的車長是385米。坐在快車上的人看見慢車駛過的時間是11秒,那麼坐在慢車上的人看見快車駛過的時間是多少秒? 解:快車上的人看見慢車的速度與慢車上的人看見快車的速度相同,所以兩車的車長比等於兩車經過對方的時間比,故所求時間為11 23. 甲、乙二人練習跑步,若甲讓乙先跑10米,則甲跑5秒可追上乙;若乙比甲先跑2秒,則甲跑4秒能追上乙。問:兩人每秒各跑多少米? 解:甲乙速度差為10/5=2 速度比為(4+2):4=6:4 所以甲每秒跑6米,乙每秒跑4米。 24.甲、乙、丙三人同時從A向B跑,當甲跑到B時,乙離B還有20米,丙離B還有40米;當乙跑到B時,丙離B還有24米。問: (1) A, B相距多少米? (2)如果丙從A跑到B用24秒,那麼甲的速度是多少? 解:解:(1)乙跑最後20米時,丙跑了40-24=16(米),丙的速度
25. 在一條馬路上,小明騎車與小光同向而行,小明騎車速度是小光速度的3倍,每隔10分有一輛公共汽車超過小光,每隔20分有一輛公共汽車超過小明。已知公共汽車從始發站每次間隔同樣的時間發一輛車,問:相鄰兩車間隔幾分? 解:設車速為a,小光的速度為b,則小明騎車的速度為3b。根據追及問題「追及時間×速度差=追及距離」,可列方程 10(a-b)=20(a-3b), 解得a=5b,即車速是小光速度的5倍。小光走10分相當於車行2分,由每隔10分有一輛車超過小光知,每隔8分發一輛車。 26. 一隻野兔逃出80步後獵狗才追它,野兔跑 8步的路程獵狗只需跑3步,獵狗跑4步的時間兔子能跑9步。獵狗至少要跑多少步才能追上野兔? 解:狗跑12步的路程等於兔跑32步的路程,狗跑12步的時間等於兔跑27步的時間。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。 27. 甲、乙兩人在鐵路旁邊以同樣的速度沿鐵路方向相向而行,恰好有一列火車開來,整個火車經過甲身邊用了18秒,2分後又用15秒從乙身邊開過。問: (1)火車速度是甲的速度的幾倍? (2)火車經過乙身邊後,甲、乙二人還需要多少時間才能相遇? 解:(1)設火車速度為a米/秒,行人速度為b米/秒,則由火車的 是行人速度的11倍; (2)從車尾經過甲到車尾經過乙,火車走了135秒,此段路程一人走需1350×11=1485(秒),因為甲已經走了135秒,所以剩下的路程兩人走還需(1485-135)÷2=675(秒)。 28. 輛車從甲地開往乙地,如果把車速提高20%,那麼可以比原定時間提前1時到達;如果以原速行駛100千米後再將車速提高30%,那麼也比原定時間提前1時到達。求甲、乙兩地的距離。 29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。問:甲、乙單獨干這件工作各需多少天? 解:甲需要(7*3-5)/2=8(天) 乙需要(6*7-2*5)/2=16(天) 30.一水池裝有一個放水管和一個排水管,單開放水管5時可將空池灌滿,單開排水管7時可將滿池水排完。如果放水管開了2時後再打開排水管,那麼再過多長時間池內將積有半池水? 31.小松讀一本書,已讀與未讀的頁數之比是3∶4,後來又讀了33頁,已讀與未讀的頁數之比變為5∶3。這本書共有多少頁? 解:開始讀了3/7 後來總共讀了5/8 33/(5/8-3/7)=33/(11/56)=56*3=168頁 32.一件工作甲做6時、乙做12時可完成,甲做8時、乙做6時也可以完成。如果甲做3時後由乙接著做,那麼還需多少時間才能完成? 解:甲做2小時的等於乙做6小時的,所以乙單獨做需要 6*3+12=30(小時) 甲單獨做需要10小時 因此乙還需要(1-3/10)/(1/30)=21天才可以完成。 33. 有一批待加工的零件,甲單獨做需4天,乙單獨做需5天,如果兩人合作,那麼完成任務時甲比乙多做了20個零件。這批零件共有多少個? 解:甲和乙的工作時間比為4:5,所以工作效率比是5:4 工作量的比也5:4,把甲做的看作5份,乙做的看作4份 那麼甲比乙多1份,就是20個。因此9份就是180個 所以這批零件共180個。 61.在前1000個自然數中,既不是平方數也不是立方數的自然數有多少個?
解:因為312<1000<322,103=1000,所以在前1000個自然數中有31個平方數,10個立方數,同時還有3個六次方數(16,26,36)。所求自然數共有 1000-(31+10)+3=962(個)。
62. 用數字0,1,2,3,4可以組成多少個不同的三位數(數字允許重復)?
解:4*5*5=100個
63. 要從五年級六個班中評選出學習、體育、衛生先進集體各一個,有多少種不同的評選結果?
解:6*6*6=216種
64. 已知15120=24×33×5×7,問:15120共有多少個不同的約數?
解: 15120的約數都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分別有5, 4, 2, 2種,所以共有約數5×4×2×2=80(個)。
65. 大林和小林共有小人書不超過50本,他們各自有小人書的數目有多少種可能的情況?
解:他們一共可能有0~50本書,如果他們共有n本書,則大林可能有書0~n本,也就是說這n本書在兩人之間的分配情況共有(n+1)種。所以不超過 50本書的所有可能的分配情況共有1+2+3…+51=1326(種)。
66. 在右圖中,從A點沿線段走最短路線到B點,每次走一步或兩步,共有多少種不同走法?(註:路線相同步驟不同,認為是不同走法。)
解:80種。提示:從A到B共有10條不同的路線,每條路線長5個線段。每次走一個或兩個線段,每條路線有8種走法,所以不同走法共有 8×10=80(種)。
67.有五本不同的書,分別借給3名同學,每人借一本,有多少種不同的借法?
解:5*4*3=60種
68.有三本不同的書被5名同學借走,每人最多借一本,有多少種不同的借法?
解:5*4*3=60種 69. 恰有兩位數字相同的三位數共有多少個?
解:在900個三位數中,三位數各不相同的有9×9×8=648(個),三位數全相同的有9個,恰有兩位數相同的有900—648—9=243(個)。
70. 從1,3,5中任取兩個數字,從2,4,6中任取兩個數字,共可組成多少個沒有重復數字的四位數?
解:三個奇數取兩個有3種方法,三個偶數取兩個也有3種方法。共有 3×3×4!=216(個)。
71. 左下圖中有多少個銳角?
解:C(11,2)=55個
72. 10個人圍成一圈,從中選出兩個不相鄰的人,共有多少種不同選法?
解:c(10,2)-10=35種
73. 一牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6周,或供23頭牛吃9周。那麼可供21頭牛吃幾周?
解:將1頭牛1周吃的草看做1份,則27頭牛6周吃162份,23頭牛9周吃207份,這說明3周時間牧場長草207-162=45(份),即每周長草15份,牧場原有草162-15×6=72(份)。21頭牛中的15頭牛吃新長出的草,剩下的6頭牛吃原有的草,吃完需72÷6=12(周)。
74. 有一水池,池底有泉水不斷湧出。要想把水池的水抽干, 10台抽水機需抽 8時,8台抽水機需抽12時。如果用6台抽水機,那麼需抽多少小時?
解:將1台抽水機1時抽的水當做1份。泉水每時湧出量為
(8×12-10×8)÷(12-8)=4(份)。
水池原有水(10-4)×8=48(份),6台抽水機需抽48÷(6-4)=24(時)。
75. 規定a*b=(b+a)×b,求(2*3)*5。
解:2*3=(3+2)*3=15
15*5=(15+5)*5=100
76. 1!+2!+3!+…+99!的個位數字是多少?
解:1!+2!+3!+4!=1+2+6+24=33
從5!開始,以後每一項的個位數字都是0
所以1!+2!+3!+…+99!的個位數字是3。 7(1).有一批四種顏色的小旗,任意取出三面排成一行,表示各種信號。在200個信號中至少有多少個信號完全相同?
解:4*4*4=64
200÷64=3……8
所以至少有4個信號完全相同。
77. (2)在今年入學的一年級新生中有 370多人是在同一年出生的。試說明:他們中至少有2個人是在同一天出生的。
解:因為一年最多有366天,看做366個抽屜
因為370>366,所以根據抽屜原理至少有2個人是在同一天出生的。
78. 從前11個自然數中任意取出6個,求證:其中必有2個數互質。
證明:把前11個自然數分成如下5組
(1,2,3)(4,5)(6,7)(8,9)(10,11)
6個數放入5組必然有2個數在同一組,那麼這兩個數必然互質。
79. 小明去爬山,上山時每時行2.5千米,下山時每時行4千米,往返共用3.9時。小明往返一趟共行了多少千米?

80. 長江沿岸有A,B兩碼頭,已知客船從A到B每天航行500千米,從B到A每天航行400千米。如果客船在A,B兩碼頭間往返航行5次共用18天,那麼兩碼頭間的距離是多少千米?
解:800千米。 提示:從A到B與從B到A的速度比是5∶4,從A到B用

81. 請在下式中插入一個數碼,使之成為等式:
1×11×111= 111111
解答:91*11*111=111111
82.甲、乙、丙三數的和是100,甲數除以乙數與丙數除以甲數的結果都是商5餘1。問:乙數是多少?
解:設乙數是x,那麼甲數就是5x+1
丙數是5(5x+1)+1=25x+6
因此x+5x+1+25x+6=100
31x=93 x=3
所以乙數是3
83.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪個數的平方
解:12345654321=111111的平方
1+2+3+4+5+6+5+4+3+2+1=36=6的平方
所以原式=666666的平方。 84.某劇院有25排座位,後一排比前一排多2個座位,最後一排有70個座位。問:這個劇院一共有多少個座位?
解:第一排有70-24*2=22個座位
所以總座位數是(22+70)*25/2 =1150
85. 某城市舉行小學生數學競賽,試卷共有20道題。評分標準是:答對一道給3分,沒答的題每題給1分,答錯一道扣1分。問:所有參賽學生的得分總和是奇數還是偶數?為什麼?
解:一定是偶數,因為每個人20道題得分都分別是奇數,20個奇數的和一定是偶數。每個人的得分都是偶數,所以無論有多少參賽學生,參賽學生的得分總和一定是偶數。
86. 可以分解為三個質數之積的最小的三位數是幾?
解:102=2*3*17
87. 兩個質數的和是39,求這兩個質數的積。
解:注意到奇偶性可以知道這2個質數分別是2和37
它們的乘積是2*37=74
88. 有1,2,3,4,5,6,7,8,9九張牌,甲、乙、丙各拿了三張。甲說:「我的三張牌的積是48。」乙說:「我的三張牌的和是15。」丙說:「我的三張牌的積是63。」問:他們各拿了哪三張牌?
解:63=7*1*9 所以丙拿的1,7,9
48=2*3*8 所以甲拿的2,3,8
4+5+6=15 因此乙拿的是4,5,6
89. 四個連續自然數的積是3024,求這四個數。
解:考慮末尾數字,1*2*3*4末尾是4
6*7*8*9末尾也是4
其他情況下末尾都是0
11*12*13*14=24024太大
6*7*8*9=3024剛好
所以這4個數是6,7,8,9
90. 證明:任何一個三位數,連著寫兩遍得到一個六位數,這個六位數一定能被7,11,13整除。
解:該數形如ABCABC=ABC*1001
1001=7*11*13
所以這個六位數一定能被7,11,13整除。 91.在1~100中,所有的只有3個約數的自然數的和是多少?
解:4+9+25+49=87
92. 有一種電子鍾,每到正點響一次鈴,每過九分鍾亮一次燈。如果中午12點整它既響鈴又亮燈,那麼下一次既響鈴又亮燈是什麼時間?
解:[60,9]=180
180/60=3
下次是下午3點鍾。

93. 有一個數除以3餘2,除以4餘1。問:此數除以12餘幾?
解:除以3餘2的數是2,5,8,11,14。。。。。。
除以4餘1的數是1,5,9,。。。。。。
所以此數除以12餘5
94. 把16拆成若干個自然數的和,要求這些自然數的乘積盡量大,應如何拆?
解:16=3+3+3+3+2+2
乘積是3*3*3*3*2*2=324
95. 小明按1~ 3報數,小紅按1~ 4報數。兩人以同樣的速度同時開始報數,當兩人都報了100個數時,有多少次兩人報的數相同?
解:每12次作為一個周期
1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 4 1 2 3 4 1 2 3 4
每個周期兩人有3次報的數一樣
100=12*8+4
所以兩個人有8*3+3=27次報的數相同。
96. 某自然數加10或減10皆為平方數,求這個自然數。
解:設這個數是x
x+10=m^2
x-10=n^2
m^2-n^2=20 (m+n)(m-n)=20
m=6,n=4 所以x=6^2-10=26
97. 已知某鐵路橋長1000米,一列火車從橋上通過,測得火車從開始上橋到完全下橋共用120秒,整列火車完全在橋上的時間為80秒。求火車的速度和長度。
解:120秒行駛的距離是橋長+車長
80秒行駛的距離是橋長-車長
所以80(1000+車長)=120(1000-車長)
車長=200米
火車的速度是10米/秒 98. 甲、乙二人按順時針方向沿圓形跑道練習跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他們分別從圓形跑道直徑的兩端同時出發,那麼出發後多少分甲追上乙?
解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分鍾
99. 甲、乙比賽乒乓球,五局三勝。已知甲勝了第一局,並最終獲勝。問:各局的勝負情況有多少種可能?
解:甲 甲 甲
甲 甲 乙 甲
甲 甲 乙 乙 甲
甲 乙 甲 甲
甲 乙 甲 乙 甲
甲 乙 乙 甲 甲
經枚舉發現共有6種可能。
100. 甲、乙二人 2時共可加工 54個零件,甲加工 3時的零件比乙加工4時的零件還多4個。問:甲每時加工多少個零件?
解:甲乙二人一小時共可加工零件27個
設甲每小時加工x個,那麼乙每小時加工27-x個
根據條件得3x=4(27-x)+4
7x=112 x=16
答:甲每小時加工零件16個。

㈥ 高中的數學知識點怎麼樣才能記住啊

首先就是理解著去背,把那個公式的推導過程都理解了,那麼記憶就會比較方便了。再就是死記硬背。死記硬背是沒有辦法的,只能多讀幾次,多背幾次,久而久之,就會記得了。

㈦ 如何有效地復習整理數學知識點

數學的邏輯性很強,知識往往分散在不同階段,學生對這些知識理解容易割裂。在階段學習的基礎上需對各領域內容進行系統整理與復習。整理與復習是要把平時相對獨立進行教學的知識,其中特別重要的是把帶有規律性的知識,以再現、整理、歸納等方法串聯起來,進而加深學生對知識的理解、溝通。它既不同於新授課,更不同於練習課。其基本任務就是整理知識,使之系統化、清晰化,並具有拓展性。
它的重要特點就是在系統原理的指導下,對所學知識進行系統的整理,使之形成一個較完整的知識體系,這樣有利於知識的系統化和對其內在聯系的把握,便於融合貫通,做到梳理——訓練——拓展,有序發展,真正提高復習的效果。
如何進行有效地復習與整理呢?
一、梳理歸納,溝通聯系,強化基礎
基礎知識與基本技能是數學學習的基礎,創新能力的高樓必須建立在扎實的雙基基礎之上,只有具備扎實的數學基礎,學生才會出現創新的可能。教師要引導學生進行回顧與整理,使學生在平時學習的基礎上溝通各部分之間的聯系。在回顧與整理時,應以雙基為基礎,充分發揮學生的主體作用,引導學生自主整理知識,形成知識網路,體驗數學的系統性。
但是在這樣的學習過程中,必須注意兩個問題:一是由於小學生受到知識結構和能力水平的限制,學生所要整理、溝通的知識內容的切人點一定要小,做到小而精,提出的學習要求要明確,以便學生能更好地進行整理;二是在學生整理時,教師應適當給予一些幫助,學生的整理盡管是不完整或粗糙的,教師也應給予充分地評價,並結合學生的整理,取其精華概括出較合理的知識網路圖。
在平時的學習中,有些學生可能對基本概念的理解不夠重視,有些學生則會在理解法則上有些模糊。對於易混淆的知識點,教師適時引導學生結合具體的事例進行理解,讓學生在理解的基礎上進行記憶;同時對學生已能熟練記憶的基礎知識,再要求學生加強理解,弄清知識間的聯系,分清類似知識點的區別,從而更好地掌握基礎知識。如果學生對鈍角的概念只是機械記憶,只記概念「大於90度,小於180度的角是鈍角」,沒有準確理解鈍角概念的內涵與外延,會認為「鈍角大於90度」是正確的。對於商不變規律「被除數和除同時乘或除以相同的數(零除外),商不變」。學生往往會把0除外忽視,還會影響分數的基本性質的學習。
二、合理訓練,提高能力,發展思維
在回顧與整理的基礎上,需要通過合理的訓練以鞏固學生所學知識。只有通過合理的訓練、反饋,才能暴露出學生在學習中存在的問題,同時訓練可以鍛煉學生如何應用已有知識解決具體的數學問題的能力。學生在回顧與整理中具備了一定的數學基礎知識與技能,那麼在鞏固與應用環節的訓練中,首先要培養學生的應用意識,讓他們學會合理地應用已有知識和常見的解題策略來解決數學問題。鞏固與應用中的訓練應注重訓練量的合理,這就要求教師在訓練中精選習題,注重習題的創新性,同時適當加強訓練題的趣味性和生活味,以激發學生的興趣,調節學生心理。
從教學實踐來看,有時一些具有一定思維難度的數學題,也會激起學生的探究慾望。激發學生的學習興趣與熱情是平常教學,更是復習時很重要的教學手段:即通過創設情境激發學生學習的興奮點,讓學生在復習時也有新鮮感,從而以一種積極的心態投人到復習中,避免以往復習課那種沉悶的氣氛及面面俱到的「炒冷飯」般的復習方式。
數學是思維的體操,思維活動是數學學科的特徵,任何數學教學活動都不能缺少思維活動,復習課同樣不例外。因此在復習的全過程中,教師必須以培養學生的思維能力為目標,注重學生思維的發展與提高,在發展與提高學生思維能力的過程中,教師應注重培養學生的解題的靈活性與創新意識。培養學生解題的靈活性,可通過一題多解進行,例如在解決「5米長的鐵絲重250克,2500克的一捆鐵絲有多長?」時,學生可能會先求出每米鐵絲的重量再求這捆鐵絲的重量或先求出每克鐵絲的長度再求這捆鐵絲的長或根據重量比與長度之比求出鐵絲的長度。在這種一題多解的訓練中,讓學生體驗解題的靈活性,發展他們的思維能力。同時,一題多解的訓練,還可培養學生在解題過程中,當某種思路受阻時,可以換一種思路來解決問題。此外教師要在課堂上留給學生思考的時間和空間,鼓勵他們發揮自己的創造力,讓他們的想像得到充分的展現。讓學生提數學問題,解決生活實際的問題。
三、培養良好的學習習慣,提高學習效益
在復習過程中,要注意培養學生良好的學習習慣。良好的學習習慣不僅能提高學習,而且一生受益。
總之,整理和復習課的形式要多樣化,運用多種方法和策略,揭示數學知識之間的聯系與區別,並幫助學生掌握相關規律,認識事物的本質,達到整理有序和復習有效的目的,使學生在獲得對數學理解的同時,思維能力、個性品質、情感態度等方面都得到發展。

㈧ 高中數學知識大全好用還是高中數學知識清單好用急!!!

最好是知識大全,整個一套都要買,我去圖書大廈特別對比,差異還是很大的,尤其是知識點講得比曲一線多了不少,文字多,曲一線的優點是簡單,有一些風趣幽默的圖片做得不錯,但是在定義上,知識點,用文字表達的太少,表格和樹狀圖的結構太多了,有些地方沒有必要列那麼大的表格。光看曲一線的時候你可能總覺得缺了點什麼?一旦拿來兩本對比,你就會發現知識大全細致了好多。
你可以在京東或者Tao寶上找知識大全和知識清單的目錄,第一章的頁面,仔細對比,光看目錄和第一章的內容,你就能看出兩者風格差距。

㈨ 小學數學知識集錦的內容簡介

親愛的讀者,展現在您面前的這套「知識集錦」系列圖書是由有著豐富教學經驗的特級教師、高級教師編寫的。此套書分為語文、數學、英語三冊。
我們堅持「完整、系統、深入、細致」的編寫特色,根據現行教材的變化情況及小考的變化趨勢,進行了多方調研,使本套書不僅知識點配套,而且例題題型新穎,有利於學生對學科知識的理解和掌握。
本叢書有以下特點:
一、材料新穎:以新教材為依據,以新的教育教學理念為參考,做到了思想新、內容新、材料新。編寫者力求從課程標準的知識內容中提煉出相應的能力要求,並對重點知識進行深入、細致的講解,對難點用實例的方法進行釋疑。使用本套叢書,能切實提高學.生的學習效果。
二、知識全面:囊括了小學階段各科的所有知識點,能幫助學生梳理知識重點,理清知識脈絡,夯實學習基礎。

閱讀全文

與數學知識集錦怎麼樣相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:747
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1008
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1667
下列哪個水飛薊素化學結構 瀏覽:1431
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1072