A. 中國數學的發展歷史
有關數學史的論文
學習一門學科首先要弄清楚這是一門怎樣的學科,《標准》明確提出要使學生「初步了解數學產生與發展的過程,體會數學對人類文明發展的作用」,而現階段高中學生對數學的看法大都停留在感性的層面上——枯燥、難學。數學的本質特徵是什麼?當今數學究竟發展到了哪個階段?在科學中的地位如何?與其它學科有什麼聯系?這些問題大都不被學生全面了解,而從數學史中可以找到這些問題的答案。
日本數學家藤天宏教授在第九次國際數學教育大會報告中指出,人類歷史上有四個數學高峰:第一個是古希臘的演繹數學時期,它代表了作為科學形態的數學的誕生,是人類「理性思維」的第一個重大勝利;第二個是牛頓-萊布尼茲的微積分時期,它為了滿足工業革命的需要而產生,在力學、光學、工程技術領域獲得巨大成功;第三個是希爾伯特為代表的形式主義公理化時期;第四個是以計算機技術為標志的新數學時期,我們現在就處在這個時期。而數學歷史上的三大危機分別是古希臘時期的不可公度量,17、18世紀微積分基礎的爭論和20世紀初的集合論悖論,它同前三個高峰有著驚人的密切聯系,這種聯系絕不是偶然,它是數學作為一門追求完美的科學的必然。學生可以從這種聯系中發現數學追求的是清晰、准確、嚴密,不允許有任何雜亂,不允許有任何含糊,這時候學生就很容易認識到數學的三大基本特徵——抽象性、嚴謹性和廣泛應用性了。
同時,介紹必要的數學史知識可以使學生在平時的學習中對所學問題的背景產生更加深入的理解,認識到數學絕不是孤立的,它與其他很多學科都關系密切,甚至是很多學科的基礎和生長點,對人類文明的發展起著巨大的作用。從數學史上看,數學和天文學一直都關系密切,海王星的發現過程就是一個很好的例子;它與物理學也密不可分,牛頓、笛卡兒等人既是著名的數學家也是著名的物理學家。在我們所處的新數學時期,數學(不僅僅是自然科學)逐步進入社會科學領域,發揮著意想不到的作用,可以說一切高技術的背後都有某種數學技術支持,數學技術已經成為知識經濟時代的一個重要特徵。這些認識對於一個學習數學十餘年的高中生來說是很有必要,也是必不可少的。
二、 學習數學史有利於培養學生正確的數學思維方式
現行的數學教材一般都是經過了反復推敲的,語言十分精練簡潔。為了保持了知識的系統性,把教學內容按定義、定理、證明、推論、例題的順序編排,缺乏自然的思維方式,對數學知識的內涵,以及相應知識的創造過程介紹也偏少。雖利於學生接受知識,但很容易使學生產生數學知識就是先有定義,接著總結出性質、定理,然後用來解決問題的錯誤觀點。所以,在教學與學習的過程中存在著這樣一個矛盾:一方面,教育者為了讓學生能夠更快更好的掌握數學知識,將知識系統化;另一方面,系統化的知識無法讓學生了解到知識大都是經過問題、猜想、論證、檢驗、完善,一步一步成熟起來的。影響了學生正確數學思維方式的形成。
數學史的學習有利於緩解這個矛盾。通過講解一些有關的數學歷史,讓學生在學習系統的數學知識的同時,對數學知識的產生過程,有一個比較清晰的認識,從而培養學生正確的數學思維方式。這樣的例子很多,比如說微積分的產生:傳統的歐式幾何的演繹體系是產生不了微積分的,它是牛頓、萊布尼茲在古希臘的「窮竭法」、「求拋物線弓形面積」等思想的啟發下為了滿足第一次工業革命的需要創造得到的,產生的初期對「無窮小」的定義比較含糊,也不像我們現在看到的這樣嚴密,在數學家們的不斷補充、完善下,經過幾十年才逐步成熟起來的。
數學史的學習可以引導學生形成一種探索與研究的習慣,去發現和認識在一個問題從產生到解決的過程中,真正創造了些什麼,哪些思想、方法代表著該內容相對於以往內容的實質性進步。對這種創造過程的了解,可以使學生體會到一種活的、真正的數學思維過程,有利於學生對一些數學問題形成更深刻的認識,了解數學知識的現實來源和應用,而不是單純地接受教師傳授的知識,從而可以在這種不斷學習,不斷探索,不斷研究的過程中逐步形成正確的數學思維方式。
三、 學習數學史有利於培養學生對數學的興趣,激發學習數學的動機
動機是激勵人、推動人去行動的一種力量,從心理學的觀點講,動機可分為兩個部分;人的好奇心、求知慾、興趣、愛好構成了有利於創造的內部動機;社會責任感構成了有利於創造的外部動機。興趣是最好的動機。在日本中學生奪取國際IEA調查總分第一名的同時,卻發現日本學生不喜歡數學的比例也是第一,這說明他們的好成績是在社會、家長、學校的壓力下獲得的。中國的情況如何呢?尚無全面的報道,但河南省新鄉市四所中學的高中生學習數學情況的調查發現:「我不喜歡數學,但為了高考,我必須學好數學」的學生占被調查者的比例高達62.21%,而對數學「很感興趣」的只有23.12%。可見目前中學生的學習動機不明確,對數學的興趣也很不夠,這些都極大地影響了學習數學的效果。但這並不是因為數學本身無趣,而是它被我們的教學所忽視了。在數學教育中適當結合數學史有利於培養學生對數學的興趣,克服動機因素的消極傾向。
數學史中有很多能夠培養學生學習興趣的內容,主要有這幾個方面:一是與數學有關的小游戲,例如巧拿火柴棒、幻方、商人過河問題等,它們有很強的可操作性,作為課堂活動或是課後研究都可以達到很好的效果。二是一些歷史上的數學名題,例如七橋問題、哥德巴赫猜想等,它們往往有生動的文化背景,也容易引起學生的興趣。還有一些著名數學家的生平、軼事,比如說一些年輕的數學家成材的故事,《標准》中提到的「從阿貝爾到伽羅瓦」,阿貝爾22歲證明一般五次以上代數方程不存在求根公式,伽羅瓦創建群論的時候只有18歲。還有法國數學家帕斯卡,16歲成為射影幾何的奠基人之一,19歲發明原始計算器;德國數學家高斯19歲解決正多邊形作圖的判定問題,20歲證明代數基本定理,24歲出版影響整個19世紀數論發展、至今仍相當重要的《算術研究》;還有的是許多出生貧窮卑微的數學家通過自己的艱苦努力,最終在的數學研究上有驕人成績的例子,如19世紀的大幾何學家施泰納出身農家自幼務農,直到14歲還沒有學過寫字,18歲才正式開始讀書,後來靠做私人教師謀生,經過艱苦努力,終於在30歲時在數學上做出重要工作,一舉成名。如果在教學中加入這些學生感興趣又有知識性的內容,消除學生對數學的恐懼感,增加數學的吸引力,數學學習也許就不再是被迫無奈的了。
四、學習數學史為德育教育提供了舞台
在《標准》的要求下,德育教育已經不是像以前那樣主要是政治、語文、歷史這些學科的事了,數學史內容的加入使數學教育有更強大的德育教育功能,我們從下幾個方面來探討一下。
首先,學習數學史可以對學生進行愛國主義教育。現行的中學教材講的大都是外國的數學成就,對我國在數學史上的貢獻提得很少, 其實中國數學有著光輝的傳統,有劉徽、祖沖之、祖暅、楊輝、秦九韶、李冶、朱世傑等一批優秀的數學家,有中國剩餘定理、祖暅公理、「割圓術」等具有世界影響的數學成就,對其中很多問題的研究也比國外早很多年。《標准》中「數學史選講」專題3就是「中國古代數學瑰寶」,提到《九章算術》、「孫子定理」這些有代表意義的中國古代數學成就。
然而,現階段愛國主義教育又不能只停留在感嘆我國古代數學的輝煌上。從明代以後中國數學逐漸落後於西方,20世紀初,中國數學家踏上了學習並趕超西方先進數學的艱巨歷程。《標准》中「數學史選講」專題11—— 「中國現代數學的發展」也提到要介紹「現代中國數學家奮發拼搏,趕超世界數學先進水平的光輝歷程」。在新時代的要求下,除了增強學生的民族自豪感之外,還應該培養學生的「國際意識」,讓學生認識到愛國主義不是體現在「以己之長,說人之短」上,在科學發現上全人類應該相互學習、互相借鑒、共同提高,我們要尊重外國的數學成就,虛心的學習,「洋為中用」。
其次,學習數學史可以引導學生學習數學家的優秀品質。任何一門科學的前進和發展的道路都不是平坦的,無理數的發現,非歐幾何的創立,微積分的發現等等這些例子都說明了這一點。數學家們或是堅持真理、不畏權威,或是堅持不懈、努力追求,很多人甚至付出畢生的努力。阿基米德在敵人破城而入危及生命的關頭仍沉浸在數學研究之中,為的是「我不能留給後人一條沒有證完的定理」。歐拉31歲右眼失明,晚年視力極差最終雙目失明,但他仍以堅強的毅力繼續研究,他的論文多而且長,以致在他去世之後的10年內,他的論文仍在科學院的院刊上持續發表。對那些在平時學習中遇到稍微繁瑣的計算和稍微復雜的證明就打退堂鼓的學生來說,介紹這樣一些大數學家在遭遇挫折時又是如何執著追求的故事,對於他們正確看待學習過程中遇到的困難、樹立學習數學的信心會產生重要的作用。
最後,學習數學史可以提高學生的美學修養。數學是美的,無數數學家都為這種數學的美所折服。能欣賞美的事物是人的一個基本素質,數學史的學習可以引導學生領悟數學美。很多著名的數學定理、原理都閃現著美學的光輝。例如畢達哥拉斯定理(勾股定理)是初等數學中大家都十分熟悉的一個非常簡潔而深刻的定理,有著極為廣泛的應用。兩千多年來,它激起了無數人對數學的興趣,義大利著名畫家達芬奇、印度國王Bhaskara、美國第20任總統Carfield等都給出過它的證明。1940年,美國數學家盧米斯在所著《畢達哥拉斯命題藝術》的第二版中收集了它的370種證明,充分展現了這個定理的無窮魅力。黃金分割同樣十分優美和充滿魅力,早在公元前6世紀它就為畢達哥拉斯學派所研究,近代以來人們又驚訝地發現,它與著名的斐波那契數列有著十分密切的內在聯系。同時,在感嘆和欣賞幾何圖形的對稱美、尺規作圖的簡單美、體積三角公式的統一美、非歐幾何的奇異美等時,可以形成對數學良好的情感體驗,數學素養和審美素質也得到了提高,這是德育教育一個新的突破口。
B. 數學史是這么樣的
一、數學史的研究對象
數學史是研究數學科學發生發展及其規律的科學,簡單地說就是研究數學的歷史。它不僅追溯數學內容、思想和方法的演變、發展過程,而且還探索影響這種過程的各種因素,以及歷史上數學科學的發展對人類文明所帶來的影響。因此,數學史研究對象不僅包括具體的數學內容,而且涉及歷史學、哲學、文化學、宗教等社會科學與人文科學內容,是一門交叉性學科。
從研究材料上說,考古資料、歷史檔案材料、歷史上的數學原始文獻、各種歷史文獻、民族學資料、文化史資料,以及對數學家的訪問記錄,等等,都是重要的研究對象,其中數學原始文獻是最常用且最重要的第一手研究資料。從研究目標來說,可以研究數學思想、方法、理論、概念的演變史;可以研究數學科學與人類社會的互動關系;可以研究數學思想的傳播與交流史;可以研究數學家的生平等等。
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。
史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。
不會比較就不會思考, 而且所有的科學思考與調查都不可缺少比較,或者說,比較是認識的開始。今日世界的發展是多極的,不同國家和地區、不同民族之間在文化交流中共同發展,因而隨著多元化世界文明史研究的展開與西方中心論觀念的淡化,異質的區域文明日益受到重視,從而不同地域的數學文化的比較以及數學交流史研究也日趨活躍。數學史的比較研究往往圍繞數學成果、數學科學範式、數學發展的社會背景等三方面而展開。
數學史既屬史學領域,又屬數學科學領域,因此,數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段,在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。數理分析實際上是"古"與"今"間的一種聯系。
二、數學史的分期
數學發展具有階段性,因此研究者根據一定的原則把數學史分成若干時期。目前學術界通常將數學發展劃分為以下五個時期:
1.數學萌芽期(公元前600年以前);
2.初等數學時期(公元前600年至17世紀中葉);
3.變數數學時期(17世紀中葉至19世紀20年代);
4.近代數學時期(19世紀20年代至第二次世界大戰);
5.現代數學時期(20世紀40年代以來)。
三、數學史的意義
(1)數學史的科學意義
每一門科學都有其發展的歷史,作為歷史上的科學,既有其歷史性又有其現實性。其現實性首先表現在科學概念與方法的延續性方面,今日的科學研究在某種程度上是對歷史上科學傳統的深化與發展,或者是對歷史上科學難題的解決,因此我們無法割裂科學現實與科學史之間的聯系。數學科學具有悠久的歷史,與自然科學相比,數學更是積累性科學,其概念和方法更具有延續性,比如古代文明中形成的十進位值制記數法和四則運演算法則,我們今天仍在使用,諸如費爾馬猜想、哥德巴赫猜想等歷史上的難題,長期以來一直是現代數論領域中的研究熱點,數學傳統與數學史材料可以在現實的數學研究中獲得發展。國內外許多著名的數學大師都具有深厚的數學史修養或者兼及數學史研究,並善於從歷史素材中汲取養分,做到古為今用,推陳出新。我國著名數學家吳文俊先生早年在拓撲學研究領域取得傑出成就,七十年代開始研究中國數學史,在中國數學史研究的理論和方法方面開創了新的局面,特別是在中國傳統數學機械化思想的啟發下,建立了被譽為"吳方法"的關於幾何定理機器證明的數學機械化方法,他的工作不愧為古為今用,振興民族文化的典範。
科學史的現實性還表現在為我們今日的科學研究提供經驗教訓和歷史借鑒,以使我們明確科學研究的方向以少走彎路或錯路,為當今科技發展決策的制定提供依據,也是我們預見科學未來的依據。多了解一些數學史知識,也不會致使我們出現諸如解決三等分角作圖、證明四色定理等荒唐事,也避免我們在費爾馬大定理等問題上白廢時間和精力。同時,總結我國數學發展史上的經驗教訓,對我國當今數學發展不無益處。
(2)數學史的文化意義
美國數學史家m.克萊因曾經說過:"一個時代的總的特徵在很大程度上與這個時代的數學活動密切相關。這種關系在我們這個時代尤為明顯"。"數學不僅是一種方法、一門藝術或一種語言,數學更主要是一門有著豐富內容的知識體系,其內容對自然科學家、社會科學家、哲學家、邏輯學家和藝術家十分有用,同時影響著政治家和神學家的學說"。數學已經廣泛地影響著人類的生活和思想,是形成現代文化的主要力量。因而數學史是從一個側面反映的人類文化史,又是人類文明史的最重要的組成部分。許多歷史學家通過數學這面鏡子,了解古代其他主要文化的特徵與價值取向。古希臘(公元前600年-公元前300年)數學家強調嚴密的推理和由此得出的結論,因此他們不關心這些成果的實用性,而是教育人們去進行抽象的推理,和激發人們對理想與美的追求。通過希臘數學史的考察,就十分容易理解,為什麼古希臘具有很難為後世超越的優美文學、極端理性化的哲學,以及理想化的建築與雕塑。而羅馬數學史則告訴我們,羅馬文化是外來的,羅馬人缺乏獨創精神而注重實用。
(3)數學史的教育意義
當我們學習過數學史後,自然會有這樣的感覺:數學的發展並不合邏輯,或者說,數學發展的實際情況與我們今日所學的數學教科書很不一致。我們今日中學所學的數學內容基本上屬於17世紀微積分學以前的初等數學知識,而大學數學系學習的大部分內容則是17、18世紀的高等數學。這些數學教材業已經過千錘百煉,是在科學性與教育要求相結合的原則指導下經過反復編寫的,是將歷史上的數學材料按照一定的邏輯結構和學習要求加以取捨編纂的知識體系,這樣就必然舍棄了許多數學概念和方法形成的實際背景、知識背景、演化歷程以及導致其演化的各種因素,因此僅憑數學教材的學習,難以獲得數學的原貌和全景,同時忽視了那些被歷史淘汰掉的但對現實科學或許有用的數學材料與方法,而彌補這方面不足的最好途徑就是通過數學史的學習。
在一般人看來,數學是一門枯燥無味的學科,因而很多人視其為畏途,從某種程度上說,這是由於我們的數學教科書教授的往往是一些僵化的、一成不變的數學內容,如果在數學教學中滲透數學史內容而讓數學活起來,這樣便可以激發學生的學習興趣,也有助於學生對數學概念、方法和原理的理解與認識的深化。
科學史是一門文理交叉學科,從今天的教育現狀來看,文科與理科的鴻溝導致我們的教育所培養的人才已經越來越不能適應當今自然科學與社會科學高度滲透的現代化社會,正是由於科學史的學科交叉性才可顯示其在溝通文理科方面的作用。通過數學史學習,可以使數學系的學生在接受數學專業訓練的同時,獲得人文科學方面的修養,文科或其它專業的學生通過數學史的學習可以了解數學概貌,獲得數理方面的修養。而歷史上數學家的業績與品德也會在青少年的人格培養上發揮十分重要的作用。
中國數學有著悠久的歷史,14世紀以前一直是世界上數學最為發達的國家,出現過許多傑出數學家,取得了很多輝煌成就,其淵源流長的以計算為中心、具有程序性和機械性的演算法化數學模式與古希臘的以幾何定理的演繹推理為特徵的公理化數學模式相輝映,交替影響世界數學的發展。由於各種復雜的原因,16世紀以後中國變為數學入超國,經歷了漫長而艱難的發展歷程才漸漸匯入現代數學的潮流。由於教育上的失誤,致使接受現代數學文明熏陶的我們,往往數典忘祖,對祖國的傳統科學一無所知。數學史可以使學生了解中國古代數學的輝煌成就,了解中國近代數學落後的原因,中國現代數學研究的現狀以及與發達國家數學的差距,以激發學生的愛國熱情,振興民族科學。
從普高教育上談
數學史教學的教育功能
【摘要】 我國的數學教學一直注重形式化的演繹數學思維的訓練,而忽視了培養學生對數學作為一門科學的思想體系,文化內涵和美學價值的認識.《普通高中數學課程標准(實驗)》增加的數學史內容,彌補了這方面的不足.本文旨在探討它的教育功能是如何體現的.
【關鍵字】 數學史 數學觀 教育功能
《普通高中數學課程標准(實驗)》(以下簡稱《標准》)新意迭出,在教學內容上的亮點之一是增加了數學史方面的內容,提供了有關的11個專題,指出要通過數學史的學習使學生"體會數學對人類文明發展的作用,提高學習數學的興趣,加深對數學的理解,感受數學家的嚴謹態度和鍥而不舍的探索精神."過去我們一直認為數學屬於理科,學的應該是如何解題這樣的方法技巧,而數學史像是文科的內容,作為課外了解的擴充知識倒是可以,成為正式的教學內容似乎沒有必要.這種思想體現了我們一直以來對數學教育目的和內容的理解誤區:只重視形式化的邏輯演繹能力的培養,而忽視了學習數學作為一門科學更內在的東西.下面我們就數學史教學的教育功能作一下探討.
學習數學史可以幫助學生認識數學,形成正確的數學觀
學習一門學科首先要弄清楚這是一門怎樣的學科,《標准》明確提出要使學生"初步了解數學產生與發展的過程,體會數學對人類文明發展的作用",而現階段高中學生對數學的看法大都停留在感性的層面上——枯燥,難學.數學的本質特徵是什麼 當今數學究竟發展到了哪個階段 在科學中的地位如何 與其它學科有什麼聯系 這些問題大都不被學生全面了解,而從數學史中可以找到這些問題的答案.
日本數學家藤天宏教授在第九次國際數學教育大會報告中指出,人類歷史上有四個數學高峰:第一個是古希臘的演繹數學時期,它代表了作為科學形態的數學的誕生,是人類"理性思維"的第一個重大勝利;第二個是牛頓-萊布尼茲的微積分時期,它為了滿足工業革命的需要而產生,在力學,光學,工程技術領域獲得巨大成功;第三個是希爾伯特為代表的形式主義公理化時期;第四個是以計算機技術為標志的新數學時期,我們現在就處在這個時期.而數學歷史上的三大危機分別是古希臘時期的不可公度量,17,18世紀微積分基礎的爭論和20世紀初的集合論悖論,它同前三個高峰有著驚人的密切聯系,這種聯系絕不是偶然,它是數學作為一門追求完美的科學的必然.學生可以從這種聯系中發現數學追求的是清晰,准確,嚴密,不允許有任何雜亂,不允許有任何含糊,這時候學生就很容易認識到數學的三大基本特徵——抽象性,嚴謹性和廣泛應用性了.
同時,介紹必要的數學史知識可以使學生在平時的學習中對所學問題的背景產生更加深入的理解,認識到數學絕不是孤立的,它與其他很多學科都關系密切,甚至是很多學科的基礎和生長點,對人類文明的發展起著巨大的作用.從數學史上看,數學和天文學一直都關系密切,海王星的發現過程就是一個很好的例子;它與物理學也密不可分,牛頓,笛卡兒等人既是著名的數學家也是著名的物理學家.在我們所處的新數學時期,數學(不僅僅是自然科學)逐步進入社會科學領域,發揮著意想不到的作用,可以說一切高技術的背後都有某種數學技術支持,數學技術已經成為知識經濟時代的一個重要特徵.這些認識對於一個學習數學十餘年的高中生來說是很有必要,也是必不可少的.
二, 學習數學史有利於培養學生正確的數學思維方式
現行的數學教材一般都是經過了反復推敲的,語言十分精練簡潔.為了保持了知識的系統性,把教學內容按定義,定理,證明,推論,例題的順序編排,缺乏自然的思維方式,對數學知識的內涵,以及相應知識的創造過程介紹也偏少.雖利於學生接受知識,但很容易使學生產生數學知識就是先有定義,接著總結出性質,定理,然後用來解決問題的錯誤觀點.所以,在教學與學習的過程中存在著這樣一個矛盾:一方面,教育者為了讓學生能夠更快更好的掌握數學知識,將知識系統化;另一方面,系統化的知識無法讓學生了解到知識大都是經過問題,猜想,論證,檢驗,完善,一步一步成熟起來的.影響了學生正確數學思維方式的形成.
數學史的學習有利於緩解這個矛盾.通過講解一些有關的數學歷史,讓學生在學習系統的數學知識的同時,對數學知識的產生過程,有一個比較清晰的認識,從而培養學生正確的數學思維方式.這樣的例子很多,比如說微積分的產生:傳統的歐式幾何的演繹體系是產生不了微積分的,它是牛頓,萊布尼茲在古希臘的"窮竭法","求拋物線弓形面積"等思想的啟發下為了滿足第一次工業革命的需要創造得到的,產生的初期對"無窮小"的定義比較含糊,也不像我們現在看到的這樣嚴密,在數學家們的不斷補充,完善下,經過幾十年才逐步成熟起來的.
數學史的學習可以引導學生形成一種探索與研究的習慣,去發現和認識在一個問題從產生到解決的過程中,真正創造了些什麼,哪些思想,方法代表著該內容相對於以往內容的實質性進步.對這種創造過程的了解,可以使學生體會到一種活的,真正的數學思維過程,有利於學生對一些數學問題形成更深刻的認識,了解數學知識的現實來源和應用,而不是單純地接受教師傳授的知識,從而可以在這種不斷學習,不斷探索,不斷研究的過程中逐步形成正確的數學思維方式.
三,學習數學史有利於培養學生對數學的興趣,激發學習數學的動機
動機是激勵人,推動人去行動的一種力量,從心理學的觀點講,動機可分為兩個部分;人的好奇心,求知慾,興趣,愛好構成了有利於創造的內部動機;社會責任感構成了有利於創造的外部動機.興趣是最好的動機.在日本中學生奪取國際IEA調查總分第一名的同時,卻發現日本學生不喜歡數學的比例也是第一,這說明他們的好成績是在社會,家長,學校的壓力下獲得的.中國的情況如何呢 尚無全面的報道,但河南省新鄉市四所中學的高中生學習數學情況的調查發現:"我不喜歡數學,但為了高考,我必須學好數學"的學生占被調查者的比例高達62.21%,而對數學"很感興趣"的只有23.12%.可見目前中學生的學習動機不明確,對數學的興趣也很不夠,這些都極大地影響了學習數學的效果.但這並不是因為數學本身無趣,而是它被我們的教學所忽視了.在數學教育中適當結合數學史有利於培養學生對數學的興趣,克服動機因素的消極傾向.
數學史中有很多能夠培養學生學習興趣的內容,主要有這幾個方面:一是與數學有關的小游戲,例如巧拿火柴棒,幻方,商人過河問題等,它們有很強的可操作性,作為課堂活動或是課後研究都可以達到很好的效果.二是一些歷史上的數學名題,例如七橋問題,哥德巴赫猜想等,它們往往有生動的文化背景,也容易引起學生的興趣.還有一些著名數學家的生平,軼事,比如說一些年輕的數學家成材的故事,《標准》中提到的"從阿貝爾到伽羅瓦",阿貝爾22歲證明一般五次以上代數方程不存在求根公式,伽羅瓦創建群論的時候只有18歲.還有法國數學家帕斯卡,16歲成為射影幾何的奠基人之一,19歲發明原始計算器;德國數學家高斯19歲解決正多邊形作圖的判定問題,20歲證明代數基本定理,24歲出版影響整個19世紀數論發展,至今仍相當重要的《算術研究》;還有的是許多出生貧窮卑微的數學家通過自己的艱苦努力,最終在的數學研究上有驕人成績的例子,如19世紀的大幾何學家施泰納出身農家自幼務農,直到14歲還沒有學過寫字,18歲才正式開始讀書,後來靠做私人教師謀生,經過艱苦努力,終於在30歲時在數學上做出重要工作,一舉成名.如果在教學中加入這些學生感興趣又有知識性的內容,消除學生對數學的恐懼感,增加數學的吸引力,數學學習也許就不再是被迫無奈的了.
四,學習數學史為德育教育提供了舞台
在《標准》的要求下,德育教育已經不是像以前那樣主要是政治,語文,歷史這些學科的事了,數學史內容的加入使數學教育有更強大的德育教育功能,我們從下幾個方面來探討一下.
首先,學習數學史可以對學生進行愛國主義教育.現行的中學教材講的大都是外國的數學成就,對我國在數學史上的貢獻提得很少, 其實中國數學有著光輝的傳統,有劉徽,祖沖之,祖暅,楊輝,秦九韶,李冶,朱世傑等一批優秀的數學家,有中國剩餘定理,祖暅公理,"割圓術"等具有世界影響的數學成就,對其中很多問題的研究也比國外早很多年.《標准》中"數學史選講"專題3就是"中國古代數學瑰寶",提到《九章算術》,"孫子定理"這些有代表意義的中國古代數學成就.
然而,現階段愛國主義教育又不能只停留在感嘆我國古代數學的輝煌上.從明代以後中國數學逐漸落後於西方,20世紀初,中國數學家踏上了學習並趕超西方先進數學的艱巨歷程.《標准》中"數學史選講"專題11—— "中國現代數學的發展"也提到要介紹"現代中國數學家奮發拼搏,趕超世界數學先進水平的光輝歷程".在新時代的要求下,除了增強學生的民族自豪感之外,還應該培養學生的"國際意識",讓學生認識到愛國主義不是體現在"以己之長,說人之短"上,在科學發現上全人類應該相互學習,互相借鑒,共同提高,我們要尊重外國的數學成就,虛心的學習,"洋為中用".
其次,學習數學史可以引導學生學習數學家的優秀品質.任何一門科學的前進和發展的道路都不是平坦的,無理數的發現,非歐幾何的創立,微積分的發現等等這些例子都說明了這一點.數學家們或是堅持真理,不畏權威,或是堅持不懈,努力追求,很多人甚至付出畢生的努力.阿基米德在敵人破城而入危及生命的關頭仍沉浸在數學研究之中,為的是"我不能留給後人一條沒有證完的定理".歐拉31歲右眼失明,晚年視力極差最終雙目失明,但他仍以堅強的毅力繼續研究,他的論文多而且長,以致在他去世之後的10年內,他的論文仍在科學院的院刊上持續發表.對那些在平時學習中遇到稍微繁瑣的計算和稍微復雜的證明就打退堂鼓的學生來說,介紹這樣一些大數學家在遭遇挫折時又是如何執著追求的故事,對於他們正確看待學習過程中遇到的困難,樹立學習數學的信心會產生重要的作用.
最後,學習數學史可以提高學生的美學修養.數學是美的,無數數學家都為這種數學的美所折服.能欣賞美的事物是人的一個基本素質,數學史的學習可以引導學生領悟數學美.很多著名的數學定理,原理都閃現著美學的光輝.例如畢達哥拉斯定理(勾股定理)是初等數學中大家都十分熟悉的一個非常簡潔而深刻的定理,有著極為廣泛的應用.兩千多年來,它激起了無數人對數學的興趣,義大利著名畫家達芬奇,印度國王Bhaskara,美國第20任總統Carfield等都給出過它的證明.1940年,美國數學家盧米斯在所著《畢達哥拉斯命題藝術》的第二版中收集了它的370種證明,充分展現了這個定理的無窮魅力.黃金分割同樣十分優美和充滿魅力,早在公元前6世紀它就為畢達哥拉斯學派所研究,近代以來人們又驚訝地發現,它與著名的斐波那契數列有著十分密切的內在聯系.同時,在感嘆和欣賞幾何圖形的對稱美,尺規作圖的簡單美,體積三角公式的統一美,非歐幾何的奇異美等時,可以形成對數學良好的情感體驗,數學素養和審美素質也得到了提高,這是德育教育一個新的突破口.
【參考文獻】
【1】中華人民共和國教育部制訂 普通高中數學課程標准(實驗) 人民教育出版社 2003
【2】張奠宙 李士錡 李俊 編著 數學教育學導論 高等教育出版社 2003
【3】李文林 編 數學史概論 高等教育出版社2002
【4】張楚廷 著 教育部高等教育司 組編 數學文化 高等教育出版社 1999
【5】趙鴻濤 李華軒 高中生數學學習情況的調查 新鄉教育學院學報 2003年 04期
C. 數學的發展歷史
搜狐博客 > 小雨兮兮 > 日誌 > 數學知識 2007-09-11 | 中國數學發展史概述 標簽: 數學 公元 九章算術 勾股定理 籌算
中國是世界文明古國之一,地處亞洲東部,瀕太平洋西岸。黃河流域和長江流域是中華民族文化的搖籃,大約在公元前2000年,在黃河中下游產生了第一個奴隸制國家——夏朝(前2033-前1562),共經歷十三世、十六王。其後又有奴隸制國家商(前562年—1066年,共歷十七世三十一王)和西周[前1027年—前771年,共歷約二百五十七年,傳十一世、十二王]。隨後出現了中國歷史上的第一次全國性大分裂形成的時期——春秋(前770年-前476年)戰國(前403年-前221年),春秋後期,中國文明進入封建時代,到公元前221年秦王贏政統一全國,出現了中國歷史上第一個封建帝制國家——秦朝(前221年—前206年),在以後的時間里,中國封建文明在秦帝國的封建體制的基礎不斷完善地持續發展,經歷了統一強盛的西漢(公元前206年—公元8年)帝國、東漢王朝(公元25年—公元220年)、戰亂頻仍與分裂的三國時期(公元208年-公元280年)、西晉(公元265年—公元316年)與東晉王朝(公元317年—公元420年)、漢民族以外的少數民族統治的南朝(公元420年—公元589年)與北朝(公元386年—公元518年)。到了公元581年,由隋再次統一了全國,建立了大一統的隋朝(公元581—618年),接著經歷了強大富庶文化繁榮的大唐王朝(公元618年—907年)、北方少數民族政權遼(公元916年-公元1125年)、經濟和文化發達的北宋(公元960年~公元1127年)與南宋(公元1127年-公元1279年)、蒙古族建立的控制范圍擴張至整個西亞地區的疆域最大的元朝(公元1271年-1368年)、元朝滅亡後,漢族人在華夏大地上重新建立起來的封建王朝——明朝(公元1368年-公元1644年),明王朝於17世紀中為少數民族女真族(滿族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中國最後一個封建帝制國家。自此之後,中國脫離了帝制而轉入了現代民主國家。
中國文明與古代埃及、美索不達米亞、印度文明一樣,都是古老的農耕文明,但與其他文明截然不同,它其持續發展兩千餘年之久,在世界文明史上是絕無僅有的。這種文明十分注重社會事務的管理,強調實際與經驗,關心人和自然的和諧與人倫社會的秩序,儒家思想作為調解社會矛盾、維系這一文明持續發展的重要思想基礎。
一、中國數學的起源與早期發展
據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。
算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。
用算籌記數,有縱、橫兩種方式:
表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間[法則是:一縱十橫,百立千僵,千、十相望,萬、百相當],並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。
籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理[西方稱勾股定理]的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。
此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。
二、中國數學體系的形成與奠基
這一時期包括從秦漢、魏晉、南北朝,共400年間的數學發展歷史。秦漢是中國古代數學體系的形成時期,為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。
現傳中國歷史最早的數學專著是1984年在湖北江陵張家山出土的成書於西漢初的漢簡《算數書》,與其同時出土的一本漢簡歷譜所記乃呂後二年(公元前186年),所以該書的成書年代至晚是公元前186年(應該在此前)。
西漢末年[公元前一世紀]編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年[公元前一世紀]。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。
同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。
三、中國數學教育制度的建立
隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。
隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》[包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》],作為算學館學生用的課本。對保存古代數學經典起了重要的作用。
由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。
四、中國數學發展的高峰
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀[宋、元兩代],籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》[11世紀中葉],劉益的《議古根源》[12世紀中葉],秦九韶的《數書九章》[1247],李冶的《測圓海鏡》[1248]和《益古演段》[1259],楊輝的《詳解九章演算法》[1261]、《日用演算法》[1262]和《楊輝演算法》[1274-1275],朱世傑的《算學啟蒙》[1299]和《四元玉鑒》[1303]等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有:
公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。(《黃帝九章演算法細草》已佚)
公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題。
公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。
公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。
公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。
五、中國數學的衰落與日用數學的發展
這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。
明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》[1592]問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。
六、西方初等數學的傳入與中西合璧
十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。
十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷[1607],其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》[2卷,1631]、《割圓八線表》[6卷]和羅雅谷的《測量全義》[10卷,1631]。在徐光啟主持編譯的《崇禎歷書》[137卷,1629-1633]中,介紹了有關圓椎曲線的數學知識。
入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》[53卷,1723],是一部比較全面的初等數學書,對當時的數學研究有一定影響。
七、傳統數學的整理與復興
乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。
在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》[約1859]中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷[1795-1810],開數學史研究之先河。
八、西方數學再次東進
1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷[1857],使中國有了完整的《幾何原本》中譯本;《代數學》13卷[1859];《代微積拾級》18卷[1859]。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷[1872],《微積溯源》8卷[1874],《決疑數學》10卷[1880]等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。
九、中國現代數學的建立
這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。
中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來[1915年轉留法],1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學[今南京大學]和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵[1927]、陳省身[1934]、華羅庚[1936]、許寶騤[1936]等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素[1920],美國的伯克霍夫[1934]、奧斯古德[1934]、維納[1935],法國的阿達馬[1936]等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊[1952年改為《數學學報》],1951年10月《中國數學雜志》復刊[1953年改為《數學通報》]。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》[1953]、蘇步青的《射影曲線概論》[1954]、陳建功的《直角函數級數的和》[1954]和李儼的《中算史論叢》5集[1954-1955]等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。
十、中國數學的特點
(1)以演算法為中心,屬於應用數學。中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的。
(2)具有較強的社會性。中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起。同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質。
(3)寓理於算,理論高度概括。由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹。其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等。
十一、中國數學對世界的影響
數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。
中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展
世界的在參考資料
D. 數學歷史上重大事件
第一次數學危機
起因
00畢達哥拉斯學派主張「數」是萬物的本原、始基,而宇宙中一切現象都可歸結為整數或整數之比。在希帕索斯悖論發現之前,人們僅認識到自然數和有理數,有理數理論成為占統治地位的數學規范,希帕索斯發現的無理數,暴露了原有數學規范的局限性。由此看來,希帕索斯悖論是由於主觀認識上的錯誤而造成的。
經過
00公元前5世紀,畢達哥拉斯學派的成員希帕索斯(470B.C.前後)發現:等腰直角三角形斜邊與一直角邊是不可公度的,它們的比不能歸結為整數或整數之比。這一發現不僅嚴重觸犯了畢達哥拉斯學派的信條,同時也沖擊了當時希臘人的普遍見解,因此在當時它就直接導致了認識上的「危機」。希帕索斯的這一發現,史稱「希帕索斯悖論」,從而觸發了數學史上的第一次危機。
影響
00希帕索斯的發現,促使人們進一步去認識和理解無理數。但是,基於生產和科學技術的發展水平,畢達哥拉斯學派及以後的古希臘的數學家們沒有也不可能建立嚴格的無理數理論,他們對無理數的問題基本上採取了迴避的態度,放棄對數的算術處理,代之以幾何處理,從而開始了幾何優先發展的時期,在此後兩千年間,希臘的幾何學幾乎成了全部數學的基礎。當然,這種將整個數學捆綁在幾何上的狹隘作法,對數學的發展也產生了不利的影響。
00希帕索斯的發現,說明直覺和經驗不一定靠得住,而推理和證明才是可靠的,這就導致了亞里士多德的邏輯體系和歐幾里德幾何體系的建立。
編輯本段
第二次數學危機
起因
00十七世紀末,牛頓和萊布尼茲創立的微積分理論在實踐中取得了成 第二次數學危機功的應用,大部分數學家對於這一理論的可靠性深信不移。但是,當時的微積分理論主要是建立在無窮小分析之上的,而無窮小分析後來證明是包含邏輯矛盾的。
經過
001734年,英國大主教貝克萊發表了《分析學者,或致一個不信教的數學家。其中審查現代分析的對象、原則與推斷是否比之宗教的神秘與教條,構思更為清楚,或推理更為明顯》一書,對當時的微積分學說進行了猛烈的抨擊。他說牛頓先認為無窮小量不是零,然後又讓它等於零,這違背了背反律,並且所得到的流數實際上是0/0,是「依靠雙重錯誤你得到了雖然不科學卻是正確的結果」,這是因為錯誤互相抵償的緣故。在數學史上,稱之為「貝克萊悖論」。這一悖論的發現,在當時引起了一定的思想混亂,導致了數學史上的第二次危機,引起了持續200多年的微積分基礎理論的爭論。
00貝克萊攻擊「無窮小」,其目的是為宗教神學作論證,而作為「貝克萊悖論」本身,則是一個思想方法問題。因為數學要按照形式邏輯的不矛盾律來思維,不能在同一思維過程中既承認不等於零,又承認等於零。但是,事物的運動以其終點為極限,運動的結果在量上等於零,而在起點上則不等於零,這是事物運動的兩個方面,不應納入同一思維過程,如果把它們機械地聯結起來,必然會導致思維中的悖論。貝克萊悖論產生的原因在於無窮小量的辨證性與數學方法的形式特性的矛盾。
影響
00第二次數學危機的產物——分析基礎理論的嚴密化與集合論的創立。
00「貝克萊悖論」提出以後,許多著名數學家從各種不同的角度進行研究、探索,試圖把微積分重新建立在可靠的基礎之上。法國數學家柯西是數學分析的集大成者,通過《分析教程》(1821)、《無窮小計算講義》(1823)、《無窮小計算在幾何中的應用》(1826)這幾部著作,柯西建立起以極限為基礎的現代微積分體系。但柯西的體系仍有尚待改進之處。比如:他關於極限的語言尚顯模糊,依靠了運動、幾何直觀的東西;缺乏實數理論。德國數學家魏爾斯特拉斯是數學分析基礎的主要奠基者之一,他改進了波爾查諾、阿貝爾、柯西的方法,首次用「ε—δ」方法敘述了微積分中一系列重要概念如極限、連續、導數和積分等,建立了該學科的嚴格體系。「ε—δ」方法的提出和應用於微積分,標志著微積分算術化的完成。為了建立極限理論的基本定理,不少數學家開始給出無理數的嚴格定義。1860年,魏爾斯特拉斯提出用遞增有界數列來定義無理數;1872年,戴德金提出用分割來定義無理數;1883年,康托爾提出用基本序列來定義無理數;等等。這些定義,從不同的側面深刻揭示了無理數的本質,從而建立了嚴格的實數理論,徹底消除了希帕索斯悖論,把極限理論建立在嚴格的實數理論的基礎上,並進而導致集合論的誕生。
編輯本段
第三次數學危機
起因
00魏爾斯特拉斯用排除無窮小量的辦法來解決貝克萊悖論,而在上世紀60年代,魯濱遜又把無窮小量請了回來,引進了超實數的概念,從而建立了非標准分析,同樣也能精確地描述微積分,進而也解決了貝克萊悖論。但必須注意到,貝克萊悖論只是在相對意義下得到了解決,因為實數理論的無矛盾性歸結為集合論的無矛盾性,而集合論的無矛盾性至今仍未徹底解決。
經過
00經過第一、二次數學危機,人們把數學基礎理論的無矛盾性,歸結為集 第三次數學危機合論的無矛盾性,集合論已成為整個現代數學的邏輯基礎,數學這座富麗堂皇的大廈就算竣工了。看來集合論似乎是不會有矛盾的,數學的嚴格性的目標快要達到了,數學家們幾乎都為這一成就自鳴得意。法國著名數學家龐加萊(1854—1912)於1900年在巴黎召開的國際數學家會議上誇耀道:「現在可以說,(數學)絕對的嚴密性是已經達到了」。然而,事隔不到兩年,英國著名數理邏輯學家和哲學家羅素(1872—1970)即宣布了一條驚人的消息:集合論是自相矛盾的,並不存在什麼絕對的嚴密性!史稱「羅素悖論」。1918年,羅素把這個悖論通俗化,成為理發師悖論。羅素悖論的發現,無異於晴天劈靂,把人們從美夢中驚醒。羅素悖論以及集合論中其它一些悖論,深入到集合論的理論基礎之中,從而從根本上危及了整個數學體系的確定性和嚴密性。於是在數學和邏輯學界引起了一場軒然大波,形成了數學史上的第三次危機。
00產生集合論悖論的原因在於集合的辨證性與數學方法的形式特性或者形而上學的思維方法的矛盾。如產生羅素悖論的原因,就在於概括原則造集的任意性與生成集合的客觀規則的非任意性之間的矛盾。
影響
00第三次數學危機的產物——數理邏輯的發展與一批現代數學的產生。
00為了解決第三次數學危機,數學家們作了不同的努力。由於他們解決問題的出發點不同,所遵循的途徑不同,所以在本世紀初就形成了不同的數學哲學流派,這就是以羅素為首的邏輯主義學派、以布勞威爾(1881—1966)為首的直覺主義學派和以希爾伯特為首的形式主義學派。這三大學派的形成與發展,把數學基礎理論研究推向了一個新的階段。三大學派的數學成果首先表現在數理邏輯學科的形成和它的現代分支——證明論等——的形成上。
00為了排除集合論悖論,羅素提出了類型論,策梅羅提出了第一個集合論公理系統,後經弗倫克爾加以修改和補充,得到常用的策梅羅——弗倫克爾集合論公理體系,以後又經伯奈斯和哥德爾進一步改進和簡化,得到伯奈斯——哥德爾集合論公理體系。希爾伯特還建立了元數學。作為對集合論悖論研究的直接成果是哥德爾不完全性定理。
00美國傑出數學家哥德爾於本世紀30年代提出了不完全性定理。他指出:一個包含邏輯和初等數論的形式系統,如果是協調的,則是不完全的,亦即無矛盾性不可能在本系統內確立;如果初等算術系統是協調的,則協調性在算術系統內是不可能證明的。哥德爾不完全性定理無可辯駁地揭示了形式主義系統的局限性,從數學上證明了企圖以形式主義的技術方法一勞永逸地解決悖論問題的不可能性。它實際上告訴人們,任何想要為數學找到絕對可靠的基礎,從而徹底避免悖論的種種企圖都是徒勞無益的,哥德爾定理是數理邏輯、人工智慧、集合論的基石,是數學史上的一個里程碑。美國著名數學家馮·諾伊曼說過:「哥德爾在現代邏輯中的成就是非凡的、不朽的——它的不朽甚至超過了紀念碑,它是一個里程碑,在可以望見的地方和可以望見的未來中永遠存在的紀念碑」。
00時至今日,第三次數學危機還不能說已從根本上消除了,因為數學基礎和數理邏輯的許多重要課題還未能從根本上得到解決。然而,人們正向根本解決的目標逐漸接近。可以預料,在這個過程中還將產生許多新的重要成果。
00發現和提出悖論並加以研究,對於數學基礎、邏輯學和哲學都有重要意義。正如塔斯基(1901— )所指出的:「必須強調的是,悖論在建立現代演繹科學的基礎上佔有一個特別重要的地位。正如集合論的悖論,特別是羅素悖論成為邏輯和數學相容性形式化的起點一樣,撒謊者悖論及其語義學悖論導致了理論語義學的發展。」
http://ke..com/view/29395.htm
E. 有什麼數學趣事、數學史
1數學家的墓誌銘(一)
瑞士數學家雅各伯努力,生前對螺線有研究,他死後墓碑上就刻著一條對數螺線,同時碑文上還寫著「我雖然改變了,但卻和原來一樣。」這是一句既刻畫螺線性質有象徵他對數學熱愛的雙關句。
2數學家的墓誌銘(二)
16世紀德國數學家魯道夫,花了畢生精力把圓周率算到小數點後35位。後人稱之為魯道夫數,他死後別人把這個數刻到了他的墓碑上。
3驚人的計算
數學家陳景潤完全用筆計算,寫出了長達二百多頁的證明論文;祖沖之求圓周率的范圍要算到圓內接24576邊形,至少反復進行130次以上的加、減、乘、除、乘方和開方的運算;德國數學家盧道爾夫,花費了畢生精力把圓周率算到小數點後面35位;在解決三體(太陽,地球,月亮)問題上,彼得堡科學院院士列奧納爾得埃列爾,花費了四十年的時間,全部計算佔用了四百九十頁的篇幅。計算機的發明和使用終於將數學家從繁瑣的計算中解放出來。
4歐拉失明
當歐拉完全失明之後,他仍然以驚人的毅力與黑暗搏鬥,憑借記憶和心算進行研究,直到逝世。歐拉得記憶和心算能力是罕見的,他能夠復述青年時代筆記的內容,高等數學一樣可以用心算去完成。有一次,歐拉的兩個學生把一個很復雜的收斂級數的17項加起來,算到第50位數字時,結果相差一個單位。歐拉為了確定究竟誰算得對,自己用心算進行了全部的計算,最後把錯誤找了出來。
5愛因斯坦與相對論
愛因斯坦曾經使用通俗的語言給人們解釋過他的狹義相對論。有一次,一群學生圍著愛因斯坦,請他給相對論做解釋,愛因斯坦考慮了一下,風趣地說:「我打個比方,比如你坐在火爐上烤和坐在公園綠蔭下與女郎談情說愛,那麼,同樣的時間你覺得哪個更長?」學生回答:「當然是覺得坐在爐子上的時間長。」愛因斯坦聽罷哈哈大笑,說:「這就是相對論的內容。」這個故事形象的說明了時間和空間的相對性
6劉徽的貢獻和地位
劉徽的工作不僅對中國古代數學的發展產生了深遠的影響,而且在世界《九章算術》影響,支配中國古代數學的發展1000餘年,是東方數學的典範之一,與希臘歐幾里得的《原本》所代表的古代西方數學交相輝映。鑒於劉徽的巨大貢獻,所以不少書上把他稱為「中國數學史上的牛頓」。
7楊輝
南宋數學家,寫過《詳解九章算術》等,他的研究工作主要是在計算技術方面。他將《九章算術》重新分為乘除、分率、合率、互換、方程、勾股等九類。楊輝非常重視數學教育的普及和發展,他為初學者制定的「習算綱目」是中國數學史上的重要文獻。
8領袖數學家
龐加萊,法國數學家和物理學家,幾乎對所有數學分支都做出過重要的貢獻。他早期研究自同構函數,後成為拓撲學先驅、天文學家、幾率學家、哲學家、法蘭西學院院士,任法國科學院院長。龐加萊一生發表論文500篇。著作約30部,幾乎涉及數學的所有的領域以及理論物理、天體物理等許多重要領域。龐加萊被公認為是19世紀末20世紀初的領袖數學家,是對於數學以及應用具有全面知識的最後一個人。
9數學家的締造者
柏拉圖,古希臘著名哲學家,其哲學思想影響了歐洲的哲學乃至整個文化的發展,特別是他的認識論、數學哲學、數學教育思想對科學的形成和數學的發展所起的作用更不可磨滅。以他的學園為教學活動的核心的柏拉圖學派,主張嚴密的定義與邏輯證明,促成了數學的科學化。柏拉圖還首次提出了普及教育的主張。柏拉圖在數學上沒有傑出成果,卻因此贏得了「數學家的締造者的美稱」
10天才數學家阿貝爾
阿貝爾,公認為的橢圓函數論的創始人之一,分析學嚴格化的推動者。發現橢圓函數的加法定理、雙周期性,還在交換群、二項級數的嚴格理論、級數求和等方面有巨大的貢獻。但阿貝爾不為當時的權威賞識,以致貧病交加,英年早逝。我們常說阿貝爾積分、阿貝爾積分方程、阿貝爾函數、阿貝爾群、阿貝爾級數、阿貝爾部分和公式、阿貝爾收斂判別法、阿貝爾可加性——這些都是後人對阿貝爾最好的紀念。
F. 請問有人知道些有關數學歷史嗎
中國數學[Chinese Mathematics]
中國是世界文明古國之一,地處亞洲東部,瀕太平洋西岸。數學在中國的發展源遠流長,成就輝煌。下面我們依歷史的發展,分段敘述。
1.先秦萌芽時期
黃河流域和長江流域是中華民族文化的搖籃,大約在公元前2000年,在黃河中下游產生了第一個奴隸制國家——夏朝。其後有商、殷兩代[約1500 B.C -1027 B.C]、及周朝[1027 B.C -221 B.C]。歷史上又稱公元前八世紀至秦王朝的建立[221 B.C]為春秋戰國時期。
據《易.系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。
算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。
用算籌記數,有縱、橫兩種方式:
1 2 3 4 5 6 7 8 9
表示一個多位數字時,採用十進制值制,各位值的數目從左到右排列,縱橫相間[法則是:一縱十橫,百立千僵,千、十相望,萬、百相當],並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。
籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記.夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理[西方稱勾股定理]的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。
此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。
2.漢唐初創時期
這一時期包括從秦漢到隋唐1000多年間的數學發展,所經歷的朝代依次為秦、漢、魏、晉、南北朝、隋、唐。 秦漢是中國古代數學體系的形成時期。為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。
西漢末年[公元前一世紀]編纂的天文學著作《周髀算經》在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年[公元前一世紀]。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。 魏晉時期中國數學在理論上有了較大的發展。其中趙爽和劉徽的工作被認為是中國古代數學理論體系的開端。趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋。劉徽注釋《九章算術》,不僅對原書的方法、公式和定理進行一般的解釋和推導,且在論述過程中多有創新,更撰寫《海島算經》,應用重差術解決有關測量的問題。劉徽其中一項重要的工作是創立割圓術,為圓周率的研究工作奠定理論基礎和提供了科學的演算法。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。《孫子算經》、《夏侯陽算經》、《張丘建算經》就是這個時期的作品。《孫子算經》給出「物不知數」問題,導致求解一次同餘組問題;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
祖沖之、祖日桓父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113;(2)得到祖 日桓定理[冪勢既同,則積不容異]並得到球體積公式;(3)發展了二次與三次方程的解法。
隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是討論土木工程中計算土方、工程的分工與驗收以及倉庫和地窖的計算問題。
唐朝在數學教育方面有長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》[包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》],作為算學館學生用的課本。對保存古代數學經典起了重要的作用。
此外,隋唐時期由於歷法需要,創立出二次內插法,為宋元時期的高次內插法奠定了基礎。而唐朝後期的計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。
3.宋元全盛時期
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀[宋、元兩代],籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》[11世紀中葉],劉益的《議古根源》[12世紀中葉],秦九韶的《數書九章》[1247],李冶的《測圓海鏡》[1248]和《益古演段》[1259],楊輝的《詳解九章演算法》[1261]、《日用演算法》[1262]和《楊輝演算法》[1274-1275],朱世傑的《算學啟蒙》[1299]和《四元玉鑒》[1303]等等。 宋元數學在很多領域都達到了中國古代數學,甚至是當時世界數學的巔峰。其中主要的工作有:
1. 高次方程數值解法;
2. 天元術與四元術,即高次方程的立法與解法,是中國數學史上首次引入符號,並用符號運算來解決建立高次方程的問題;
3. 大衍求一術,即一次同餘式組的解法,現在稱為中國剩餘定理;
4. 招差術和垛積術,即高次內插法和高階等差級數求和。 另外,其它成就包括勾股形解法新的發展、解球面直角三角形的研究、縱橫圖[幻方]的研究、小數[十進分數]具體的應用、珠算的出現等等。 這一時期民間數學教育也有一定的發展,以及中國和伊斯蘭國家之間的數學知識的交流也得到了發展。
4.西學輸入時期
這一時期從十四世紀中葉明王朝建立到二十世紀清代結束共500多年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。十六世紀末,西方初等數學開始傳入中國,使中國數學研究出現了一個中西融合貫通的局面。鴉片戰爭後,近代高等數學開始傳入中國,中國數學轉入一個以學習西方數學為主的時期。直到十九世紀末,中國的近代數學研究才真正開始。
明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》[1592]問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。
隋及唐初,印度數學和天文學知識曾傳入中國,但影響較細。到了十六世紀末,西方傳教士開始到中國活動,和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷[1607],其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》[2卷,1631]、《割圓八線表》[6卷]和羅雅谷的《測量全義》[10卷,1631]。在徐光啟主持編譯的《崇禎歷書》[137卷,1629-1633]中,介紹了有關圓椎曲線的數學知識。
入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》[53卷,1723],是一部比較全面的初等數學書,對當時的數學研究有一定影響。
干嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。
在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》[約1859]中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷[1795-1810],開數學史研究之先河。
1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷[1857],使中國有了完整的《幾何原本》中譯本;《代數學》13卷[1859];《代微積拾級》18卷[1859]。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷[1872],《微積溯源》8卷[1874],《決疑數學》10卷[1880]等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。
5.近現代數學發展時期
這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。
中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來[1915年轉留法],1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學[今南京大學]和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵[1927]、陳省身[1934]、華羅庚[1936]、許寶騄[1936]等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素[1920],美國的伯克霍夫[1934]、奧斯古德[1934]、維納[1935],法國的阿達馬[1936]等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騄在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊[1952年改為《數學學報》],1951年10月《中國數學雜志》復刊[1953年改為《數學通報》]。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》[1953]、蘇步青的《射影曲線概論》[1954]、陳建功的《直角函數級數的和》[1954]和李儼的《中算史論叢》5集[1954-1955]等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。
古代埃及數學(Ancient Egyptian Mathematics)
非洲東北部的尼羅河流域,孕育了埃及的文化。在公元前3500~3000年間,這里曾建立了一個統一的帝國。
目前我們對古埃及數學的認識,主要源於兩份用僧侶文寫成的紙草書,其一是成書於公元前1850年左右的莫斯科紙草書,另一份是約成書於公元前1650年的蘭德(Rhind)紙草書,又稱阿梅斯(Ahmes)紙草書。阿梅斯紙草書的內容相當豐富,講述了埃及的乘法和除法、單位分數的用法、試位法、求圓面積問題的解和數學在許多實際問題中的應用。
古埃及人使用象形文字,其數字以十進製表示,但並非位值制,而分數還有一套專門的記法。由埃及數系建立起來的算術具有加法特徵,其乘、除法的計算也只是利用連續加倍的方法來完成。古埃及人將所有的分數都化成單位分數(分子為 1的分數之和),在阿梅斯紙草書中,有很大一張分數表,把2/(2n+1)狀分數表示成單位分數之和,如:2/5=1/3+1/15,2/7=1/4+1/28,…,2/97=1/56+1/679+
1/776,等等。
古埃及人已經能解決一些屬於一次方程和最簡單的二次方程的問題,還有一些關於等差數列、等比數列的初步知識。
如果說巴比倫人發展了卓越的算術和代數學,那麼在另一方面,人們一般認為埃及人在幾何學方面要勝過巴比倫人。一種觀點認為尼羅河水每年一次的定期泛濫,淹沒河流兩岸的谷地。大水過後,法老要重新分配土地,長期積累起來的土地測量知識逐漸發展為幾何學。
埃及人能夠計算簡單平面圖形的面積,計算出的圓周率為 3.16049;他們還知道如何計算棱椎、圓椎、圓柱體及半球的體積。其中最驚人的成就在於方棱椎平頭截體體積的計算,他們給出的計算過程與現代的公式相符。
至於在建造金字塔和神殿過程中,大量運用數學知識的事實表明,埃及人已積累了許多實用知識,而有待於上升為系統的理論。
印度數學(Hin mathematics)
印度是世界上文化發達最早的地區之一,印度數學的起源和其它古老民族的數學起源一樣,是在生產實際需要的基礎上產生 的。但是,印度數學的發展也有一個特殊的因素,便是它的數學和歷法一樣,是在婆羅門祭禮的影響下得以充分發展的。再加上 佛教的交流和貿易的往來,印度數學和近東,特別是中國的數學便在互相融合,互相促進中前進。另外,印度數學的發展始終與天文學有密切的關系,數學作品大多刊載於天文學著作中的某些篇章。
《繩法經》屬於古代婆羅門教的經典,可能成書於公元前6世紀,是在數學史上有意義的宗教作品,其中講到拉繩設計祭壇時所體現到的幾何法則,並廣泛地應用了勾股定理。
此後約1000年之中,由於缺少可靠的史料,數學的發展所知甚少。
公元5-12世紀是印度數學的迅速發展時期,其成就在世界數學史上佔有重要地位。在這個時期出現了一些著名的學者,如6世紀的阿利耶波多(第一)( ryabhata),著有《阿利耶波多歷數書》;7世紀的婆羅摩笈多(Brahmagupta ),著有《婆羅摩笈多修訂體系》(Brahma-sphuta-sidd'h nta ),在這本天文學著作中,包括「算術講義」和「不定方程講義 」等數學章節;9世紀摩訶毗羅(Mah vira );12世紀的婆什迦羅(第二)(Bh skara ),著有《天文系統極致》(Siddh nta iromani ),有關數學的重要部份為《麗羅娃提》(Lil vati) )和《演算法本源》(V jaganita)等等。
在印度,整數的十進制值制記數法產生於6世紀以前,用9個數字和表示零的小圓圈,再藉助於位值制便可寫出任何數字。他們由此建立了算術運算,包括整數和分數的四則運演算法則;開平方和開立方的法則等。對於「零」,他們不單是把它看成「一無所有」或空位,還把它當作一個數來參加運算,這是印度算術的一大貢獻。
印度人創造的這套數字和位值記數法在8世紀傳入伊斯蘭世界,被阿拉伯人採用並改進。13世紀初經斐波納契的《算盤書》 流傳到歐洲,逐漸演變成今天廣為利用的1,2,3,4,…,等等,稱為印度-阿拉伯數碼。
印度對代數學做過重大的貢獻。他們用符號進行代數運算,並用縮寫文字表示未知數。他們承認負數和無理數,對負數的四 則運演算法則有具體的描述,並意識到具有實解的二次方程有兩種形式的根。印度人在不定分析中顯示出卓越的能力,他們不滿足於對一個不定方程只求任何一個有理解,而致力於求所有可能的整數解。印度人還計算過算術級數和幾何級數的和,解決過單利 與復利、折扣以及合股之類的商業問題。
印度人的幾何學是憑經驗的,他們不追求邏輯上嚴謹的證明,只注重發展實用的方法,一般與測量相聯系,側重於面積、體積的計算。其貢獻遠遠比不上他們在算術和代數方面的貢獻大。在三角學方面,印度人用半弦(即正弦)代替了希臘人的全弦, 製作正弦表,還證明了一些簡單的三角恆等式等等。他們在三角學所做的研究是十分重要的。
阿拉伯數學[Arabic mathematics]
從九世紀開始,數學發展的中心轉向阿拉伯和中亞細亞。
自從公元七世紀初伊斯蘭教創立後,很快形成了強大的勢力,迅速擴展到阿拉伯半島以外的廣大地區,跨越歐、亞、非三大洲。在這一廣大地區內,阿拉伯文是通用的官方文字,這里所敘述的阿拉伯數學,就是指用阿拉伯語研究的數學。
從八世紀起大約有一個到一個半世紀是阿拉伯數學的翻譯時期,巴格達成為學術中心,建有科學宮、觀象台、圖書館和一個學院。來自各地的學者把希臘、印度和波斯的古典著作大量地譯為阿拉伯文。在翻譯過程中,許多文獻被重新校訂、考證和增補,大量的古代數學遺產獲得了新生。阿拉伯文明和文化在接受外來文化的基礎上,迅速發展起來,直到15世紀還充滿活力。
花拉子米[Al-khowarizmi]是阿拉伯初期最主要的數學家,他編寫了第一本用阿拉伯語在伊斯蘭世界介紹印度數字和記數法的著作。公元十二世紀後,印度數字、十進制值制記數法開始傳入歐洲,又經過幾百年的改革,這種數字成為我們今天使用的印度—阿拉伯數碼。花拉子米的另一名著《ilm al-jabr wa'lmugabalah》[《代數學》]系統地討論了一元二次方程的解法,該種方程的求根公式便是在此書中第一次出現。現代」algebra」[代數學]一詞亦源於書名中出現的」al jabr」。
三角學在阿拉伯數學中佔有重要地位,它的產生與發展和天文學有密切關系。阿拉伯人在印度人和希臘人工作的基礎上發展了三角學。他們引進了幾種新的三角量,揭示了它們的性質和關系,建立了一些重要的三角恆等式。給出了球面三角形和平面三角形的全部解法,製造了許多較精密的三角函數表。其中著名的數學家有:阿爾.巴塔尼[Al-Battani]、阿卜爾.維法[Abu'l-Wefa]、阿爾.比魯尼[Al-Beruni]等。系統而完整地論述三角學的著作是由十三世紀的學者納西爾丁[Nasir ed-din]完成的,該著作使三角學脫離天文學而成為數學的獨立分支,對三角學在歐洲的發展有很大的影響。
在近似計算方面,十五世紀的阿爾.卡西[Al-kashi]在他的《圓周論》中,敘述了圓周率π的計算方法,並得到精確到小數點後16位的圓周率,從而打破祖沖之保持了一千年的記錄。此外,阿爾.卡西在小數方面做過重要工作,亦是我們所知道的以「帕斯卡三角形」形式處理二項式定理的第一位阿拉伯學者。
阿拉伯幾何學的成就低於代數和三角。希臘幾何學嚴密的邏輯論證沒有被阿拉伯人接受。
總的來看,阿拉伯數學較缺少創造性,但當時世界上大多數地方正處於科學上的貧瘠時期,其成績相對顯得較大,值得贊美的是他們充當了世界上大量精神財富的保存者,在黑暗時代過去後,這些精神財富才傳回歐洲。歐洲人主要就是通過他們的譯著才了解古希臘和印度以及中國數學的成就。
G. 圓周率的數學史
祖沖之是世界上第一位將圓周率准確地推算到小數點後七位數值的科學家,並將這一紀錄在世界上保持了一千年之久。
在祖沖之以前,我國在數學方面已經達到世界先進水平,涌現出許多傑出的數學家和優秀的數學著作。早在原始社會末期,「龍山文化」的陶器上已經出現了各種幾何圖案。商朝時期,已經開始在數學運算中採用十進位制,這是世界上最早的進位制,它的採用大大方便了數學計算。春秋時代成書的《周易》,是世界上第一本研究排列組合的書。到了戰國時代,百家爭鳴,數學有了進一步的發展,出現了運用至今的「九九」乘法口訣;在幾何學方面,已普遍地運用尺規作圖,從而促進了幾何學的發展。同時,在諸子百家的著作中,也提出了許多有價值的數學理論。例如:墨家學派的經典《墨子》中,有不少地方涉及到幾何學上的一些基本問題,對此它都准確地定義,其准確程度與古代西方流行的歐幾里德的《幾何原本》不相上下。道家學派所著的《莊子》中,提出了極限理論,其中的著名例證:「有一根一尺長的棍子,每天截其一半,那永遠也截不完」,至今仍被講解數列極限所經常引用。
到了秦漢魏晉之際,隨著封建經濟的巨大發展,與之密切相關的數學也有了長足的進步,涌現了一大批的數學著作和知名的數學家。其中最主要的著作有《周髀算經》、《九章算術》和《海島算經》。《周髀算經》成書的年代不晚於公元前一世紀,作者已經不知道了,東漢著名數學家趙君卿為之作過注,其主要成就在於提出了著名的「勾股定理」及採取了較為復雜的分數運算等方面。《九章算術》的成書年代同《周髀算經》大約同時,最初的作者是誰也已不知道了,許多數學家都對此書進行過增訂刪補,如西漢數學家張蒼、耿壽昌、許商、杜忠等,三國時期著名數學家劉徽為之作了注。這部著作集先秦、秦漢時期數學優秀成果之大成,對以後中國古代數學產生了非常深刻的影響。全書分為方田(主要是計算田畝的方法)、少廣(主要是開平方和開立方的方法)、商功(主要是計算各種體積,解決築城、興修水利等建築工程中的實際問題)、粟米(主要是計算各種糧食間的換算方法)、差分(主要是等級式的計算方法)、均輸(主要是計算徵收和運輸糧食的方法)、盈虛(主要是統計有關生產收入的問題)、勾股(主要是勾股定理的實際運用方法)等九章,共二百四十六個問題及每個問題的解法。這部書從數學成就上看,首先應該提到的是:其中記載了當時世界上最先進的分數四則運算和比例演算法。另外,書中記載的開平方和開立方的方法,實際上就是求解一元二次方程;而為解方程而聯立方程組的解法,比歐洲同類演算法早出一千五百多年。書中還在世界數學史上第一次提出了負數概念和正負數的加減法運演算法則。《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外,朝鮮、日本都曾把《九章算術》作為教科書,其中的某些計算方法,還傳到了印度、阿拉伯和歐洲。
《海島算經》的作者是三國時期的劉徽。在這部書中,他主要講述了利用標桿進行兩次、三次及至四次測量來解決各種測量數學的問題,其在此方面的造詣之深,遠遠超越了當時的西方數學家。而這種測量數學,正是地圖學的數學基礎。
除了以是三部著作外,較為重要的數學著作還有《孫子算經》、《五曹算經》、《夏侯陽算經》等。
祖沖之經過刻苦鑽研,繼承和發展了前輩科學家的優秀成果。他對於圓周率的研究,就是他對於我國乃至世界的一個突出貢獻。祖沖之對圓周率數值的精確推算值,用他的名字被命名為「祖沖之圓周率」,簡稱「祖率」。
什麼是圓周率呢?圓有它的圓周和圓心,從圓周任意一點到圓心的距離稱為半徑,半徑加倍就是直徑。直徑是一條經過圓心的線段,圓周是一條弧線,弧線是直線的多少倍,在數學上叫做圓周率。簡單說,圓周率就是圓的周長與它直徑之間的比,它是一個常數,用希臘字母「π」來表示。在天文歷法方面和生產實踐當中,凡是牽涉到圓的一切問題,都要使用圓周率來推算。
如何正確地推求圓周率的數值,是世界數學史上的一個重要課題。我國古代數學家們對這個問題十分重視,研究也很早。在《周髀算經》和《九章算術》中就提出徑一周三的古率,定圓周率為三,即圓周長是直徑長的三倍。此後,經過歷代數學家的相繼探索,推算出的圓周率數值日益精確。西漢末年劉歆在為王莽設計製作圓形銅斛(一種量器)的過程中,發現直徑為一、圓周為三的古率過於粗略,經過進一步的推算,求得圓周率的數值為3.1547。東漢著名科學家張衡推算出的圓周率值為3.162。三國時,數學家王蕃推算出的圓周率數值為3.155。魏晉之際的著名數學家劉徽在為《九章算術》作注時創立了新的推算圓周率的方法——割圓術。他設圓的半徑為1,把圓周六等分,作圓的內接正六邊形,用勾股定理求出這個內接正六邊形的周長;然後依次作內接十二邊形,二十四邊形……,至圓內接一百九十二邊形時,得出它的邊長和為6.282048,而圓內接正多邊形的邊數越多,它的邊長就越接近圓的實際周長,所以此時圓周率的值為邊長除以2,其近似值為3.14;並且說明這個數值比圓周率實際數值要小一些。在割圓術中,劉徽已經認識到了現代數學中的極限概念。他所創立的割圓木,是探求圓周率數值的過程中的重大突破。後人為紀念劉徽的這一功績,把他求得的圓周率數值稱為「徽率」或稱「徽術」。
劉徽以後,探求圓周率有成就的學者,先後有南朝時代的何承天,皮延 3.14。以上的科學家都為圓周率的研究推算做出了很大貢獻,可是和祖沖之的圓周率比較起來,就遜色多了。
祖沖之認為自秦漢以至魏晉的數百年中研究圓周率成績最大的學者是劉徽,但並未達到精確的程度,於是他進一步精益鑽研,去探求更精確的數值。它研究和計算的結果,證明圓周率應該在3.1415926和3.1415927之間; 來表示。他成為世界上第一個把圓周率的准確數值計算到小數點以後七位數字的人。直到一千年後,這個記錄才被阿拉伯數學家阿爾·卡西和法國數學家維葉特所打破。祖沖之提出的「密率」,也是直到一千年以後,才由德國 稱之為「安托尼茲率」,還有別有用心的人說祖沖之圓周率是在明朝末年西方數學傳入中國後偽造的。這是有意的捏造。記載祖沖之對圓周率研究情況的古籍是成書於唐代的史書《隋書》,而現傳的《隋書》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他現傳版本一樣的關於祖沖之圓周率的記載,事在明朝末年前三百餘年。而且還有不少明朝之前的數學家在自己的著作中引用過祖沖之的圓周率,這些事實都證明了祖沖之在圓周率研究方面卓越的成就。
那麼,祖沖之是如何取得這樣重大的科學成就呢?可以肯定,他的成就是建立在前人研究的基礎之上的。從當時的數學水平來看,祖沖之很可能是繼承了劉徽所創立和首先使用的割圓術,並且加以發展,因此獲得了超越前人的重大成就。在前面,我們提到割圓術時已經知道了這樣的結論:圓內接正n邊形的邊數越多,各邊長的總和就越接近圓周的實際長度。但因為它是內接的,又不可能把邊數增加到無限多,所以邊長總和永遠小於圓周。
祖沖之按照劉徽的割圓術之法,設了一個直徑為一丈的圓,在圓內切割計算。當他切割到圓的內接一百九十二邊形時,得到了「徽率」的數值。但他沒有滿足,繼續切割,作了三百八十四邊形、七百六十八邊形……一直切割到二萬四千五百七十六邊形,依次求出每個內接正多邊形的邊長。最後求得直徑為一丈的圓,它的圓周長度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之間,上面的那些長度單位我們現在已不再通用,但換句話說:如果圓的直徑為1,那麼圓周小於3.1415927、大 大不到千萬分之一,它們的提出,大大方便了計算和實際應用。
要作出這樣精密的計算,是一項極為細致而艱巨的腦力勞動。我們知道,在祖沖之那個時代,算盤還未出現,人們普遍使用的計算工具叫算籌,它是一根根幾寸長的方形或扁形的小棍子,有竹、木、鐵、玉等各種材料製成。通過對算籌的不同擺法,來表示各種數目,叫做籌演算法。如果計算數字的位數越多,所需要擺放的面積就越大。用算籌來計算不象用筆,筆算可以留在紙上,而籌算每計算完一次就得重新擺動以進行新的計算;只能用筆記下計算結果,而無法得到較為直觀的圖形與算式。因此只要一有差錯,比如算籌被碰偏了或者計算中出現了錯誤,就只能從頭開始。要求得祖沖之圓周率的數值,就需要對九位有效數字的小數進行加、減、乘、除和開方運算等十多個步驟的計算,而每個步驟都要反復進行十幾次,開方運算有50次,最後計算出的數字達到小數點後十六、七位。今天,即使用算盤和紙筆來完成這些計算,也不是一件輕而易舉的事。讓我們想一想,在一千五百多年前的南朝時代,一位中年人在昏暗的油燈下,手中不停地算呀、記呀,還要經常地重新擺放數以萬計的算籌,這是一件多麼艱辛的事情,而且還需要日復一日地重復這種狀態,一個人要是沒有極大的毅力,是絕對完不成這項工作的。
這一光輝成就,也充分反映了我國古代數學高度發展的水平。祖沖之,不僅受到中國人民的敬仰,同時也受到世界各國科學界人士的推崇。1960年,蘇聯科學家們在研究了月球背面的照片以後,用世界上一些最有貢獻的科學家的名字,來命名那上面的山谷,其中有一座環形山被命名為「祖沖之環形山」。
祖沖之在圓周率方面的研究,有著積極的現實意義,適應了當時生產實踐的需要。他親自研究過度量衡,並用最新的圓周率成果修正古代的量器容積的計算。
古代有一種量器叫做「 (釜)」,一般的是一尺深,外形呈圓柱狀,那這種量器的容積有多大呢?要想求出這個數值,就要用到圓周率。祖沖之利用他的研究,求出了精確的數值。他還重新計算了漢朝劉歆所造的「律嘉量」(另一種量器,與上面提到的 都是類似於現在我們所用的「升」等量器,但它們都是圓柱體。),由於劉歆所用的計算方法和圓周率數值都不夠准確,所以他所得到的容積值與實際數值有出入。祖沖之找到他的錯誤所在,利用「祖率」校正了數值。
以後,人們製造量器時就採用了祖沖之的「祖率」數值。
H. 中國古代數學形成學科出現在哪個朝代他比世界上其他國家早出現多少年
秦漢、魏晉、南北朝,共400年間的數學發展歷史。而西方古希臘時期就形成了以畢達哥拉斯、歐幾里得、阿基米德、阿波羅尼奧斯為主的數學幾何學,所以從形成理論來說,中國要晚500年至1000年。
一、中國數學的起源與早期發展 據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。
用算籌記數,有縱、橫兩種方式:表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間﹝法則是:一縱十橫,百立千僵,千、十相望,萬、百相當﹞,並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。 籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理﹝西方稱勾股定理﹞的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的
186年(應該在此前)。
西漢末年﹝公元前一世紀﹞編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年﹝公元前一世紀﹞。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積
原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。 同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。
三、中國數學教育制度的建立
隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。 隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》(包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》﹞,作為算學館學生用的課本。對保存古代數學經典起了重要的作用。
由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。
四、中國數學發展的高峰
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀﹝宋、元兩代﹞,籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》﹝11世紀中葉﹞,劉益的《議古根源》﹝12世紀中葉﹞,秦九韶的《數書九章》﹝1247﹞,李冶的《測圓海鏡》﹝1248﹞和《益古演段》﹝1259﹞,楊輝的《詳解九章演算法》﹝1261﹞、《日用演算法》﹝1262﹞和《楊輝演算法》﹝1274-1275﹞,朱世傑的《算學啟蒙》﹝1299﹞和《四元玉鑒》﹝1303﹞等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有: 公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。 (《黃帝九章演算法細草》已佚)公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題。
公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。
公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。 公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。 公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。
五、中國數學的衰落與日用數學的發展
這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。
明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》﹝1592﹞問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。 六、西方初等數學的傳入與中西合璧
十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。 十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷﹝1607﹞,其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》﹝2卷,1631﹞、《割圓八線表》﹝6卷﹞和羅雅谷的《測量全義》﹝10卷,1631﹞。在徐光啟主持編譯的《崇禎歷書》﹝137卷,1629-1633﹞中,介紹了有關圓椎曲線的數學知識。入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》﹝53卷,1723﹞,是一部比較全面的初等數學書,對當時的數學研究有一定影響。
七、傳統數學的整理與復興
乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。
在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》﹝約1859﹞中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷﹝1795-1810﹞,開數學史研究之先河。 八、西方數學再次東進
1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。
主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷﹝1857﹞,使數學的還有江澤涵﹝1927﹞、陳省身﹝1934﹞、華羅庚﹝1936﹞、許寶騤﹝1936﹞等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素﹝1920﹞,美國的伯克霍夫﹝1934﹞、奧斯古德﹝1934﹞、維納﹝1935﹞,法國的阿達馬﹝1936﹞等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊﹝1952年改為《數學學報》﹞,1951年10月《中國數學雜志》復刊﹝1953年改為《數學通報》﹞。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》﹝1953﹞、蘇步青的《射影曲線概論》﹝1954﹞、陳建功的《直角函數級數的和》﹝1954﹞和李儼的《中算史論叢》5集﹝1954-1955﹞等專著,到1966年,共發表各種數學論文約2萬余篇。 除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。 1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。 1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。 十、中國數學的特點
(1)以演算法為中心,屬於應用數學。中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的。
(2)具有較強的社會性。中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起。同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質。
(3)寓理於算,理論高度概括。由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹。其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等。 十一、中國數學對世界的影響
數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。
中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展。
I. 世界數學發展史
我們偉大的祖國,作為世界四大文明古國之一,在數學發展的歷史長河中,曾經作出許多傑出的貢獻。這些光輝的成就,遠遠走在世界的前列,在世界數學史上享有崇高的榮譽。 一、位置值制的最早使用 所謂位置值制,是指同一個數字由於它所在位置的不同而有不同的值。例如,365中,數字3表示三百,6表示六十。
用這種方法表示數,不但簡明,而且便於計算。採用十進位置值制記數法,以我國為最早。在考古發掘的殷墟甲骨文中,就曾發現13個記數單字,它們是:
用9個數字與4個位置值的符號,可以表示出大到上萬的自然數,已經有了位置值制的萌芽。到了春秋戰國時期,我們的祖先已普遍使用算籌來進行計算。在籌算中,完全是採用十進位置值制來記數的,既比古巴比倫的六十進位置值制方便,也比古希臘、羅馬的十進非位置值先進。這種先進的記數制度,是人類文明的重要里程碑之一,是世界數學史上無與倫比的光輝成就。
二、分數的最早使用 西漢時期,張蒼、耿壽昌等學者整理、刪補自秦代以來的數學知識,編成了《九章算術》。在這本數學經典的《方田》章中,提出了完整的分數運演算法則。 從後來劉徽所作的《九章算術注》可以知道,在《九章算術》中,講到約分、合分(分數加法)、減分(分數減法)、乘分(分數乘法)、約分(分數除法)的法則,與我們現在的分數運演算法則完全相同。另外,還記載了課分(比較分數大小)、平分(求分數的平均值)等關於分數的知識,是世界上最早的系統敘述分數的著作。 分數運算,大約在15世紀才在歐洲流行。歐洲人普遍認為,這種演算法起源於印度。實際上,印度在七世紀婆羅門笈多的著作中才開始有分數運演算法則,這些法則都與《九章算術》中介紹的法則相同。而劉徽的《九章算術注》成書於魏景元四年(263年),所以,即使與劉徽的時代相比,我們也要比印度早400年左右。 三、小數的最早使用 劉徽在《九章算術注》中介紹,開方不盡時用十進分數(徽數,即小數)去逼近,首先提出了關於十進小數的概念。宋元時期,秦九韶、李冶都將1863.2寸表示為,與現在的記法基本相同。到公元 1300年前後,元代劉瑾所著《律呂成書》中,已將106368.6312寫成
把小數部分降低一行寫在整數部分的後邊。而西方的斯台汶直到1585年才有十進小數的概念,且他的表示方法遠不如中國先進,如上述的小數,他記成或106368。所以,我們完全可以自豪地宣稱:中國是世界上最先使用小數的國家。 四、負數的最早使用 在《九章算術》中,已經引入了負數的概念和正負數加減法則。劉徽說:「兩算得失相反,要令正負以名之」,這是關於正負數的明確定義,書中給出的正負數加減法則,和現在教科書中介紹的法則完全一樣。 這些內容出現在書上的《方程章》中,是為解方程(組)服務的,如該章的第八題是: 今有賣牛二、羊五,以買十三豕,有餘錢一千;賣牛三、豕三,以買九羊,錢適足;賣羊六、豕八,以買五牛,錢不足六百。問牛、羊、豕價各幾何? 其解法為: 術曰:如方程,置牛二、羊五正,豕十三負,余錢數正:次置牛三正,羊九負,豕三正;次置牛五負,羊六正,豕八正,不足錢負。以正負術人之。 這里所說的意思就是:若每頭牛、羊、豕的價格分別用x、y、z表示,則可列出如下的方程(組):
然後利用正負數去計算結果。在方程的各項系數及常數項中都出現了負數,在世界上率先把負數運用於計算之中。 在國外,有很長時期認為負數是一種「荒謬的數」,被摒棄於數的大家庭之外。直到公元7世紀,印度的婆羅門笈多才開始認識負數,歐洲第一個給予正負數以正確解釋的是斐波那契,但他們已分別比我們的祖先晚七百多年和一千年左右。
五、二項式系數的規律的最早發現 在學習了多項式乘法以後,不難知道:
等等。那麼,上述等式右端各項的系數有什麼規律呢?
1261年,我國宋代數學有楊輝曾在他所著的《詳解九章演算法》中給出一個「開方作法本源」圖(見下圖),把指數分別
為0—6的二項式系數—一列出,並且指明,「開方作法本源出《釋鎖算書》,賈憲用此術。」賈憲是北宋時期的數學家,生平不詳,大約生活在11世紀上半葉,這就是說,我國早在11世紀就已經認識了二項式各項系數的規律。現在,我們把這個規律簡稱為「賈憲三角形」。 在國外,直到15世紀,阿拉伯的數學家阿爾·卡西才用直角三角形表示了同樣意義的三角形。 1527年,德國人阿皮亞納斯在其所著的一本算術書的封面上也曾印有這個二項式系數表。16、17世紀,歐洲還有許多數學家也都提出過類似賈憲的三角形,其中以帕斯卡最為有名,歐洲人把這種二項式系數表稱為「帕斯卡三角形」,但那已經是1654年的事了,時間要比賈憲晚600多年,就是與楊輝相比,也要落後近400年。 當然,在世界數學發展史上,中國數學的「世界之最」遠遠不止上面介紹的五個方面。但由此可以看到,我們的祖國是一個歷史悠久的文明古國,我們中華民族是一個對世界文明的發展作出過許多貢獻的偉大民族,我們的祖先在數學方面所取得的輝煌業績,必將彪炳千古,為世界各國人民所贊頌。
我們偉大的祖國,作為世界四大文明古國之一,在數學發展的歷史長河中,曾經作出許多傑出的貢獻。這些光輝的成就,遠遠走在世界的前列,在世界數學史上享有崇高的榮譽。 一、位置值制的最早使用 所謂位置值制,是指同一個數字由於它所在位置的不同而有不同的值。例如,365中,數字3表示三百,6表示六十。
用這種方法表示數,不但簡明,而且便於計算。採用十進位置值制記數法,以我國為最早。在考古發掘的殷墟甲骨文中,就曾發現13個記數單字,它們是:
用9個數字與4個位置值的符號,可以表示出大到上萬的自然數,已經有了位置值制的萌芽。到了春秋戰國時期,我們的祖先已普遍使用算籌來進行計算。在籌算中,完全是採用十進位置值制來記數的,既比古巴比倫的六十進位置值制方便,也比古希臘、羅馬的十進非位置值先進。這種先進的記數制度,是人類文明的重要里程碑之一,是世界數學史上無與倫比的光輝成就。
二、分數的最早使用 西漢時期,張蒼、耿壽昌等學者整理、刪補自秦代以來的數學知識,編成了《九章算術》。在這本數學經典的《方田》章中,提出了完整的分數運演算法則。 從後來劉徽所作的《九章算術注》可以知道,在《九章算術》中,講到約分、合分(分數加法)、減分(分數減法)、乘分(分數乘法)、約分(分數除法)的法則,與我們現在的分數運演算法則完全相同。另外,還記載了課分(比較分數大小)、平分(求分數的平均值)等關於分數的知識,是世界上最早的系統敘述分數的著作。 分數運算,大約在15世紀才在歐洲流行。歐洲人普遍認為,這種演算法起源於印度。實際上,印度在七世紀婆羅門笈多的著作中才開始有分數運演算法則,這些法則都與《九章算術》中介紹的法則相同。而劉徽的《九章算術注》成書於魏景元四年(263年),所以,即使與劉徽的時代相比,我們也要比印度早400年左右。 三、小數的最早使用 劉徽在《九章算術注》中介紹,開方不盡時用十進分數(徽數,即小數)去逼近,首先提出了關於十進小數的概念。宋元時期,秦九韶、李冶都將1863.2寸表示為,與現在的記法基本相同。到公元 1300年前後,元代劉瑾所著《律呂成書》中,已將106368.6312寫成
把小數部分降低一行寫在整數部分的後邊。而西方的斯台汶直到1585年才有十進小數的概念,且他的表示方法遠不如中國先進,如上述的小數,他記成或106368。所以,我們完全可以自豪地宣稱:中國是世界上最先使用小數的國家。 四、負數的最早使用 在《九章算術》中,已經引入了負數的概念和正負數加減法則。劉徽說:「兩算得失相反,要令正負以名之」,這是關於正負數的明確定義,書中給出的正負數加減法則,和現在教科書中介紹的法則完全一樣。 這些內容出現在書上的《方程章》中,是為解方程(組)服務的,如該章的第八題是: 今有賣牛二、羊五,以買十三豕,有餘錢一千;賣牛三、豕三,以買九羊,錢適足;賣羊六、豕八,以買五牛,錢不足六百。問牛、羊、豕價各幾何? 其解法為: 術曰:如方程,置牛二、羊五正,豕十三負,余錢數正:次置牛三正,羊九負,豕三正;次置牛五負,羊六正,豕八正,不足錢負。以正負術人之。 這里所說的意思就是:若每頭牛、羊、豕的價格分別用x、y、z表示,則可列出如下的方程(組):
然後利用正負數去計算結果。在方程的各項系數及常數項中都出現了負數,在世界上率先把負數運用於計算之中。 在國外,有很長時期認為負數是一種「荒謬的數」,被摒棄於數的大家庭之外。直到公元7世紀,印度的婆羅門笈多才開始認識負數,歐洲第一個給予正負數以正確解釋的是斐波那契,但他們已分別比我們的祖先晚七百多年和一千年左右。
五、二項式系數的規律的最早發現 在學習了多項式乘法以後,不難知道:
等等。那麼,上述等式右端各項的系數有什麼規律呢?
1261年,我國宋代數學有楊輝曾在他所著的《詳解九章演算法》中給出一個「開方作法本源」圖(見下圖),把指數分別
為0—6的二項式系數—一列出,並且指明,「開方作法本源出《釋鎖算書》,賈憲用此術。」賈憲是北宋時期的數學家,生平不詳,大約生活在11世紀上半葉,這就是說,我國早在11世紀就已經認識了二項式各項系數的規律。現在,我們把這個規律簡稱為「賈憲三角形」。 在國外,直到15世紀,阿拉伯的數學家阿爾·卡西才用直角三角形表示了同樣意義的三角形。 1527年,德國人阿皮亞納斯在其所著的一本算術書的封面上也曾印有這個二項式系數表。16、17世紀,歐洲還有許多數學家也都提出過類似賈憲的三角形,其中以帕斯卡最為有名,歐洲人把這種二項式系數表稱為「帕斯卡三角形」,但那已經是1654年的事了,時間要比賈憲晚600多年,就是與楊輝相比,也要落後近400年。 當然,在世界數學發展史上,中國數學的「世界之最」遠遠不止上面介紹的五個方面。但由此可以看到,我們的祖國是一個歷史悠久的文明古國,我們中華民族是一個對世界文明的發展作出過許多貢獻的偉大民族,我們的祖先在數學方面所取得的輝煌業績,必將彪炳千古,為世界各國人民所贊頌。