A. 怎樣學好數學分析
一看到這個問題,同學們可能會說:學數學嘛,就是解題,題目做得越多,數學成績就會越好。這種認識對不對呢?對,但不完全對。我們不妨留心一下自己周圍的同學,思考這樣一個問題:學校或班級里數學成績優秀的同學,他們為什麼成績比自己好呢?如果自己的學習成績就是班級或學校的尖子,那麼也請總結一下:自己的學習成績為什麼總能領先於其他同學呢?是自己題目做得多嗎?為什麼有許多同學英語、語文成績很不錯,數學題目做得也不算少,但就是數學成績不行呢?如果我們能進行這樣的思考,那麼很快就會發覺,這其中還有一個重要的因素在左右著我們的數學成績的提高,那就是數學的學習方法。
數學是中小學的重要工具學科,許多同學由於沒有正確掌握數學學習方法,有的負擔很重但不得要領;有的陷入題海,茫茫然不知所措。因此在學習數學的時候,我們必須學會如何掌握數學知識?掌握數學技能,發展數學能力,以及養成良好的數學心理品質,從掌握數學學習方法進而形成綜合學習的能力。下面我們一起來探討一下數學學習中要注意的一些問題:
一、 扎實打好數學基礎
初中數學的基礎知識是指數學教材中的概念、法則、公式、定理等必學內容以及其中蘊含的數學思想方法,還包括學習數學的經驗和解題的經驗,具體是以下幾個方面:
1.正確理解和掌握所學的基本概念、法則、公式、定理,把握他們之間的內在聯系。
例如:分式 無意義,x的取值范圍應為 。有的同學填x=3,這是錯誤的。因為這里有個概念,即分式無意義的概念和一個運算絕對值的法則,只有充分理解和掌握這一個概念和一個法則,才知道|x|-9=0,解出x=±3的正確答案。而且由於數學是一個連貫性很強的學科,正確掌握了絕對值以後會為我們初二學習二次根式、初三學習無理方程等打下良好的基礎。因此,如果在學習某一內容或解一題時碰到了困難,那麼很有可能就是因為有關的、以前的一些基本知識沒有掌握好所造成的,因此要注意查缺補漏,找到問題及時解決,努力做到發現一個問題及時解決一個問題。只有基礎扎實,我們成績才會提高。
2.培養數學運算能力,養成良好的學習習慣。
每次考完試後,我們常會聽到一些同學說:這次考試我又粗心了。而粗心最多的一種現象就是由於跳步驟產生的錯誤,並且屢錯不改。這實際上是不良的學習習慣、求快心理造成的數學運算技能的不過關。要知道數學題的每一步都是符合一定的法則來完成的,如果在解題過程中忽視了某一步,那麼就會發生這一步的法則沒有正確的運用,進而產生錯解。因此,運算能力的提高從根本上說是要弄懂「算理」,不僅知道怎樣算,而且知道為什麼這樣算,從而把握運算的方向、途徑和程序,一步一步仔細完成,形成准確快捷的運算能力。同學們要注意,如果你有上述類似跳步的現象應及時改正,不然長期下去,你會有一種恐懼心理,還沒有開始解題就已經擔心自己會做錯,這樣就會錯得越多。有這樣感受的同學必須迅速走出誤區,學習的效率才有漸長的可能。
3.要學會一些必要的檢驗手段,培養自己的求異思維。
中國有句老話:「百密一疏」。疏漏是難免的,如果有多種檢驗手段,那麼就可以做到萬無一失了。那麼多種檢驗手段如何掌握呢?這就需要我們在平時學習中有意識的訓練自己的求異思維。如若數學問題要求解答的不是計算結果,而且尋求解決的方法或途徑,其可運用的方法不是一種,解決的途徑不止一條,而可有多種多條解答的方式,則不一定相同而是相異的答案。這種情況則屬於求異思維的運用。例如:把正方形四等分,同學們在等分時多為這些方法:把它分成四個相等的小正方形或者是把它分成四個全等的等腰直角三角形,我們應該問自己還有嗎?決不可以滿足找出一種或兩種,就認為大功告成,實際上它的方法還有好多。你能找到嗎?這就是求異思維,平時有很多題目,雖然他只有一個答案,但是如果我們考慮用多種方法去解決他的話,對於我們創造性思維的發展是十分有利的。
二、 邏輯思維能力的培養
在數學中,一個數學概念的形成,一個數學命題的建立,一個題目的解答通常要經過對概念、命題或題目進行觀察、比較、分析、綜合、概括、抽象、歸納、演繹的過程,這些都需要在頭腦里進行思維活動,並能正確的闡述自己的思想和觀點,這就是邏輯思維能力,為了提高自己的邏輯思維能力,同學們應做到以下幾點:
1.嚴格遵守思維規律,養成嚴謹的思維習慣。
嚴格遵守思維規律,推理嚴謹,言必有據,這是邏輯思維的核心。這首先要求我們要准確的使用概念、定義或定理、公式,能符合邏輯的判斷。我們常會碰到這樣的情況,當我們在證明兩角相等的時候,有一種方法叫「等邊對等角」。如果我們沒注意到它的前題條件是在同一三角形中的話,那麼就會產生錯誤,或者當解不出題時就亂做一通,出現偷換命題、假選論據、自相矛盾、循環論證等這樣一系列的問題,為了防止這類現象的發生,我們必須在平時的學習中嚴格思維規律,嚴格按照正確的思維方法解題,對學習中出現的錯誤,要嚴格對待、決不馬虎,培養自己嚴謹求實的思維習慣。
2.重視知識的獲取過程,培養抽象、概括、分析綜合、推理證明能力。
老師上課在講解公式、定理、概念時,一般都揭示他們的形成過程,而這個過程卻又是同學們最容易忽視的,認為:我只需聽懂這個定理本身到時會用就行了,不需要知道他們是怎麼得出的。這樣的想法是不對的。因為老師在講解知識的形成,發生的過程中,講解的就是問題的一個思維過程,揭示的是問題解決的一種思想和方法,其中包含了抽象、概括分析、綜合、推理等能力。如果我們不重視的話,實際就失去了一次從中吸取經驗,鍛煉和發展邏輯思維能力的機會。以上是數學學習的一些方法,供同學們參考。
數學成績的提高,數學方法的掌握都和同學們良好的學習習慣分不開的,因此在最後我們再一起探討一下數學的學習習慣。
良好的數學學習習慣包括:聽講、閱讀、探究、作業。
聽講。應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記。每堂課結束以後應深思一下進行歸納,做到一課一得。
閱讀。閱讀時應仔細推敲,弄懂弄通每一個概念、定理和法則,對於例題還應與同類參考書聯系起來一同學習,博採眾長,增長知識,發展思維。
探究。要學會思考,在問題解決之後再探求一些新的方法,學會從不同角度去思考問題,甚至改變條件或結論去發現新問題,經過一段學習,應當將自己的思路整理一下,以形成自己的思維規律。
作業。要先復習後作業,先思考再動筆,做會一類題領會一大片,作業要認真、書寫要規范,只有這樣腳踏實地,一步一個腳印,才能學好數學。贊同0| 評論
B. 怎樣快速學好數學分析
數學分析的特點是估計、近似、極限。這與中學的數學研究方法差別很大,讓很多學生感到不適應。解決辦法是,通過習題,來掌握這些方法。數學分析的概念不多,難點就是解題的思路,定理的結論都很好記,證明過程卻非常困難。這就要求我們從一開始就要學好極限的概念,估計的方法,看似近似實則精確的思想。至於說快速,實際上和你的理解能力有關。理解不上去,速度快也沒有用,考試依然會錯。例題和習題是助於理解的最好手段。
C. 如何學好數學分析
數學分析是數學系學習的基礎課程,根據我個人學習過數學分析的經驗來說,學好數學分析1、這要求課前預習,否則不一定跟得上課堂進度;
2、要充分利用課堂教學資源,課上要認真記筆記;
3、課後要重點理解和記憶基礎的定義和定理,如果要考研,證明也要掌握;
4、適度刷題,主要掌握課後習題就好,有餘力的話一定要做吉米多維奇習題集,這是學數學分析的經典練習。
D. 如何學好數學分析求詳答
除了一般的學習方法外,推薦你做做吉米多維奇的習題集。圖書館就有。
當年蘇聯那麼猛,就是因為出了一批數學家,吉米多維奇就是之一。他的關於微積分的習題集能夠讓你把數學分析能涉及到的題目做個差不多。
另外,建議你把課本習題好好做一下,獨自完成,不留死角。
大學時候參加數學競賽,數學建模競賽很鍛煉人(而且加分很高,對於拿獎學金很有用)。。。。保研的時候這個東西挺重要。。
祝:滿分
E. 數學分析怎樣才能學好
《數學分析》課程是一門面向數學類專業的基礎課。學好數學分析(和高等代數)是學好其他後繼數學課程如微分幾何,微分方程,復變函數,實變函數與泛函分析,計算方法,概率論與數理統計等課的必備的基礎。
作為數學系最重要的基礎課之一,數學科學的邏輯性和歷史繼承性決定了數學分析在數學科學中舉足輕重的地位,數學的許多新思想,新應用都源於這堅實的基礎。數學分析出於對微積分在理論體繫上的嚴格化和精確化,從而確立了在整個自然科學中的基礎地位,並運用於自然科學的各個領域。同時,數學研究的主體是經過抽象後的對象,數學的思考方式有鮮明的特色,包括抽象化,邏輯推理,最優分析,符號運算等。這些知識和能力的培養需要通過系統、扎實而嚴格的基礎教育來實現,數學分析課程正是其中最重要的一個環節。
我們立足於培養數學基礎扎實,知識面寬廣,具有創新意識、開拓精神和應用能力,符合新世紀要求的優秀人才。從人才培養的角度來講,一個學生能否學好數學,很大程度上決定於他進大學伊始能否將《數學分析》這門課真正學到手。
本課程的目標是通過系統的學習與嚴格的訓練,全面掌握數學分析的基本理論知識;培養嚴格的邏輯思維能力與推理論證能力;具備熟練的運算能力與技巧;提高建立數學模型,並應用微積分這一工具解決實際應用問題的能力。
微積分理論的產生離不開物理學,天文學,幾何學等學科的發展,微積分理論從其產生之日起就顯示了巨大的應用活力,所以在數學分析的教學中,應強化微積分與相鄰學科之間的聯系,強調應用背景,充實理論的應用性內容。數學分析的教學除體現本課程嚴格的邏輯體系外,也要反映現代數學的發展趨勢,吸收和採用現代數學的思想觀點與先進的處理方法,提高學生的數學修養。復旦大學有非常好的生源,吸引了眾多優秀的學生,使得實現這一培養目標與要求成為可能。
另一方面,許多優秀的學生受教學計劃限制,學習的是《高等數學》這一課程。但他們對於學習《數學分析》以提高自己的數學修養有著強烈的願望(其中一部分通過轉專業成為數學類專業的學生)。我們推出的《數學分析原理》課程應運而生,為這一部分學生提供了一個恰當的學習提高機會。
F. 怎樣學好數學分析
一、 首先要改變觀念。
初中階段,特別是初中三年級,通過大量的練習,可使你的成績有明顯的提高,這是因為初中數學知識相對比較淺顯,更易於掌握,通過反復練習,提高了熟練程度,即可提高成績,既使是這樣,對有些問題理解得不夠深刻甚至是不理解的。例如在初中問|a|=2時,a等於什麼,在中考中錯的人極少,然而進入高中後,老師問,如果|a|=2,且a<0,那麼a等於什麼,既使是重點學校的學生也會有一些同學毫不思索地回答:a=2。就是以說明了這個問題。
又如,前幾年北京四中高一年級的一個同學在高一上學期期中考試以後,曾向老師提出「抗議」說:「你們平時的作業也不多,測驗也很少,我不會學」,這也正說明了改變觀念的重要性。
高中數學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。
二、提高聽課的效率是關鍵。
學生學習期間,在課堂的時間佔了一大部分。因此聽課的效率如何,決定著學習的基本狀況,提高聽課效率應注意以下幾個方面:
1、課前預習能提高聽課的針對性。
2、預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺。
3、聽課過程中的科學
首先應做好課前的物質准備和精神准備,以使得上課時不至於出現書、本等物丟三落四的現象;上課前也不應做過於激烈的體育運動或看小書、下棋、打牌、激烈爭論等。以免上課後還喘噓噓,或不能平靜下來。
其次就是聽課要全神貫注,全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。
耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納總結,另外,還要聽同學們的答問,看是否對自己有所啟發。
眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢和演示實驗的動作,生動而深刻的接受老師所要表達的思想。
心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。
口到:就是在老師的指導下,主動回答問題或參加討論。
手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有創新思維的見解。
若能做到上述「五到」,精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。
4、特別注意老師講課的開頭和結尾。
老師講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。
5、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。
此外還要特別注意老師講課中的提示,老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。
最後一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
三、做好復習和總結工作。
1、做好及時的復習。
(1)上完課的當天,必須做好當天的復習。
(2)復習的有效方法不是一遍遍地看書或筆記,而是採取回憶式的復習:先把書,筆記合起來回憶上課老師講的內容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然後打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
2、做好單元復習。
學習一個單元後應進行階段復習,復習方法也同及時復習一樣,採取回憶式復習,而後與書、筆記相對照,使其內容完善,而後應做好單元小節。
3、做好單元小結。
單元小結內容應包括以下部分。
(1)本單元(章)的知識網路;
(2)本章的基本思想與方法(應以典型例題形式將其表達出來);
(3)自我體會:對本章內,自己做錯的典型問題應有記載,分析其原因及正確答案,應記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
四、關於做練習題量的問題
有不少同學把提高數學成績的希望寄託在大量做題上。我認為這是不妥當的,我認為,「不要以做題多少論英雄」,重要的不在做題多,而在於做題的效益要高。做題的目的在於檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那麼多做題的結果,反而鞏固了你的缺欠,因此,要在准確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對於中檔題,尢其要講究做題的效益,即做題後有多大收獲,這就需要在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯系起來,你就會得到更多的經驗和教訓,更重要的是養成善於思考的好習慣,這將大大有利於你今後的學習。當然沒有一定量(老師布置的作業量)的練習就不能形成技能,也是不行的。
另外,就是無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學好數學的重要問題。
最後想說的是:「興趣」和信心是學好數學的最好的老師。這里說的「興趣」沒有將來去研究數學,做數學家的意思,而主要指的是不反感,不要當做負擔。「偉大的動力產生於偉大的理想」。只要明白學習數學的重要,你就會有無窮的力量,並逐步對數學感到興趣。有了一定的興趣,隨之信心就會增強,也就不會因為某次考試的成績不理想而泄氣,在不斷總結經驗和教訓的過程中,你的信心就會不斷地增強,你也就會越來越認識到「興趣」和信心是你學習中的最好的老師.
G. 怎麼樣更有效學好數學分析
關於如何學好《數學分析》
一、如何聽課
大學課程課堂教學學時一般比較少,一節課的知識容量較大,講課的節奏也較快,如何有效地掌握課堂教學內容,提幾點建議:
1、課前預習
適當預習,可使聽課有的放矢、重點、難點明確,從而提高聽課效率。預習的目的不是看懂全部內容(當然,能看懂的決不放過),主要是要對教材的內容有一個大概的了解,要了解預習內容需要已學過的那些知識,是否掌握,那些內容能看懂,那些看不懂,並對各種情況用不同的標記標出,以便在聽課時分別弄懂。
2、聽懂概念是重點
要了解概念的來龍去脈,搞清各概念間的關系,尤其是教師強調的地方,要引起注意,這往往是容易出錯的地方。
3、不要拘泥於細節
聽定理證明講授時,要聽其證明的思路和方法,注意教師的分析,而不要過於拘泥證明過程中的每一個細小步驟,但對主要步驟要聽懂,下課之後再自行補充,更不要在某一地方卡住之後,中止聽課。
4、要學會合理安排聽課的精力和體力
整堂課上精力集中做不到,建議同學們把主要精力放在概念講述,定理證明方法,易出錯的地方的介紹等。
5、要養成聽課記筆記的習慣
在聽課的同時做好筆記,這對集中注意力聽好課以及復習鞏固聽課內容、掌握知識要點,培養獨立思考深入鑽研的良好學風,扥都有一定的作用。
二、如何看書
大學的學習主要靠自學,而看書是自學的重要的環節,若僅把書上的那些簡潔的不能再簡潔的文字、符號,由此及彼看懂了,是起不到看書的作用,達不到看書的目的,學不好數學。對此,盡管是老生常談,但強調幾點:
1、多則惑,少則得。建議在讀書中始終抓住每一節、每一章的幾個主要概念、定理,嘗試著用它們派生其它概念與結論,這即為常說的,把書讀「薄」,將知識分類、濃縮。
2、加進去,寫出來。書讀薄後,應嘗試把它變「厚」,這就是說,把你的體會,從別的書上學來的例子、新的證明方法加進去,使之豐富起來,使書變成像你「寫出來」的一樣。這一過程是讀書的高級階段,常常要去猜想、去探索,是真正學習數學方法,掌握數學技巧的主要來源。
3、合理選擇參考書。建議同學們,要適當的閱讀參考書,選定一本你認適合自己的數學分析輔助讀物作為重點參考書,對提高學習效果不無益處。
三、關於做題
要學好數學分析,最好的辦法莫過於經常動手去做題。解題能力的培養在數學分析學習中佔有很重要的地位,這一點要特別提醒大家,有的同學做題時眼高手低,根源在此。
1、對概念題的練習應該受到重視,建議多花點時間;
2、對基本的運算題應多練習,並注意准確性與速度,少看書後的參考答案,有時參考答案也不是百分之百正確,靠答案的輔助提示做題容易在考試時栽根斗;
3、對做錯的題,不要輕易放過,找出原因,引以為戒;
4、切記眼高手低,數學分析證明題多,詳細寫出解答過程,這樣可以訓練語言組織和表達能力;
5、當你做完一道題之後,請思考以下幾個問題:
① 該題主要檢測那方面的概念和知識;
② 部分地改變題目的條件,能得出什麼新結論;
③ 該題的解答方法是否具有普遍性,是否能成為一種程序化解題方法;
④ 解題中所用的技巧是如何想出來的。
學習是一種復雜的腦力勞動,要想在學習上取得進步,理想、勤奮、毅力、方法缺一不可。理想是力量的源泉,勤奮是取得成功的前提,毅力是克服困難的關鍵,方法選擇正確,事半功倍,方法不當事倍功半。我們說,對學習目的明確,學習態度端正的同學,要想少走彎路,提高學習效果,關鍵是講究學習方法。
H. 數學分析怎樣才能學好啊 題目都不會做。。
感覺什麼都沒學到是許多大一學子常有的現象,這實則是未入門的表現,也有學生會感覺這些東西很簡單,沒什麼,就是……這些其實都是未入門的表現。對於要把注意重點從高中數學中以重復性操練為基礎的常規解題訓練轉移到作為真正數學的智力體操上來,許多學生毫無准備。沒能及時轉變,以至於渾渾噩噩的度過著!高中數學的思想相比大學來說是很淺薄的,也就是基本原理很簡單,所以高中生幾乎不怎麼管課本,而大學數學則完全不同,你要是能把課本上的內容思想領會透徹,就相當不簡單了,這也是最為關鍵的。如果沒把書本領會到一定程度,只是依葫蘆畫瓢的做了些習題,那就會一學便忘! 大學數學就是一種思想,要學會思考,思考是最重要的,要讀懂每個章節所要表達什麼思想,比如你要理清楚這個章節有哪些定義定理,這些定義都說了些什麼,這些定理所要表達的又是什麼,是從哪個推往哪個,怎麼推導的,這些定理又該怎麼運用……等等問題。如果沒有充分細致的思考,只是一味的刷題,依葫蘆畫瓢,是不會學到什麼實質性的東西的!
拿到題目腦子里一片空白,不知道怎麼下手,是因為你沒能把書上的概念理論裝進腦海。書上的內容你完全記不住,其實是因為你沒懂,沒領會書上的基本概念,理論邏輯等,那些東西是無論怎麼背都背不住的,只有真正理解領會,才能記住,相反,如果你真正領會了,再想忘記都難。
我希望你能冷靜下來,因為你的這種現象可以說是很多大一數學學子共有的,而很多人選擇了放棄,但你卻沒有,所以你至少還是很有希望的,只要你重新振作起來,一切都會好起來。永不服輸!
說了這么多,那麼你具體應該怎麼做呢?其實很簡單,著需要你作出轉變,即改變自己的學習方式,我前面已經說了,要重視課本,所以,你以後要以課本為主,甚至不做題都行,只要真正掌握了課本,題目隨便練練就沒問題了。有一本好書也是很重要的,像復旦那本真心垃圾,如果想學好最好不要用那本,我推薦常庚哲史濟懷的就是中科大的那本。在學習過程中,從最基本,最細致的地方開始,細嚼慢咽和走馬觀花絕對兩種效果,嘗試著把書上每句話都琢磨透徹,把每個證明都琢磨透徹,檢驗的標准就是,你是否可以不看書把他們全寫出來。
你現在已經落下不少了,我建議你先把分析基礎,即極限那一部分把它搞好,再回到目前的進度上來,因為,整個數學分析可以說就是各種各樣的極限,它貫穿著整個數分。
最後,祝成功。
I. 數學分析怎樣才能學好
第一個是「極限」的概念,也就是「 」必須學得很好,一開始「細摳」,也就是說必須嚴格按照這個定義來,這樣你就能避免「為什麼這個需要證」 ,「為什麼這個證明起來那麼麻煩」這種問題。
第二個:摧毀自己的三觀。 多看一些反例:連續但是不可導的,原函數存在但是黎曼不可積的,處處不連續的函數,處處連續但是處處不單調的函數,處處連續但是處處不可導的函數,處處可導但是處處不單調的函數。 只要知道這些深井冰一樣的函數存在,你做證明的時候就」不敢隨意「了。歡迎看 《實分析中的反例》,這實在是一個函數的精神病院。
第三:做題適量,幾米多維奇別刷,效率太低,可以做一些精簡版本的,理解第一,然後才是計算。別動不動就把極限和積分交換了,別動不動就把兩個極限交換了。 別什麼函數都敢泰勒展開。我覺得裴禮文的《數學分析中的典型例題》比較好,但是難度有點大。 初學者也別看什麼rudin,把自己玩死沒意思。有一套三卷的「俄羅斯數學教材選譯」《微積分學教程》(by 菲赫金哥爾茨)(說是微積分,但是嚴格性是足夠的),寫得比較朴實無華,適合入門,內容多,看的時候可以省略自己不敢興趣的部分。我大一還在物理系的時候看的就是這套,然後到數學系又看了一次rudin的《數學分析原理》,我覺得rudin最好第二次學(復習的時候)看。還有,如果對怎麼算積分有興趣,可以看一個書:
Paul J. Nahin Inside Interesting Integrals
第四:題目還是要做的,學數學也怕那種自認為學懂的情況,很多知乎上的高中生就自稱學會了數學分析。為了檢驗自己,課後習題還是要做的,至少做對80%-90%才可以,多做一些理解/證明的題目,計算題適量做。就算做不出來也要問人,不可以為了學習速度放棄質量,最後的結果就是坑死自己。