導航:首頁 > 數字科學 > 理數是什麼意思數學

理數是什麼意思數學

發布時間:2022-06-02 16:26:29

1. 什麼叫做有理數和無理數

有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限循環的數。

無理數,也稱為無限不循環小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環。

簡單來講,能夠用分數表達得數就是有理數,不能用分數表達的數就是無理數。

拓展資料

有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角坐標系、函數、統計等數學內容以及相關學科知識的基礎。

在數學中,無理數是所有不是有理數字的實數,後者是由整數的比率(或分數)構成的數字。當兩個線段的長度比是無理數時,線段也被描述為不可比較的,這意味著它們不能「測量」,即沒有長度(「度量」)。

2. 理數是什麼

理數有分有理數和無理數 無限不循環小數和開根開不盡的數叫無理數 整數和分數統稱為有理數 數學上,有理數是兩個整數的比,通常寫作 a/b,這里 b 不為零。分數是有理數的通常表達方法,而整數是分母為1的分數,當然亦是有理數。 數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογο? ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。 所有有理數的集合表示為 Q,有理數的小數部分有限或為循環

3. 文數和理數的區別

不是這樣理解的,文數其實和理數有很大的關聯,只是文數去掉了一些比較難的題目,比如說一個大題理數有3問而文數就只有2問,而相對交難的文數也沒有,當然是相對學理科的而言,最重要的是多做題目啊,不管你喜不喜歡數學,高考還是要考,其實文數和理數真沒多大區別,關鍵在於個人的看法,和學習方法

4. 數和理數是什麼意思

初等和高等區別

數:1、2、3、10000、1斤半
理數:有理、無理;實數、虛數、復數...

5. 理數與文數是什麼意思

理科生高考考的數學簡稱理數,文科生考的簡稱文數。

6. 理數是不是數學

「理」形聲字.從玉,里聲.本義:加工雕琢玉石
「理數」——顧名思義「加工」數字.把實踐中採集來的數字加以分析、處理.——《統計學》
肯定屬於數學的范疇.

7. 初一數學有理數公式

無限不循環小數和開根開不盡的數叫無理數
整數和分數統稱為有理數
數學上,有理數是兩個整數的比,通常寫作 a/b,這里 b 不為零。分數是有理數的通常表達方法,而整數是分母為1的分數,當然亦是有理數。
數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογο�0�9 ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。
所有有理數的集合表示為 Q,有理數的小數部分有限或為循環。

理數是實數中不能精確地表示為兩個整數之比的數,即無限不循環小數。 如圓周率、2的平方根等。

實數(real munber)分為有理數和無理數(irrational number)。

·無理數與有理數的區別:

1、把有理數和無理數都寫成小數形式時,有理數能寫成有限小數和無限循環小數,

比如4=4.0, 4/5=0.8, 1/3=0.33333……而無理數只能寫成無限不循環小數,

比如√2=1.414213562…………根據這一點,人們把無理數定義為無限不循環小數.

2、所有的有理數都可以寫成兩個整數之比;而無理數不能。根據這一點,有人建議給無理數摘掉「無理」的帽子,把有理數改叫為「比數」,把無理數改叫為「非比數」。本來嘛,無理數並不是不講道理,只是人們最初對它不太了解罷了。

利用有理數和無理數的主要區別,可以證明√2是無理數。

證明:假設√2不是無理數,而是有理數。

既然√2是有理數,它必然可以寫成兩個整數之比的形式:

實數包括有理數和無理數。其中無理數就是無限不循環小數和開根開不盡的數,有理數就包括無限循環小數、有限小數、整數

自然數(natural number)
用以計量事物的件數或表示事物次序的數 。 即用數碼0,1,2,3,4,……所表示的數 。自然數由0開始 , 一個接一個,組成一個無窮集合。自然數集有加法和乘法運算,兩個自然數相加或相乘的結果仍為自然數,也可以作減法或除法,但相減和相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不是總能成立的。自然數是人們認識的所有數中最基本的一類,為了使數的系統有嚴密的邏輯基礎,19世紀的數學家建立了自然數的兩種等價的理論棗自然數的序數理論和基數理論,使自然數的概念、運算和有關性質得到嚴格的論述。
序數理論是義大利數學家G.皮亞諾提出來的。他總結了自然數的性質,用公理法給出自然數的如下定義。
自然數集N是指滿足以下條件的集合:①N中有一個元素,記作1。②N中每一個元素都能在 N 中找到一個元素作為它的後繼者。③ 1是0的後繼者。④0不是任何元素的後繼者。 ⑤不同元素有不同的後繼者。⑥(歸納公理)N的任一子集M,如果1∈M,並且只要x在M中就能推出x的後繼者也在M中,那麼M=N。
基數理論則把自然數定義為有限集的基數,這種理論提出,兩個可以在元素之間建立一一對應關系的有限集具有共同的數量特徵,這一特徵叫做基數 。這樣 ,所有單元素集{x},{y},{a},{b}等具有同一基數 , 記作1 。類似,凡能與兩個手指頭建立一一對應的集合,它們的基數相同,記作2,等等 。自然數的加法 、乘法運算可以在序數或基數理論中給出定義,並且兩種理論下的運算是一致的。
自然數在日常生活中起了很大的作用,人們廣泛使用自然數。
「0」是否包括在自然數之內存在爭議,有人認為自然數為正整數,即從1開始算起;而也有人認為自然數為非負整數,即從0開始算起。目前關於這個問題尚無一致意見。不過,在數論中,多採用前者;在集合論中,則多採用後者。目前,我國中小學教材將0歸為自然數!
自然數是整數,但整數不全是自然數。
例如:-1 -2 -3......是整數 而不是自然數

全體非負整數組成的集合稱為非負整數集(即自然數集)

所謂質數或稱素數,就是一個正整數,除了本身和 1 以外並沒有任何其他因子。例如 2,3,5,7 是質數,而 4,6,8,9 則不是,後者稱為合成數或合數。從這個觀點可將整數分為兩種,一種叫質數,一種叫合成數。(有人認為數目字 1 不該稱為質數)著名的高斯「唯一分解定理」說,任何一個整數。可以寫成一串質數相乘的積。
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(「≠」、「<」、「>」)表示的不 等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,並能根據問題的實際意義,檢查結果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應用問題.
本章的難點是:
1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;
2.正確地找出應用題中的相等關系,列出一次方程組.
第七章
本章重點是:整式的乘除運算,特別是對冪的運算及乘法公式的應用要達到熟練程度.
本章難點是:對乘法公式結構特徵和公式中字母意義的理解及乘法公式的靈活應用
1.冪的運算性質,正確地表述這些性質,並能運用它們熟練地進行有關計算.
2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.
3.乘法公式的推導過程,能靈活運用乘法公式進行計算.
4.熟練地運用運算律、運演算法則進行運算,
5.體會用字母表示數和用字母表示式子的意義.通過式的變形,深入理解轉化的思想方法.
第八章:
1、認識事物的幾種方法:觀察與實驗 歸納與類比 猜想與證明 生活中的說理 數學中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、餘角、補交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數量關系)兩直線平行(位置關系)
定理:內錯角相等(數量關系)兩直線平行(位置關系)
定理:同旁內角互補(數量關系)兩直線平行(位置關系).
平行線的性質:
兩直線平行,同位角相等
兩直線平行,內錯角相等
兩直線平行,同旁內角互補
由圖形的「位置關系」確定「數量關系」
第九章:
重點:因式分解的方法,
難點:分析多項式的特點,選擇適合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運用因式分解解決一些實際問題.(包括圖形習題)
第十章:
重點是:用統計知識解決現實生活中的實際問題.
難點是:用統計知識解決實際問題.
1.統計初步的基本知識,平均數、中位數、眾數等的計算、
2.了解數據的收集與整理、繪畫三種統計圖.
3.應用統計知識解決實際問題能解決與統計相關的綜合問題.

典型例題從書本上很容易找到。

8. 有理數的定義和性質以及包括什麼還有概念

有理數[yǒu lǐ shù]
科普中國 | 本詞條由「科普中國」科學網路詞條編寫與應用工作項目審核
審閱專家 胡啟洲
有理數是整數(正整數、0、負整數)和分數的統稱,是整數和分數的集合。
整數也可看做是分母為一的分數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不循環的數。是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角坐標系、函數、統計等數學內容以及相關學科知識的基礎。
有理數集可以用大寫黑正體符號Q代表。但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
中文名
有理數
外文名
rational number
定義
整數和分數的統稱
提出時間
約公元前580年至公元前500年間
所屬范圍
實數
快速
導航
基本運演算法則混合運演算法則相關問題
簡介
命名由來
「有理數」這一名稱不免叫人費解,有理數並不比別的數更「有道理」。事實上,這似乎是一個翻譯上的失誤。有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是「理性的」。中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了「有理數」。但是,這個詞來源於古希臘,其英文詞根為ratio,就是比率的意思(這里的詞根是英語中的,希臘語意義與之相同)。所以這個詞的意義也很顯豁,就是整數的「比」。與之相對,「無理數」就是不能精確表示為兩個整數之比的數,而並非沒有道理。[1]
有理數的認識
有理數為整數(正整數、0、負整數)和分數的統稱[2]。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。由於任何一個整數或分數都可以化為十進制循環小數,反之,每一個十進制循環小數也能化為整數或分數,因此,有理數也可以定義為十進制循環小數。
有理數集是整數集的擴張。在有理數集內,加法、減法、乘法、除法(除數不為零)4種運算通行無阻。
有理數a,b的大小順序的規定:如果a-b是正有理數,則稱當a大於b或b小於a,記作a>b或b<a。任何兩個不相等的有理數都可以比較大小。
有理數集與整數集的一個重要區別是,有理數集是稠密的,而整數集是密集的。將有理數依大小順序排定後,任何兩個有理數之間必定還存在其他的有理數,這就是稠密性。整數集沒有這一特性,兩個相鄰的整數之間就沒有其他的整數了。
有理數是實數的緊密子集:每個實數都有任意接近的有理數。一個相關的性質是,僅有理數可化為有限連分數。依照它們的序列,有理數具有一個序拓撲。有理數是實數的(稠密)子集,因此它同時具有一個子空間拓撲。[1]
有理數及其分類
有理數的分類按不同的標准有以下兩種:
(1)按有理數的定義分類:[2]
(2)按有理數的性質分類:[2]
有理數分類
基本運演算法則
加法運算
1、同號兩數相加,取與加數相同的符號,並把絕對值相加。
2、異號兩數相加,若絕對值相等則互為相反數的兩數和為0;若絕對值不相等,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。
3、互為相反數的兩數相加得0。
4、一個數同0相加仍得這個數。
5、互為相反數的兩個數,可以先相加。
6、符號相同的數可以先相加。
7、分母相同的數可以先相加。
8、幾個數相加能得整數的可以先相加。[1]
減法運算
減去一個數,等於加上這個數的相反數,即把有理數的減法利用數的相反數變成加法進行運算。[1]
乘法運算
1、同號得正,異號得負,並把絕對值相乘。
2、任何數與零相乘,都得零。
3、幾個不等於零的數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積為負,當負因數有偶數個時,積為正。
4、幾個數相乘,有一個因數為零,積就為零。
5、幾個不等於零的數相乘,首先確定積的符號,然後後把絕對值相乘。[1]
除法運算
1、除以一個不等於零的數,等於乘這個數的倒數。
2、兩數相除,同號得正,異號得負,並把絕對值相除。零除以任意一個不等於零的數,都得零。
注意:
零不能做除數和分母。
有理數的除法與乘法是互逆運算。
在做除法運算時,根據同號得正,異號得負的法則先確定符號,再把絕對值相除。若在算式中帶有帶分數,一般先化成假分數進行計算。若不能整除,則除法運算都轉化為乘法運算。[1]
實數分類圖
乘方運算
1、負數的奇數次冪是負數,負數的偶數次冪是正數。例如:(-2)3(-2的3次方)=-8,(-2)2(-2的2次方)=4。
2、正數的任何次冪都是正數,零的任何正數次冪都是零。例如:2(2的2次方)=4,2 (2的3次方)=8,0(0的3次方)=0。
3、零的零次冪無意義。
4、由於乘方是乘法的特例,因此有理數的乘方運算可以用有理數的乘法運算完成。
5、1的任何次冪都是1,-1的偶次冪是1,奇次冪是-1。[1]
有理數運算定律
加法運算律:
1、加法交換律:兩個數相加,交換加數的位置,和不變,即 。
2、加法結合律:三個數相加,先把前兩個數相加或者先把後兩個數相加,和不變,即 。

減法運算律:
減法運算律:減去一個數,等於加上這個數的相反數。即:

乘法運算律:
1、乘法交換律:兩個數相乘,交換因數的位置,積不變,即 。
2、乘法結合律:三個數相乘,先把前兩個數先乘,或者先把後兩個相乘,積不變,即 。
3、乘法分配律:某個數與兩個數的和相乘等於把這個數分別與這兩個數相乘,再把積相加,即:


混合運演算法則
有理數的加減乘除混合運算,如無括弧指出先做什麼運算,按照「先乘除,後加減」的順序進行,如果是同級運算,則按照從左到右的順序依次計算。
相關問題
除以零的謬誤
在代數運算中不當使用除以零可得出無效證明:
。前提
不等於

由:0a=0,0b=0,得出0a=0b。
兩邊除以零,得出0a/0=0b/0。
化簡,得:a=b。
以上謬論一個假設,就是某數除以0是容許的,並且 。[1]
代數處理
若某數學系統遵從域的公理,則在該數學系統內除以零必須為沒有意義。這是因為除法被定義為是乘法的逆向操作,即
值是方程

的解(若有的話)。若設
,方程式
可寫成
或直接
。因此,方程
沒有解(當
時),但是任何數值也可解此方程(當
時)。[1]
整數
整數,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的數的統稱,包括負整數、零(0)與正整數。和自然數一樣,整數也是一個可數的無限集合。這個集合在數學上通常表示為粗體Z或,源於德語單詞Zahlen(意為「數」)的首字母。
在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。
全體整數關於加法和乘法形成一個環。環論中的整環、無零因子環和唯一分解域可以看作是整數的抽象化模型。
Z是一個加法循環群,因為任何整數都是若干個1或 -1的和。1和 -1是Z僅有的兩個生成元。每個元素個數為無窮個的循環群都與(Z,+)同構。[1]
糾錯
參考資料
[1] 課程教材研究所,中學數學課程教材研究所開發中心 編 .人教版7七年級上冊數學書.人民教育出版社.2012
[2] 曲一線.初中數學知識清單.首都師范大學出版社/教育科學出版社.2013年4月:第一章數與代數

9. 在數學概念中,有理數是什麼

有理數(rational number):能精確地表示為兩個整數之比的數。包括整數和通常所說的分數,此分數亦可表示為有限小數或無限循環小數。這一定義在數的十進制和其他進位制(如二進制)下都適用。

如3,-98.11,5.72727272……,7/22都是有理數。

有理數還可以劃分為正有理數、負有理數和0。

閱讀全文

與理數是什麼意思數學相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1423
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1006
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1667
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1072