Ⅰ 關於數學的故事有哪些
牛頓和微積分的故事
1661年,19歲的牛頓,考入了著名的劍橋大學。在學習期間,牛頓的第一任教授伊薩克·巴魯獨具慧眼,發現了牛頓具有深邃的觀察力、敏銳的理解力,於是將自己掌握的數學知識傳授給了牛頓,並把他引向近代自然科學的研究。1664年經考試牛頓選為巴魯的助手。1665年,牛頓大學畢業,獲得學士學位。正准備留校繼續深造的時候,嚴重的鼠疫席捲英國,劍橋大學被迫關閉了。牛頓兩次回到故鄉避災,而這恰恰是牛頓一生中最重要的轉折點。
牛頓在家鄉安靜的環境里,專心致志地思考數學、物理學和天文學問題,思想火山積聚多年的活力,終於爆發了,智慧的洪流,滾滾奔騰。短短的18個月,他就孕育成形了:流數術(微積分)、萬有引力定律和光學分析的基本思想。牛頓於1684年通過計算徹底解決了1666年發現的萬有引力。1687年,他45歲時完成了人類科學史上少有科學巨著《自然哲學的數學原理》,繼承了開普勒、伽里略,用數學方法建立起完整的經典力學體系,轟動了全世界。
Ⅱ 有趣的數學歷史故事
無理數的由來
公元前500年,古希臘畢達哥拉斯(Pythagoras)學派的弟子希勃索斯(Hippasus)發現了一個驚人的事實,一個正方形的對角線與 其一邊的長度是不可公度的(若正方形邊長是1,則對角線的長不是一個有理數)這一不可公度性與畢氏學派「萬物皆為數」(指有理數)的哲理大相徑庭。這一發 現使該學派領導人惶恐、惱怒,認為這將動搖他們在學術界的統治地位。希勃索斯因此被囚禁,受到百般折磨,最後競遭到沉舟身亡的懲處。
不可通約的本質是什麼?長期以來眾說紛壇,得不到正確的解釋,兩個不可通約的比值也一直被認為是不可理喻的數。15世紀義大利著名畫家達.芬奇稱之為「無理的數」,17世紀德國天文學家開普勒稱之為「不可名狀」的數。
然而,真理畢竟是淹沒不了的,畢氏學派抹殺真理才是「無理」。人們為了紀念希勃索斯這位為真理而獻身的可敬學者,就把不可通約的量取名為「無理數」——這便是「無理數」的由來.
同時它導致了第一次數學危機。
Ⅲ 數學家的小故事簡短
1、陳景潤:
陳景潤是我國有名的數學家。他不愛逛公園,不愛遛馬路,就愛學習。他學習起來,常常忘記了吃飯睡覺。 有一天,陳景潤在吃中飯的時候,摸摸腦袋發現頭發太長了,應該快去理一理,要不,人家看見了,還當他是個大姑娘呢。於是,他放下飯碗,就跑到理發店去了。
在青年時代,他便對劉歆、張衡、王蕃、劉徽等人的工作進行了深入細致的研究,駁正了他們的錯誤.以後他繼續鑽研,在科學技術方面作出極有價值的貢獻.精確到小數點後第六位數的圓周率,便是他其中最傑出的成就之一.在天文歷法方面,他曾將自古代到他生活年代為止所有可以搜羅到的文獻資料,全部整理了一遍,並且通過親自觀測和推算,做了深切的驗證.他指出當時所流行的何承天(公元370-447年)編定的歷法有許多嚴重的錯誤.因此他便開始編制另一種新的歷法。
Ⅳ 著名數學家的故事有哪些
著名數學家祖沖之的故事:
公元462年,祖沖之請求宋孝武帝頒布新歷,孝武帝召集大臣商議。那時候,有一個皇帝寵幸的大臣戴法興出來反對,認為祖沖之擅自改變古歷,是離經叛道的行為。祖沖之當場用他研究的數據回駁了戴法興。戴法興依仗皇帝寵幸他,蠻橫地說:「歷 法是古人制定的,後代的人不應該改動。」
祖沖之一點也不害怕。他嚴肅地說:「你如果有事實根據 ,就只管拿出來辯論。不要空話嚇唬人嘛。」
宋孝武帝想幫助戴法興,找了一些懂得歷法的人跟祖沖之辯論,也一個個被祖沖之駁倒了。但是宋孝武帝還是不肯頒布新歷。直到祖沖之死了十年之後,他創制的大明歷才得到推行。
盡管當時社會十分動亂不安,但是祖沖之還是孜孜不倦地研究科學。他曾經對古代數學著作《九章算術》作了注釋,又編寫一本《綴術》。他的最傑出貢獻是求得相當精確的圓周率。經過長期的艱苦研究,他計算出圓周率在3.1415926和3.1415927之間,成為世界上最早把圓周率數值推算到七位數字以上的科學家。
家世背景:
西晉末期至十六國時期,北方發生大規模戰亂,祖沖之的先輩從范陽郡(今河北省淶水縣)遷徙到東晉國都建康(今江蘇省南京市),祖沖之遂出生於建康,其祖父祖昌任劉宋朝大匠卿,是朝廷管理土木工程的官吏,父親祖朔之做「奉朝請」,學識淵博,常被邀請參加皇室的典禮、宴會。
祖沖之從小就受到很好的家庭教育。爺爺給他講「斗轉星移」,父親領他讀經書典籍,家庭的熏陶,耳濡目染,加之自己的勤奮,使他對自然科學和文學、哲學,特別是天文學產生了濃厚的興趣,在青年時代就有了博學的名聲。
Ⅳ 有名的數學故事有哪些
第一個,高更的故事。
高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是:
1+2+3+ ..... +97+98+99+100 = ?
老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算出來了,小朋友你可知道他是如何算的嗎?
高斯告訴大家他是如何算出的:把 1加 至 100 與 100 加至 1 排成兩排相加,也就是說:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百個101相加,但算式重復了兩次,所以把10100 除以 2便得到答案等於 <5050>
從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為——數學天才!
第二個,祖沖之的故事
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
第三個,華羅庚的故事
有一次,他跟鄰居家的孩子一起出城去玩,他們走著走著;忽然看見路旁有座荒墳,墳旁有許多石人、石馬。這立刻引起了華羅庚的好奇心,他非常想去看個究竟。於是他就對鄰居家的孩子說:
「那邊可能有好玩的,我們過去看看好嗎?」
鄰居家的孩子回答道:「好吧,但只能呆一會兒,我有點害怕。」
膽大的華羅庚笑著說:「不用怕,世間是沒有鬼的。」說完,他首先向荒墳跑去。
兩個孩子來到墳前,仔細端詳著那些石人、石馬,用手摸摸這兒,摸摸那兒,覺得非常有趣。愛動腦筋的華羅庚突然問鄰居家的孩子:「這些石人、石馬各有多重?」
鄰居家的孩子迷惑地望著他說:"我怎麼能知道呢?你怎麼會問出這樣的傻問題,難怪人家都叫你『羅獃子』。」
華羅庚很不甘心地說道:「能否想出一種辦法來計算一下呢?」
鄰居家的孩子聽到這話大笑起來,說道:「等你將來當了數學家再考慮這個問題吧!不過你要是能當上數學家,恐怕就要日出西山了。」
華羅庚不顧鄰家孩子的嘲笑,堅定地說:「以後我一定能想出辦法來的。」
當然,計算出這些石人、石馬的重量,對於後來果真成為數學家的華羅庚來講,根本不在話下。
金壇縣城東青龍山上有座廟,每年都要在那裡舉行廟會。少年華羅庚是個喜愛湊熱鬧的人,凡是有熱鬧的地方都少不了他。有一年華羅庚也同大人們一起趕廟會,一個熱鬧場面吸引了他,只見一匹高頭大馬從青龍山向城裡走來,馬上坐著頭插羽毛、身穿花袍的「菩薩」。每到之處,路上的老百姓納頭便拜,非常虔誠。拜後,他們向「菩薩」身前的小罐里投入錢,就可以問神問卦,求醫求子了。
華羅庚感到好笑,他自己卻不跪不拜「菩薩」。站在旁邊的大人見後很生氣,訓斥道:
「孩子,你為什麼不拜,這菩薩可靈了。」
「菩薩真有那麼靈嗎?」華羅庚問道。
一個人說道:「那當然,看你小小年紀千萬不要冒犯了神靈,否則,你就會倒楣的。」
「菩薩真的萬能嗎?」這個問題在華羅庚心中盤旋著。他不相信一尊泥菩薩真能救苦救難。
廟會散了,看熱鬧的老百姓都回家了。而華羅庚卻遠遠地跟蹤著「菩薩」。看到「菩薩」進了青龍山廟里,小華羅庚急忙跑過去,趴在門縫向裡面看。只見 「菩薩」能動了,他從馬上下來,脫去身上的花衣服,又順手抹去臉上的妝束。門外的華庚驚呆了,原來百姓們頂禮膜拜的「菩薩」竟是一村民裝扮的。
華羅庚終於解開了心中的疑團,他將「菩薩」騙人的事告訴了村子裡的每個人,人們終於恍然大悟了。從此,人們都對這個孩子刮目相看,再也無人喊他「羅獃子」了。正是華羅庚這種打破砂鍋問到底的精神,
第四個,陳景潤的故事
陳景潤一個家喻戶曉的數學家,在攻克歌德巴赫猜想方面作出了重大貢獻,創立了著名的「陳氏定理」,所以有許多人親切地稱他為「數學王子」。但有誰會想到,他的成就源於一個故事。
1937年,勤奮的陳景潤考上了福州英華書院,此時正值抗日戰爭時期,清華大學航空工程系主任留英博士沈元教授回福建奔喪,不想因戰事被滯留家鄉。幾所大學得知消息,都想邀請沈教授前進去講學,他謝絕了邀請。由於他是英華的校友,為了報達母校,他來到了這所中學為同學們講授數學課。
一天,沈元老師在數學課上給大家講了一故事:「200年前有個法國人發現了一個有趣的現象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每個大於4的偶數都可以表示為兩個奇數之和。因為這個結論沒有得到證明,所以還是一個猜想。大數學歐拉說過:雖然我不能證明它,但是我確信這個結論是正確的。
它像一個美麗的光環,在我們不遠的前方閃耀著眩目的光輝。……」陳景潤瞪著眼睛,聽得入神。
從此,陳景潤對這個奇妙問題產生了濃厚的興趣。課余時間他最愛到圖書館,不僅讀了中學輔導書,這些大學的數理化課程教材他也如飢似渴地閱讀。因此獲得了「書獃子」的雅號。
興趣是第一老師。正是這樣的數學故事,引發了陳景潤的興趣,引發了他的勤奮,從而引發了一位偉大的數學家。
第五個,笛卡爾的故事
笛卡兒,(1596-1650)法國哲學家,數學家,物理學家,解析幾何學奠基人之一。他認為數學是其他一切科學的理論和模型,提出了數學為基礎,以演繹為核心的方法論,對後世的哲學。數學和自然科學發展起到了巨大的作用。
笛卡兒分析了幾何學和代數學的優缺點,表示要尋求一種包含這兩門科學的優點而沒有它們的缺點的方法,這種方法就是用代數方法,來研究幾何問題--解析幾何,《幾何學》確定了笛卡兒在數學史上的地位,《幾何學》提出了解析幾何學的主要思想和方法,標志著解析幾何學的誕生,思格斯把它稱為數學的轉折點,以後人類進入變數數學階段。
笛卡兒還改進了韋達的符號記法,他用a、b、c……等表示已知數,用x、y、z……等表示未知數,創造了「=」,「」等符號,延用至今。
笛卡兒在物理學,生理學和天文學方面也有許多獨到之處。
其他故事
一些數學家生前獻身於數學,死後在他們的墓碑上,刻著代表著他們生平業績的標志。
古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算 而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語
Ⅵ 歷史上有哪些有趣的有關數學的故事
歷史上比較有趣的有關數學的故事是《曹沖稱象》這個故事。小學時候聽到這個故事之後就覺得非常有趣。在所有人都無法完成稱象這個任務時,年紀輕輕的曹沖就能想出這么一個非常機智的辦法,讓我覺得非常有趣。