① 什麼叫數學概念教學
數學概念是現實生活中某一數量關系和空間形式的本質屬性在人的思維中的反映。按概念的抽象水平可以將概念分為描述性概念和定義性概念兩類。描述性概念是可以直接通過觀察獲得的概念,如「長方形」等;定義性概念的本質性特徵不能通過直接觀察獲得,必須通過下定義來揭示,如「偶數」就是通過定義「能被2整除的數叫做偶數」來揭示偶數的本質特徵的。不管是哪一類概念,都是小學生掌握數學基本知識和基本技能的基石,都將直接影響以後繼續學習及思維能力的發展。
小學數學教學的主要任務之一是使學生掌握一定的數學基礎知識。而概念是數學基礎知識中最基礎的知識,對它的理解和掌握,關繫到學生計算能力和邏輯思維能力的培養,關繫到學生解決實際問題的能力和對學習數學的興趣。要掌握正確、清晰、完整的數學概念,既依賴於他們的數學認知結構狀況,又依賴於教師的教學措施。筆者認為:有效的概念教學應將概念的邏輯聯系與學習者認知水平有機結合起來,制定或選擇恰當、有效的教學策略。
一、描述性概念數學要直觀形象。
一般來說,學生學習概念是從感知學習對象開始的,經過對所感知材料的觀察、分析或通過語言文字的形象描述所喚起的回憶,在頭腦中建立學習對象的正確表象,才引入概念。小學生對事物的認識是從具體到抽象,從感性到理性,從特殊到一般的逐步發展過程。小學生的思維還處於具體形象思維階段。小學數學中的許多概念,都是從小學生比較熟悉的事物中抽象出來的。描述性概念的講授方法必須從學生現有的生活經驗出發,堅持直觀形象的原則。如:在學習長方形之前,學生已初步的接觸了直線、線段和角,給學習長方形打下了基礎。教學長方形的認識時可以利用桌面、書面、黑板面等讓學生觀察,啟發學生抽象出幾何圖形。從中總結出這些圖形的共同特點:
(1)都有四條邊;(2)對邊相等;(3)四個角都是直角。這樣使學生在頭腦之中形成對邊相等、四個角都是直角的四邊形是長方形的概念。
二、定義性概念教學要准確推敲。
數學是一門嚴密而精確的科學,特別是有關概念具有更強的「壓縮性」。字里行間包含著深刻的內涵,豐富的思想內容和數學思想方法,因此在定義性概念教學中,要指導學生咬文嚼字、准確推敲關鍵詞語的涵義。例如在教學互質數時,教師在引導學生對幾組數,如「4和7」、「10和9」、「25和18」的公約數的觀察的基礎上,引入互質數「公約數只有1的兩個數叫做互質數」的概念。然後,老師要引導學生認真推敲,對互質數的這個概念要弄清:(1)它是兩數之間的一種關系。(2)它是從公約數的個數這個角度提出來的。(3)關鍵詞「只有」的含義。從這三個方面揭示出互質數的本質屬性。教學中只有抓住這些屬性,逐項剖析,才能使互質數的特徵活脫脫地展現出來。教師通過對「互質數」的詳細解讀,既抽象概括出「互質數」這個概念,又能為學生深刻理解掌握互質數奠定了基礎。
三、精心設計習題,清晰概念的內涵外延。
每一個概念都有一定的外延和內涵,概念的外延就是適合這個概念的一切對象的范圍;而內涵就是這個概念所反映的對象本質屬性的總和。概念教學中,在學生對概念理解的基礎上,教師要精心地設計各種類型的題目,讓學生通過分析、比較、綜合、抽象、概括等邏輯思維方法,把握事物的本質和規律,從而加深對概念的理解。例如,在「因數與倍數」這一章的概念教學中,可以設計如下練習:
1、填空:
(1)、10以內的偶數有
(2)、20以內3的倍數的有 、
(3)、最小的質數是 最小的合數是 。
(4)、18的因數有 。
2、判斷:
(1)、8和9是互質數。
(2)、整數可以分成質數和合數兩部分。
(3)、6÷1.2=5是整除。
(4)、10和13是互質數,所以他們沒有最大公約數。
3、選擇:
(1)、4和6的最大公約數是( )。
A、4 B、6 C、2
(2)、把6分解質因數是( )。
A、6=1×2×3 B、2×3 C、6=2×3
通過不同的角度、變換敘述的語言、正反不同的例子、對有聯系的概念進行對比等多種形式的訓練,深化概念的本質屬性,更能幫助學生清晰地掌握概念的內涵與外延。
四、利用知識遷移,構建知識網路。
這包括兩方面的要求。第一方面,要加強數學中最基本的概念的教學。所謂最基本的概念,就是在知識與技能的網路中,那些帶有關鍵性的、普遍性的和適用性強的概念。如,加法的概念、比多比少的意義、差的概念、乘法的意義、比的意義、倍的概念等等,越是最基本的概念,它所反映事物的聯系就越廣泛、越深刻。抓住這些最基本概念的教學,能使知識產生廣泛遷移,使學生學習起來容易理解,同時也有利於記憶。第二方面,小學數學中許多概念之間存在著密切的聯系,教學中要指導學生對一些相關聯的概念進行對比,歸類,揭示它們之間的內在聯系,抓住這些聯系就可以使知識脈絡更清晰,知識結構更完整。掌握了這些聯系,從特殊到一般,從一般見特殊,便可實現相關知識的有機統一。例如:長方形、正方形、梯形、平行四邊形都是四邊形,但是他們又相互區別。老師在教學完梯形之後,要對四種有聯系又有區別的四邊形進行分析比較,從而加深學生對四種四邊形的理解。
五、加強訓練,指導學以致用。
「使學生初步學會運用所學的數學知識解決一些簡單的實際問題」,是新課程標准所賦予我們新時期小學數學老師的任務。在實際教學中往往遇到學生會很熟練地背出概念內容,但不能進行靈活應用的現象。為此,教學中除了要重視數學概念的形成和獲得外,還要加強數學概念的應用訓練,以增強學生的實踐意識。數學來源於生活,就必然要回到生活中去。教師要積極創造條件,引導學生用數學概念去解決生活中的數學問題,讓學生在訓練中體驗教學的價值,獲得成功的喜悅。例如,我們在教學「眾數」後,可以設計這樣一個問題情境:有一家公司,經理的月工資是8000元,2個部門主管每人的月工資是5000元,10個工人每人的月工資是1500元,你要選擇用平均數、中位數、還是眾數來反映這個公司員工的月工資水平,並說明理由。學生將學過的三種統計量的知識,運用到生活中去解決實際問題,在「學數學」中「用數學」,體會數學的應用價值,增進對數學的理解和應用數學的信心,進而形成勇於探索、勇於創新的科學精神。
總之,要讓小學生掌握正確、清晰、完整的數學概念,必須在概念的教法上研究、學法上探討,從而提高概念教學的高效率,培養學生的學習興趣,提高學生的數學素養。
② 如何加強小學數學的概念教學
在小學數學課中,根據教學內容可以劃分為概念課、計算課、解決問題課與空間圖形課,而幾乎在每一個新知識的起始課,學生最先接觸到的必然是數學概念。
數學概念是數學知識的「細胞」,是進行邏輯思維的第一要素。一切數學規則的研究、表達與應用都離不開數學概念。概念是構成小學數學基礎知識的重要內容,它們是互相聯系著的,也是學習其他數學知識的基礎,因此上好概念課對小學生的後續學習以及數學素質發展的培養都具有很重要的意義。
一、概念引入的教學策略
兒童學習數學概念有一個學習准備的過程,這個過程就稱為「概念的引入」。良好有效的概念引入有助於學生積極主動地去理解和掌握概念。
概念引入的基本策略有:
1、生活實例引入
數學源於生活。結合生活實例引入概念是數學概念教學的一個有效途徑。它可以使數學由「陌生」變為「熟悉」,由」嚴肅」變為「親切」,從而使學生願意接近數學。例如:「直線和線段」的教學。可呈現四組鏡頭讓學生觀察。鏡頭一:媽媽織毛衣的場景,突出散亂在地上的繞來繞去的毛線。鏡頭二:斜拉橋上一根根斜拉的鋼索。鏡頭三:一個女孩打電話,用手指繞著彎彎曲曲的電話線。鏡頭四:建築工地上用繩子拴住重物往上拉的畫面,突出筆直的鋼絲繩。然後提問:「剛才你在屏幕上看到了什麼?你能給這些線分分類嗎?你有什麼辦法使這些線變直?」這些熟悉的生活現象不僅喚起了學生對生活的回憶,更激起了學生探索慾望,為學生提供了「做數學」的機會。
2、從直觀操作引入
組織學生動手操作,可使學生藉助動作思維,獲得鮮明的感知。如:教學「平均分」的概念,可先引導學生動手操作,把8個桃子分給2隻猴子,看看有幾種不同的分法。然後進行比較,說說你認為哪種分法最公平。從而使學生認識到:眾多的分法中有一種分法是與眾不同的,那就是每人分的同樣多,從而形成「平均分」的表象。
3、從舊知遷移引入
數學概念之間的聯系十分緊密,到了中高年級,許多概念可以通過聯系相關的舊概念直接引入。例如:「質數與和數」的教學。由於質數、和數是通過約數的個數來劃分的,所以在教學時,可以從復習約數的概念入手,然學生找出1、2、6、7、8、11、12、15的所有約數。在引導學生觀察比較,他們各有幾個約數?你能給出一個分類標准,把這些數分分類嗎?從而為引出質數、和數做好鋪墊。又如:「乘法」的概念可從「加法」來引入,「整除」的概念可從除法中的「除盡」來引入。
4、從情景設疑引入
豐富的情景不僅能激發學生的學習慾望,而且有利於學生主動觀察和積極思考,還有利於培養學生通過觀察發現並提出問題的能力。例如:關於「體積」概念的教學,可以先將兩個同樣的玻璃容器盛滿水,然後拿出兩個大小明顯不等的石塊,分別放進兩個玻璃容器中,讓學生觀察,出現了什麼現象,並想一想,為什麼石塊放進容器後,水要往外溢?為什麼放進較大石塊的容器,流出的水較多?從而讓學生獲得石塊佔有空間的感性認識,為引出「體積」做好了准備。
5、從動手計算引入
有些數學概念很難讓學生觀察或操作,但可以組織學生進行計算,使學生獲得感性認識。例如:「循環小數」概念的教學。可先讓學生進行小數除法計算,10/3,58.6/11。在計算過程中,學生會發現他們都除不盡,並且注意到當余數不斷重復出現時,商也不斷跟著重復出現,從而感知循環小數。
引進數學概念的方法較多,有時需要配合使用幾種方法才能收到良好的教學效果。
二、概念建立的教學策略
概念建立是概念教學的中心環節。小學生建立數學概念有兩種基本形式:一是概念的形成,二是概念的同化。由於小學生的思維特點處於由形象思維像抽象邏輯思維過度的階段,因此,小學生學習數學概念大多以「概念形成」的形式為主。數學概念的形成,一般要經過直觀感知---建立表象---解釋本質屬性三個過程。
1、強化感知
感知是人們認識事物的開始,沒有感知就不可能認識事物的本質和規律。因此在概念教學中,首先根據教學內容有目的、有計劃地向學生提供豐富的感性材料,引導學生觀察,並結合學生自己的動手操作,豐富感性認識,為概念形成做好准備。在組織學生進行感知活動時,要有意識地把感知的對象從背景中凸現出來,以便學生清晰地感知。同時,變靜止的為活動的,給學生留下清晰而深刻的印象。
2、重視表象
表象是人腦對客觀事物感知後留下的形象,是多層次感知的結果。表象接近感知,具有一定的具體性,同時又接近於概念,具有一定的抽象性,它起著從感知到概念的橋梁作用。建立表象,可以使學生逐步擺脫對直觀材料的依賴,克服感知中的局限性,為揭示概念的本質屬性奠定基礎。因此,在演示或操作結束後,不要急於進行概括,可以讓學生脫離直觀事例,默默地回想一下,喚起頭腦中的表象,並通過教師的引導,是表象有模糊到清晰,由分散到集中,進而過渡到抽象概括。如:在直觀感知黑板面、課桌面、課本面是長方形的基礎上,抽象出幾何圖形。
3、揭示本質屬性
在學生充分感知並形成表象後,教師要不失時機地引導學生進行分析、比較、綜合,概括出事物的本質屬性,並把這些本質屬性推廣到同類事物的全體,從而形成概念。
如:「三角形的認識」教學。首先讓學生說出日常生活中常見的三角形實物;接著在屏幕上出示三角旗、紅領巾、三角板等實物圖,提問這些物體都是什麼形狀?然後教師去掉圖中的顏色,只留下三個物體的外框,讓學生說說這三個圖形的相同點和不同點。舍棄這三種物體的顏色、大小、材料等非本質的東西,抽象出三角形的本著特徵:都是有三條線段組成的。接著教師出示三條線段,在屏幕上慢慢「圍成」一個三角形,形象地突出了「圍成」這一特徵,是學生准確理解:「由三條線段圍成的圖形叫三角形」。
4、深入理解概念的內涵和外延
當用定義把概念的本質屬性揭示出來時,學生對概念的理解還是膚淺的。因此,教師要採取一切手段幫助學生逐步理解概念的內涵和外延,以便學生在理解的基礎上掌握概念。一般可採取以下方法。
(1)析概念的關鍵性詞語。如在概括出分數的概念後,可進一步剖析:①單位「1」表示什麼意思?②「1」為什麼加引號?③「平均分」表示什麼意思?④「表示這樣的一份或幾份」是什麼意思?只有把這些觀念詞語的意思弄清楚了,才能對分數的概念有深刻的理解。
(2)利用概念的肯定例證和否定例證。肯定例證有利於概念的概括,否定例證有利於概念的辨別。因此教師不僅要充分運用肯定例證幫助學生正面理解概念的內涵,同時還及時運用否定例證促進學生對概念的辨析。如:學習了「循環小數」的概念後,可舉若干肯定例證和否定例證。
(3)運用變式突出概念的內涵與外延。「變式」是指本質屬性不變而非本質屬性發生變化。例如教學「三角形的高」時,當學生在標准圖形做出高之後,可出示變式圖形,然學生根據概念做出高。這樣即使「三角形的高」的內涵到強化,又使外延到充分揭示。如果只提供標准圖形,學生只會在標准圖形上做高,而不會再變式圖形上做高,這樣就會縮小「三角形的高」這一概念的外延。
三、概念鞏固的教學策略
學生對概念的掌握不是一次就能完成的,要由具體到抽象,再由抽象到具體多次往復。當學生初步建立概念後還需要運用多種方法,促進概念在學生認知結構中的保持,並通過不斷運用加深對概念的理解和記憶,使新建立的概念得以鞏固。
1、促進記憶
為了鞏固所獲得的新概念,首先需要記憶。教學中,我們必須遵循記憶的規律,指導學生對概念進行記憶。記憶有機械記憶、理解記憶。概念的機械記憶就是按概念在課本上的表述進行記憶。小學生機械記憶的能力一般比較強,但這種記憶如不及時上升到理解記憶,就很容易被遺忘,即使記住了也很難運用。概念的理解記憶是在明確了概念的內涵和外延,並使新概念和學生原有的知識經驗建立聯系後進行的記憶。
2、自舉實例
自舉實例就是讓學生把已獲得的概念簡單地運用於實際,通過實例來說明概念,來加深對概念的理解。有經驗的教師根據小學生通常帶有具體性的特點,在學生通過分析、綜合、抽象概括出概念以後,總是讓他們自舉例證,並把概念具體化。如在學生學習乘法的初步認識後,然學生找找生活中哪些問題可以用乘法解決。
3、強化應用
學生是否牢固地掌握了某個概念,不僅在於能否說出概念的名稱和定義,還在於能否正確地應用。通過應用可以家生理解,增強記憶,提高數學的應用意識。
概念的應用可以從概念的內涵和外延兩方面進行。概念的內涵的應用有:①復述定義或根據定義填空;②根據定義判斷是非;③根據定義推理;④根據定義計算。概念外延的應用有:①舉例;②辨認肯定例證或否定例證,並說明理由;③按指定條件從概念的外延種選擇事例;④將概念按不同的標准分類。
4、注意辨析
隨著學習的深入,學生掌握的概念不斷增多,有些概念的文字表述相同,有些概念的內涵相近,學生容易混淆,如質數與互質數、整除與除盡、和數與偶數等。因此在概念的鞏固階段,要注意引導學生運用對比的方法,弄清易混淆概念的聯系與區別,以促使概念的精確分化。
總之,小學數學概念教學是小學數學教學的重要組成部分,教師在上概念課的時候一定要根據針對學生的認知規律以及概念的具體特點,採取科學的教學策略來開展教學工作,以保證數學概念教學的質量。在小學數學教學中,幫助學生逐步形成正確的數學概念,是課堂教學的一個重要任務。
③ 學數學的意義在於什麼實際應用在什麼方面
數學的最大特點是具有廣泛的應用性。數學源於生活,又廣泛應用於生活。在實際生活中運用所學數學知識,處理實際問題是小學生的數學素養之一。 數學是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括、形成方法和理論,並進行廣泛應用的過程。因此,數學教學只有從學生的生活經驗出發,讓學生在生活中學數學、用數學,數學教學才能煥發生命活力。
1.在小學數學教學中,從生活實際出發,把教材內容與「數學現實」有機結合起來,這符合小學生的認知特點,可以消除學生對數學知識的陌生感,同時增強學生的數學應用意識,喚起學生的學習興趣。例如:教學循環小數概念時,我先給學生講永遠講不完的故事:「從前,山上有座廟,廟里有個老和尚在說:從前,山上有座廟……」通過實例讓學生初步感知「不斷重復」,再舉出自然現象「水→汽→雲→水」的循環引出「循環」的概念,使學生產生濃厚的興趣。
2.小學數學中的許多概念和法則都是在現實生活中抽象出來的,因此概念法則的教學也就必須在生活實際中找到相應的實例,並引導學生從直觀入手從而抽象出來,逐步加深理解和運用。例如:在教學應用題常見的數量關系時,學生對於「工作效率×工作時間=工作總量」中的「工作效率」不易理解。為此,我在教學前,在班裡舉行了一次口算比賽和跳繩比賽。教學新課時,聯系兩次比賽活動,學生就非常容易理解「工作效率」這一抽象而又陌生的概念:即指單位時間內所作的工作量。這樣的「生活教學」例子,通過生活經驗驗證了抽象的運算,而具體的經驗更提煉上升為理論(簡便運算的方法),學生容易理解且不易忘記。
讓數學回到生活,使學生感到數學就在身邊,學習數學是有用的、有必要的,從而激發其學好數學的願望。
讓數學知識回歸學生生活
學習是為了應用。因此,教師在教學中要經常培養學生聯系生活實際、運用數學知識,解決問題的意識和能力。知識也只有運用才能被學生真正掌握,也只有在實踐運用中才能體現其價值。
1.創設情境,培養學生解決實際問題的能力。
學生掌握了某項數學知識後,可以有意識地創設一些能把所學知識運用到生活實際中的情境。例如,在學習了利息後,讓學生去銀行了解利息、利息稅等有關知識,讓學生當家長的小參謀:家中多餘的錢怎樣存最合算?並幫助家長計算利息和利息稅。
2.聯系實際,增強學生的數學意識
數學知識在日常生活中有著廣泛的應用,生活中處處有數學。例:如學了三角形的穩定性後,可以讓學生觀察生活中哪些地方運用了三角形的穩定性。
3.加強操作,培養學生把所學知識運用於實際的能力。
知識來源於實踐,又指導於實踐。
我們經常看到由於學生的感性知識缺乏,出現不符合客觀生活實際的數量意識。這就要求我們的課堂教學更要注重聯系實際,強化學生的動手操作活動。在學習了米、厘米以及如何進行測量之後,讓學生運用掌握的數學知識解決生活中的實際問題。如測量身高,測量手臂伸開的長度,測量一步的長度,測量教室門的寬度以及測量窗戶的寬度。通過上述活動,加深學生對厘米和米的理解,鞏固用刻度尺量物體長度的方法,同時,學生獲得了日常生活中一些常識性數據。在這個活動中提高了學生的學習興趣和實際測量的能力,讓學生在生活中實際運用。
學習了平均數問題後,讓學生以小組為單位,自選專題,展開活動。
運用數學知識解決生活實際問題,能實現數學與生活的緊密結合,幫助學生學會用數學的眼光觀察生活,從而不斷體驗數學的價值與魅力。
數學是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括、形成方法和理論,並進行廣泛應用的過程。因此,數學教學只有從學生的生活經驗出發,讓學生在生活中學數學、用數學,數學教學才能煥發生命活力。
1.在小學數學教學中,從生活實際出發,把教材內容與「數學現實」有機結合起來,這符合小學生的認知特點,可以消除學生對數學知識的陌生感,同時增強學生的數學應用意識,喚起學生的學習興趣。例如:教學循環小數概念時,我先給學生講永遠講不完的故事:「從前,山上有座廟,廟里有個老和尚在說:從前,山上有座廟……」通過實例讓學生初步感知「不斷重復」,再舉出自然現象「水→汽→雲→水」的循環引出「循環」的概念,使學生產生濃厚的興趣。
2.小學數學中的許多概念和法則都是在現實生活中抽象出來的,因此概念法則的教學也就必須在生活實際中找到相應的實例,並引導學生從直觀入手從而抽象出來,逐步加深理解和運用。例如:在教學應用題常見的數量關系時,學生對於「工作效率×工作時間=工作總量」中的「工作效率」不易理解。為此,我在教學前,在班裡舉行了一次口算比賽和跳繩比賽。教學新課時,聯系兩次比賽活動,學生就非常容易理解「工作效率」這一抽象而又陌生的概念:即指單位時間內所作的工作量。這樣的「生活教學」例子,通過生活經驗驗證了抽象的運算,而具體的經驗更提煉上升為理論(簡便運算的方法),學生容易理解且不易忘記。
讓數學回到生活,使學生感到數學就在身邊,學習數學是有用的、有必要的,從而激發其學好數學的願望。
讓數學知識回歸學生生活
學習是為了應用。因此,教師在教學中要經常培養學生聯系生活實際、運用數學知識,解決問題的意識和能力。知識也只有運用才能被學生真正掌握,也只有在實踐運用中才能體現其價值。
1.創設情境,培養學生解決實際問題的能力。
學生掌握了某項數學知識後,可以有意識地創設一些能把所學知識運用到生活實際中的情境。例如,在學習了利息後,讓學生去銀行了解利息、利息稅等有關知識,讓學生當家長的小參謀:家中多餘的錢怎樣存最合算?並幫助家長計算利息和利息稅。
2.聯系實際,增強學生的數學意識
數學知識在日常生活中有著廣泛的應用,生活中處處有數學。例:如學了三角形的穩定性後,可以讓學生觀察生活中哪些地方運用了三角形的穩定性。
3.加強操作,培養學生把所學知識運用於實際的能力。
知識來源於實踐,又指導於實踐。
我們經常看到由於學生的感性知識缺乏,出現不符合客觀生活實際的數量意識。這就要求我們的課堂教學更要注重聯系實際,強化學生的動手操作活動。在學習了米、厘米以及如何進行測量之後,讓學生運用掌握的數學知識解決生活中的實際問題。如測量身高,測量手臂伸開的長度,測量一步的長度,測量教室門的寬度以及測量窗戶的寬度。通過上述活動,加深學生對厘米和米的理解,鞏固用刻度尺量物體長度的方法,同時,學生獲得了日常生活中一些常識性數據。在這個活動中提高了學生的學習興趣和實際測量的能力,讓學生在生活中實際運用。
學習了平均數問題後,讓學生以小組為單位,自選專題,展開活動。
運用數學知識解決生活實際問題,能實現數學與生活的緊密結合,幫助學生學會用數學的眼光觀察生活,從而不斷體驗數學的價值與魅力。
④ 如何做好數學概念教學
概念是客觀事物本質屬性在人們頭腦中的反映。數學概念是反映現實世界的空間形式和數量關系的本質屬性的思維形式。在中學數學教學中,正確理解數學概念是掌握數學知識的前提,是學好定理、公式、法則和數學思想的基礎,搞清概念是提高解題能力的關鍵。只有對概念理解得深透,才能在解題中做出正確的判斷。初中數學教學內容里有大量的數學概念,它既是數學教學的重要環節,又是數學學習的核心。因此,作為教師在教學中必須加強數學概念的教學。
一、做好概念的引入
1.從實際引入。概念屬於理性認識,它的形成依賴於感性認識,學生的心理特點則是容易理解和接受具體的感性認識,所以在講述新概念時,從引導學生觀察和分析有關具體實物入手,比較容易揭示概念的本質和特徵。例如,講「數軸」的概念時,教師可模仿秤桿上用點表示物體的重量。秤桿具有三個要素:①度量的起點;②度量的單位;③明確的增減方向。這樣以實物啟發人們用直線上的點表示數,從而引出了數軸的概念,讓學生從先對概念的現實原型有所感受,再將抽象的特徵濃縮成數學概念。教學過程中,各種形式的直觀教學是提供豐富、正確的感性認識的主要途徑。
2.從舊概念的基礎上引入。在教學新概念前,如果能對學生認知結構中原有的適當概念作一些類比引入新概念,則有利於促進新概念的形成。例如:在教學一元二次方程時,可先復習一元一次方程,因為一元一次方程是基礎,一元二次方程是延伸,復習一元一次方程是合乎知識邏輯的,二者的差異僅在於未知數的最高次數不同,因此很容易建立一元二次方程的概念。
二、抓住概念的本質
1.揭示含義,突出關鍵詞。數學概念嚴謹、准確、簡練。教師的語言對於學生感知教材、形成概念具有重要的意義,因此要特別注意用詞的嚴格性和准確性。教師要用生動、形象的語言講清概念中關鍵的字、詞、句的意義,這是指導學生掌握概念並認識概念的前提。
例如:「含有相同的字母,並且相同字母的指數也相同的項叫做同類項。」這個概念中,可抓住「相同」這一關鍵字作分析:出現了幾次相同?相同的是什麼?又如「最簡二次根式」的概念中,要抓住滿足的兩個條件這些關鍵字眼。
期刊文章分類查詢,盡在期刊圖書館
只有學生真正理解了概念,那麼在解決問題的時候,才能得心應手,不會出現錯誤。
2.弄清概念的內涵和外延。數學概念的內涵反映了數學對象的本質屬性,外延是數學概念所有對象的總和,對概念的深化必須從概念的內涵和外延上作深入的分析。剖析概念的內涵就是抓住概念的本質特徵。例如教學正方形的概念時,已學過平行四邊形、矩形、菱形的概念,教學時可通過對正方形與矩形、菱形的概念作比較分析,發現正方形概念的內涵中包括矩形和菱形概念的內涵,從而在外延關繫上得出正方形是特殊的矩形和菱形,而它們又都是特殊的平行四邊形。從對正方形概念的教學,轉向對平行四邊形、矩形、菱形和正方形之間的區別及其聯系的分析,進而把平行四邊形的知識系統化了。教學中注意引導學生從概念的內涵和外延上加以區別,找出它們的異同點,不僅有利於學生掌握數學概念,也有助於培養學生思維的廣闊性,提高學生的辯證思維能力。
3.剖析變化,深化概念。數學概念都是從正面闡述,一些學生只從表面文字上理解,碰到具體的數學問題卻難以做出正確的判斷。所以在學生正面認識概念的基礎上,可通過反例或變式從反面剖析數學概念,凸顯隱蔽的本質要素,加深對概念理解的全面性。有些學生對概念的全面理解不可能一蹴而就,而是要經歷「實踐——認識——再實踐——再認識」的過程,通過對後續知識的學習回過頭來再對概念進行加深理解,遵循「循環反復,螺旋上升」的學習原則。
三、注重概念的運用,升華概念
例如,對一次函數概念的掌握,可通過下列練習:
①如果y=(m+3)x-5是關於x的一次函數,則m=()。
②如果y=(m+3)x-5是關於x的一次函數,則m=()。
③如果y=(m+3)x+4x-5是關於x的一次函數,則m=()。
學習數學概念的目的,就是用於實踐,因此要讓學生通過實際操作去掌握概念、升華概念。概念的獲得是由個別到一般,概念的應用則是從一般到個別。學生掌握概念不是靜止的,而是主動在頭腦中進行積極思維的過程,它不僅能使已有知識再一次形象化、具體化,而且能使學生對概念的理解更全面、更深刻。
四、利用先進教學手段,使抽象概念具體化
有些數學概念對學生來說抽象難懂,是教學中的難點。而利用多媒體計算機的優勢,使教學的表現形式更加形象生動,既有利於提高學生學習的積極性,又充分揭示了數學概念的形成與發展。例如學習兩圓的位置關系時,通過多媒體的演示,讓學生對抽象的概念有了更直觀的體驗與認識。
數學概念教學對整個數學教學起著至關重要的作用,學生透徹牢固地掌握概念是提高教學質量的關鍵。在平時的概念教學中應嘗試運用不同的教學方法,揭示概念的形成與發展,做好概念的鞏固和應用,完善學生的認知結構,發展學生的思維能力,使不同的人在數學上得到不同的發展。
⑤ 學前兒童數學教育的意義是什麼
(一)數學是普通教育中的一門重要基礎課程,是每個人應具備的科學文化素養之一。
數學歷來是小學和中學的一門主要基礎課程,也是一門工具課程。數學是學生學習其他文化科學知識、從事各種實踐活動的必要基礎知識和工具。
(二)學前期是數學能力發展的敏感期,是數學啟蒙教育的關鍵期。
蒙台梭利通過對兒童的大量觀察硏究,發現了數學敏感期。兒童數學邏輯能力的萌芽出現在秩序敏感期(1~3)歲,此間兒童對事物之間的排列順序、分類和配對表現出特殊的興趣。
(三)數學啟蒙教育能滿足幼兒生活和正確認識周圍世界的需要。
兒童是生活在社會和物質的世界中,周圍環境中的形形色色物體均表現為一定的數量,有一定的形狀,大小也各不相同,並以一定的空間形式存在著。因此,兒童自出生之日起,就不可避免的要和數學打交道。
(四)數學啟蒙教育有助於培養幼兒的好奇心、探究欲及對數學的興趣。
幼兒天生就有好奇心,好奇心驅使他們去注視、觀察、擺弄、發現、探索、了解周圍事物和環境。它是幼兒學習的內驅力,是幼兒學習獲得成功的先決條件。這種好奇心和探究欲往往需要通過某些活動方式,如觀察、操作、提問等表現出來。
(五)數學啟蒙教育有助於培養學前兒童思維能力的發展。
數學本身所具有的抽象性、邏輯性以及在實踐中廣泛的應用性的特點,決定了數學教育是促進幼兒思維發展的重要途徑。
⑥ 小學數學概念的小學數學概念教學意義
首先,數學概念是數學基礎知識的重要組成部分。
小學數學的基礎知識包括:概念、定律、性質、法則、公式等,其中數學概念不僅是數學基礎知識的重要組成部分,而且是學習其他數學知識的基礎。學生掌握基礎知識的過程,實際上就是掌握概念並運用概念進行判斷、推理的過程。數學中的法則都是建立在一系列概念的基礎上的。事實證明,如果學生有了正確、清晰、完整的數學概念,就有助於掌握基礎知識,提高運算和解題技能。相反,如果一個學生概念不清,就無法掌握定律、法則和公式。例如,整數百以內的筆算加法法則為:「相同數位對齊,從個位加起,個位滿十,就向十位進一。」要使學生理解掌握這個法則,必須事先使他們弄清「數位」、「個位」、「十位」、「個位滿十」等的意義,如果對這些概念理解不清,就無法學習這一法則。又如,圓的面積公式S=πr2,要以「圓」、「半徑」、「平方」、「圓周率」等概念為基礎。總之小學數學中的一些概念對於今後的學習而言,都是一些基本的、基礎的知識。小學數學是一門概念性很強的學科,也就是說,任何一部分內容的教學,都離不開概念教學。
其次,數學概念是發展思維、培養數學能力的基礎。
概念是思維形式之一,也是判斷和推理的起點,所以概念教學對培養學生的思維能力能起重要作用。沒有正確的概念,就不可能有正確的判斷和推理,更談不上邏輯思維能力的培養。例如,「含有未知數的等式叫做方程」,這是一個判斷。在這個判斷中,學生必須對「未知數」、「等式」這幾個概念十分清楚,才能形成這個判斷,並以此來推斷出下面的6道題目,哪些是方程。
(1)56+23=79(2)23-x=67(3)x÷5=4.5
(4)44×2=88(5)75÷x=4(6)9+x=123
在概念教學過程中,為了使學生順利地獲取有關概念,常常要提供豐富的感性材料讓學生觀察,在觀察的基礎上通過教師的啟發引導,對感性材料進行比較、分析、綜合,最後再抽象概括出概念的本質屬性。通過一系列的判斷、推理使概念得到鞏固和運用。從而使學生的初步邏輯思維能力逐步得到提高。
⑦ 簡答題:如何進行數學概念的教學
教學蹦來就是一個繁雜的過程,哪裡能答得簡啊,如果要簡單的話就四字:認真負責。我不教數學,但找了篇相關的文章;參參考給你。嘿嘿~~很長的;參考里的網站有很多教學論文去看看吧。
所謂數學概念,就是事物在數量關系和空間形式方面的本質屬性,是人們通過實踐,從數學所研究的對象的許多屬性中,抽出其本質屬性概括而形成的。就是指那些數學名詞和術語。(在小學數學中反映數和形本質屬性的數字、圖形、符號、名詞術語和定義、法則等都是數學概念。)
數學概念是進行數學推理、判斷的依據,是建立數學定理、法則、公式的基礎,也是形成數學思想方法的出發點。因此學好數學的基礎關鍵是數學概念的學習,數學概念教學是數學教學是一個重要的組成部分。
一、數學概念的意義和定義方式
數學概念形成是從大量的實際例子出發,經過比較、分類從中找出一類事物的本質屬性,然後再通過具體的例子對所發現的屬性進行檢驗與修正,最後通過概括得到定義並用符號表達出來。實際上應包含兩層含義:其一,數學概念代表的是一類對象,而不是個別的事物。例如"三角形"可用符號"△"來表示。這時凡是像"△"這樣具有三個角和三條邊的圖形,則不論大小,統稱為三角形,也就是說三角形的概念,就是指所有的三角形:等邊的、等腰的、不等邊的、直角的、銳角的、鈍角......;其二,數學概念反映的是一類對象的本質屬性,即該類對象的內在的、固有的屬性,而不是那些表面的非本質的屬性。例如,"圓"這個概念,它反映的是"平面內到一個定點的距離等於定長的點的集",我們根據這些屬性,就能把"圓"和其他概念區分開。
我們把某一概念反映的所有對象的共同本質屬性的總和叫做這個概念的內涵,把適合於這個概念的所有對象的范圍稱為這個概念的外延。通常說,給概念下定義,就是提示內涵或外延。一般說,定義數學概念有以下幾種方式:
1.約定式定義
由於數學自身發展的需要,有時也通過規定給術語以特定的意義。如"不等於零的數的零次冪等於1",規定了零指數冪的意義,但要注意,約定式不能隨心所欲,必須符合客觀規律。
2.描述性定義
數學是一門嚴謹的科學,每個新概念總要用一些已知的概念來定義,而這些用於定義的已知概念又必須用另一些已知的概念來刻畫,從而構成了一個概念的系列。在概念的系列中,是不允許有循環的。因此總有些概念是不能用別的概念來定義。這樣的概念,叫做數學中的基本概念,又稱為"原名"(或不定義概念、原始概念),它們的意義只能藉助於其他術語和它們各自的特徵予以形象地描述。如:幾何中的點、直線、平面,代數中的集合、元素等。
3.構造式定義
這種定義是通過概念本身發生、形成過程的描述來給出的。如橢圓的定義"平面內與兩個定點的距離的和等於定長的點的規跡叫做橢圓"。
4.屬加種差定義
如果某一概念從屬於另一個概念,則後者叫做前者的屬概念,而前者叫做後者的種概念。如實數是有理數的屬概念,而有理數是實數的種概念。
在同一個屬概念下,各個概念所含屬性的差別叫種差。如對於四邊形這個屬概念,平行四邊形和梯形都是它的種概念,它們的種差是:"兩組對邊分別平行"和"一組對邊平行,另一組對邊不平行"。
用屬加種差來定義概念,"就是把某一概念放在另一更廣泛的概念里"來刻畫它的意義,通常的方法是用鄰近的屬加種差來進行表述。如:平行四邊形的定義,它的鄰近的屬概念是四邊形,種差是兩組對邊分別平行,因而平行四邊形的定義表述成"兩組對邊分別平行的四邊形叫做平行四邊形"。
另外,在教材里,還會遇到一些通過揭示概念的外延的方式給概念下定。如實數的定義:"有理數和無理數統稱為實數"。
最後,還需聲明:定義是數學概念的方式,以上分析是相對的、不嚴格的。例如,"異面直線所成角"定義,我們既可以認為它是約定式的,即規定"把經過空間任意一點所作的兩條異面直線的平行線所成的銳角或直角叫做異面直線所成的角",也可以把它理解為發生式的:即通過取點、作平行線構成兩對對頂角,把其中的銳角或直角叫做異面直線所成的角。總之,我們理解定義並不在於區分它是屬於哪種定義方式,而是要明確概念的外延與內涵,然後應用它們去解決問題。
二、怎樣進行數學概念教學
對數學概念,即使是那些原始概念,都不能望文生義。在教學中,既要把握它的內涵,這是掌握概念的基礎;又要了解它的外延,這樣才有利於對概念的理解和擴展;同時,對於概念中的各項規定、各種條件,都有要逐一認識,綜合理解,從而印象更深,掌握更牢。
一般來說,圍繞一個數學概念,應當力求清楚下列各個方面的問題:
①揭示本質屬性。這個概念討論的對象是什麼,有何背景?此概念中有哪些規定和條件?它們與過去學過的知識有什麼聯系?這些規定和條件的確切含義又是什麼?
給出概念的定義、名稱和符號,揭示概念的本質屬性。例如學習二次函數的概念,先學習它的定義:"y=ax2+bx+c(a、b、c、是常數。a≠0)那麼y叫做x的二次函數"。又如,一位教師教學"長方體和正方體的認識"時,在指導學生給不同形體的實物分類引入"長方體"和"正方體"的概念後,及時引導學生先把"長方體"或"正方體"的各個面描在紙上,並仔細觀察描出的各個面有什麼特點,再認識什麼叫"棱",什麼叫"頂點",然後,指導學生分組填好領料單,根據領料單領取"頂點"和"棱",製作"長方體"或"正方體"的模型,邊觀察邊討論長方體與正方體的頂點和棱有什麼特點,最後指導學生自己歸納、概括出"長方體"和"正方體"的特徵,從而使學生充分了解"長方體"和"正方體"這兩個概念的內涵和外延。
②討論反例與特例。對概念進行特殊的分類,討論各種特例,突出概念的本質屬性。例如二次函數的特例是:y=ax2,y=ax2+c,y=ax2+bx,等等。
③新舊知識聯系。此概念中有哪些規定和條件?它們與過去學過的知識有什麼聯系?使新概念與原有認知結構中有關觀念建立聯系,把新概念納入到相應的概念體系中,同化新概念。例如把二次函數和一次函數、函數等聯系起來,把它納入函數概念的體系中。
④實例確認。辨認正例和反例,確認新概念的本質屬性,使新概念與原有認知結構中有關概念精確分化。例如舉出y=2x+3,y=3x2-x+5,y=-5x2-6等讓學生辨認。
⑤具體運用。根據概念中的條件和規定,能夠歸納出哪些基本性質?這些性質在應用中有什麼作用?通過各種形式運用概念,加深對新概念的理解,使有關概念融會貫通成整體結構。
以上,我們只是介紹了概念教學過程的一般模式。把這個全過程可歸結為三個階段:
(一)引進概念途徑
數學概念本身是抽象的,所以,新概念的引入,一定要堅持從學生的認識水平出發,要密切聯系生產、生活實際。不同的概念的引進方法也不盡相同。對於一些原始概念和一些比較抽象的概念,教師應通過一定數量的感性材料來引入,要密切聯系生活實際,使學生"看得見,摸得著"。引用實例時一定要抓住概念的本特徵,要著力於揭示概念的真實含義。如"平面"的概念,可讓學生觀察生活中一些如桌面、平靜的水面等,通過自己的探索和與同學們的交流得出結論。但是,教師一定要想辦法讓學生自己得到"無限延伸性和沒有厚度"的本質特徵。
(二)形成概念的方法
認識一個特殊的心理過程,由於每個學生之間存在一些差異,那麼完成這個過程所需的時間也不一定相同。但是就認識過程而言,卻不能跳躍。教學中,引入概念、並使學生初步把握了概念的定義以後,還不等於形成了概念,還必須有一個去粗取精、去偽存真、由此及彼、由表及裡的改造、製造,必須在感性認識的基礎上對概念作辯證的分析,用不同的方式進一步提示不同概念的本質屬性。
1.在掌握了概念的本質屬性之後,要引導學生作一些練習。例如,引入分解因式的概念後,可選下列一類練習讓學生回答。
下列由左到右的變形,哪些是屬於分解因式?哪些不是?為什麼?
①(x+2)(x-2)=x2-4;
②(a2-9)=(a+3)(a-3);
③a3-9a=a(a2-9);
④x2-y2+1=(x+y)(x-y)+1;
⑤x2y+x=x2(y+1)
通過回答問題,特別是說明理由,可以初步培養學生運用概念作簡單判斷的能力。同時,每做一次判斷,概念的本質屬性就會在大腦里重現一次。因而,對於促進概念的形成是行之有效的。
2.通過變式或圖形,深化對概念的理解。又如學習梯形這個概念時,可提供如下圖形讓學生觀察:
這里,要注意三點:第一,所提供的感性材料(梯形)要足量,不可太少,也沒有必要太多。太少不利於學生從中悟出規律,形成表象;太多會造成時間和精力上的浪費。第二,要引導學生對每一個材料加以分析和綜合。第
三,要注意變式,全部材料要能反映出本要領的全部本質屬性。
3.抓住概念之間的內在聯系,通過新舊概念的對比,形成正確的概念。又如教學約數和倍數的概念時,可從"整除"這一概念入手,引出概念。
(三)概念的發展
學生掌握某一概念後,並不等於概念教學的結束,要用發展的眼光教概念。
1.不失時機地擴展延伸概念的含義。一個概念總是嵌在一些概念的群體之中。它們之間有縱橫交錯的內在聯系,必須揭示清楚。如學習比的意義之後,就要及時地把"比"、"分數"、"除法"三者聯系在一起,找出三者的聯系和區別後,使學生居高臨下,在一個廣闊的背景下審視"比"這個概念,加深對概念的理解。
2.在一定的階段形成一定的認識。抽象概念不要超越教材要求,否則會超越學生的承受能力。如一年級學習加法,只讓學生認識到,加法表示"合並在一起","把兩個數合並在一起"要用加法即可,而不能告訴學生確切的定義:"把兩個數合並成一個數的運算,叫做加法"。
總之,提高中小學數學概念教學的水平,在概念教學實踐中,教師要有意識地訓練學生的數學思維方式、品質、能力和方法。加深學生對於數學概念的理解,是使學生融會貫通地掌握數學知識、增強能力的前提和關鍵,是把知識學好學活的必由之路。