1. 中學數學有哪些數學思想方法
在中學數學中經常用到的基本數學方法,大致可以分為以下三類:
(1)邏輯學中的方法.例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等.這些方法既要遵從邏輯學中的基本規律和法則,又因為運用於數學之中而具有數學的特色.
(2)數學中的一般方法.例如建模法、消元法、降次法、代入法、圖象法(也稱坐標法,在代數中常稱圖象法,在我們今後要學習的解析幾何中常稱坐標法)、比較法(數學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法,以及將來要學習的向量法、數學歸納法(這與邏輯學中的不完全歸納法不同)等.這些方法極為重要,應用也很廣泛.
(3)數學中的特殊方法.例如配方法、待定系數法、加減(消元)法、公式法、換元法(也稱之為中間變數法)、拆項補項法(含有添加輔助元素實現化歸的數學思想)、因式分解諸方法,以及平行移動法、翻折法等.這些方法在解決某些數學問題時也起著重要作用,我們不可等閑視之.
2. 初中數學常用思想方法有哪些
初中數學思想方法「思」是指學生思維。沒有思維,就發揮不了學生的主體作用。在思維方法指導時,應使學生注意:(1)多思、勤思,隨聽隨思。(2)深思,即追根溯源地思考,善於大膽提出問題(3)善思,由聽和觀察去聯想、猜想、歸納(4)樹立批評意識,學會反思。可以說「聽」是「思」的基礎,思是 聽 的深化,是學習方法的本質的內容,會思維才會學習。「記」是指學生課堂筆記。初一學生一般不會合理記筆記,通常是教師黑板上寫什麼學生就抄什麼,往往是用「記」代替「聽」和「思」。有的筆記雖然記得很全,但效果不是很好,因此在指導學生作筆記時應要求學生:(1)記筆記服從聽講,要掌握記錄時機;(2)記要點、記疑問、記解題思路和方法。使學生明確「記」是為「聽」和「思」服務的。掌握好這三者的關系,就能使課堂這一數學學習主要環節達到較完美的境界。課堂學習指導是學法中最重要的。同時還要結合不同的授課內容進行相應的學法指導。2數學思想方法一數集的每一次擴充都是解決實際問題和解決數學自身矛盾的需要。有理數概念的建立,有理數性質的介紹,有理數運演算法則的規定,這一切都為同學們進一步學習代數做了必要的准備。同學們在學習有理數一章時,希望大家要有意識地培養自己邏輯推理能力,使自己會觀察、比較、分析、綜合、抽象和概括,會用歸納和類比的方法進行推理。另外要特別重視提高運算能力,有過硬的運算基本功。為此,不僅能根據法則、運算規律、公式等正確地進行運算,而且理解運算的算理,能夠根據題目條件,使運算「合理、簡捷、准確」。為了解決用算術方法解應用題的局限性,人們想出用字母表示未知數,把問題中的相等關系平鋪直敘地用代數方程式表達出來。由於表示未知數的字母也是數,因此,它們也可以按照數的運算的通性、通法進行運算,從而求得未知數所應有的值。同學們要充分注意這一「歷史性」的突破。為此,不僅要熟練掌握含數字的算術的變形和計算,更要切實掌握好含字母的代數式(目前主要是整式)的變形和計算,解方程的基本方法和步驟,這一切都是為列方程解應用題而展開的。通過列方程解應用題的學習,體會如何把實際問題抽象成數學問題,用方程思想處理數學問題,形成用數學的意識,培養我們自己分析問題和解決問題的能力。3數學思想方法二升入初中如果再沿用小學的學習方法和方式,顯然無法適應。這時需要我們擺脫對老師的依賴,做到自主主動的學習。一是積極適應新的授課方式。初中往往集中講解重點,難點,要點,而且每課內容多,信息量大,所以要上課用心聽,用心記。積極適應新老師的授課方式,包括語音,板書,思路,要求等。同時還要勤學好問,主動接觸老師。二是制定科學的學習計劃,包括長期計劃(比如期中期末要達到什麼水平,各科的目標是什麼)和短期計劃,即周計劃、日計劃(比如,怎麼按排自己的一天活動)。此外可以找個競爭對手來激勵自己。三要摸索適合自己的學習方法。學習不能停留在被動聽課和機械地做作業上,要用心學,主動學,優選學,特別要講究方法,把握好預習,聽課、復習、做作業四個方面。4數學思想方法三對於剛上初一的孩子,改變習慣是最困難也是最有必要的一步。很多家長片面地讓孩子多關注知識點、請很多家教,可孩子的成績卻不見提高,這時就要思考一下,孩子的學習習慣是否成為了他成績提升的攔路虎。好的習慣,大的方面應該包括課堂注意聽講、認真記筆記、每天和每周固定時間復習和預習、為學習做好規劃等等,這些任務在老師和家長的督促下也能順利做好。
3. 數學常用的數學思想方法有哪些
數學常用的數學思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類思想,類比思想,函數的思想,方程的思想,無逼近思想等等。
1.用字母表示數的思想:這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。
2.數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
3.轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
4.分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
5.類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發思考,不僅是解決日常生活中大量問題的基礎,而且是進行科學研究和發明創造的有力工具.
6.函數的思想 :辯證唯物主義認為,世界上一切事物都是處在運動、變化和發展的過程中,這就要求我們教學中重視函數的思想方法的教學。
7.方程:是初中代數的主要內容.初中階段主要學習了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關系,通過設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用。
4. 中學階段的學生,應該掌握哪些數學思想呢
中學以後的數學會比較抽象,會有一些很多圖形的公式以及圖形的面積,周長計算,還有一些函數的基本接觸。在初中以後需要加強空間感的培養,和它邏輯能力的轉變,以及他的思考能力的訓練。所以可以在平時要講一些做題,盡量的熟悉掌握。而且要充分利用錯題進行知識的總結歸納,做到僅1返3,這樣才能夠更將數學的基本知識全部掌握。
5. 初中數學學習有哪些思維方法可以推薦
初中數學教材中體現出的基本數學思想
數學思想方法是數學學科的精髓,是數學素養的重要內容之一,只有充分掌握領會,才能用效地應用知識,形成能力。那麼,什麼是數學思想呢?數學思想是指現實世界的空間形式和數量關系不反映到人的意識之中,經過思維活動而產生結果,是對數學事實與理論的本質認識。
初中數學整套教材涉及的數學思想三十多種,這里就幾種主要的數學思想作一總結。
一、用字母表示數的思想,這是基本的數學思想之一
在代數第一冊第一章「代數初步知識」中,主要體現了這種思想。例如:
設甲數為a,乙數為b,用代數式表示:(1)甲乙兩數的和的2倍:2(a+b)(2)甲數的1/3與乙數的1/2差:1/3a-1/2b
二、數形結合的思想
「數形結合」是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。實中數學教材中下列內容體現了這種思想。
1、數軸上的點與實數的一一對應的關系。
2、平面上的點與有序實數對的一一對應的關系。
3、函數式與圖像之間的關系。
4、線段(角)的和、差、倍、分等問題,充分利用數來反映形。
5、解三角形,求角度和邊長,引入了三角函數,這是用代數方法解決何問題。6、「圓」這一章中,賀的定義,點與圓、直線與圓、圓與圓的位置關系等都是化為數量關系來處理的。
7、統計初步中統計的第二種方法是繪制統計圖表,用這些圖表的反映數據的分情況,發展趨勢等。實際上就是通過「形」來反映數據扮布情況,發展趨勢等。實際上就是通過「形」來反映數的特徵,這是數形結合思想在實際中的直接應用。
三、轉化思想
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,它是數學基本思想方法之一。下列內容體現了這種思想:
1、分式方程的求解是分式方程轉化為前面學過的一元二次方程求解,這里把待解決的新問題化為已解決的問題來求解,體現了轉化思想。
2、解直角三角形;把非直角三形問題化為直角三角形問題;把實際問題轉化為數學問題。
3、「圓」這一章中,證明圓周角定理進所做的分析:證明弦切角定理的思路:求兩圓的切線長的問題。這些轉化都是通過輔助線來完成的。
4、把三角形或多邊形中的某種線段或面積問題化為相似比問題來解決。
四、分類思想
集合的分類,有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關生活經驗等都是通過分類討論的。
五、特殊與一般化思想
1.「圓」這一章中,證明圓周角定理和弦切角定理時用的是特殊到一般的方法,而相交弦定理及其推論則是一般到特殊的思想運用。
2.「整式乘除」這一章,首先人數和的運算特例中,抽象概括出冪的一般運算性質。例:103 ×103 =(10×10×10)(10×10)=10×10×10×10=105 =103 + 2
a3 ??a3 =a3 + 2 am ??an am + n
乘法公式的推導則是採用一般到特殊的推導過程。
六、類比思想
1. 不等式的性質,一元一次不等式的解法等內容時多採取與等式的性質,一無一次方和的解法等做類比。
2. 通過有理數的相反數、絕對值、運算律等得到實靈敏的相反數、絕對值、運算律等知識。
3.
在二次根式加減的運算中,指出「合並同類二次根式與合並同類項」類似。因此,二次根式的加減可以對比整式的加減進行。
4.
「角的度量、角的比較大小、角的和、差及平他線」,可與線段的相關知識進行類比;度、分、秒的運算可與時、分、秒的運算進行類比。
5. 相似多邊形的性質和相似三角形的性質類比。
七、數式通性
用數的運算所具有的性質,去控索式的同類運算是否也具有這樣的性質,如具有,叫數式通性,整式的乘除這一章中,是由數的性質推知式的性質的;由數的國減推知式的加減的。
八、同類合並思想
這一思想在「整式的加減」這一章中的具體體現是合並同類項。「根式」這一章中的合並同類根式。
九、無逼近思想
在無限不循環小數以及用有理數逼近表示無理數時,體現了無限逼近的思想。
十、對稱變換思想
在
根式乘法、根式除法、√a2 =a(a=0)等內容中,多次運用等價轉化、對稱變化,反用公式的
6. 初中數學學習思維方法都有哪些呢
一、掌握方法,培養能力。
學會學習,掌握學習規律和學習方法,以培養索取知識的能力,乃是當今青少年學習中十分重要的任務。只有憑借著良好的學習方法,才能達到「事半功倍」的學習效果。針對數學學習方法,需要注意「五要」、「五先」、「五會」:
五要:1、圍繞老師講述展開聯想;2、理清教材文字敘述思路;3、聽出教師講述的重點難點;4、跨越聽課的學習障礙,不受干擾;5、在理解基礎上扼要筆記。
五先:1、先預習後聽課;2、先嘗試回憶後看書;3、先看書後做作業;4、先理解後記憶;5、先知識整理後入眠。
五會:1、會制定學習計劃;2、會利用時間充分學習;3、會進行學習小結;4、會提出問題討論學習;5、會閱讀參考資料擴展學習。
二、學會思考,積極探究。
數學是思維的體操。學習離不開思維,數學更離不開思維活動。善思則學得活,效率高;不善思則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。因此,在教學過程中老師對學生要進行思維的訓練和指導,從而使學生學會思考探究。為此,教師應著力於做好以下工作:
1、從學生思維的「最近發展區」入手來開展啟發式教學,培養學生積極主動思考,使學生會思考。
2、從創設問題情境來開展探索式教學,培養學生追根究底的思考習慣,使學生學會深思。
3、從挖掘「問題鏈」來開展變式訓練,培養學生觀察、比較、分析、歸納、推理、概括的能力,使學生學會善思。
4、從回顧解題策略、方法的優劣來開展評價,培養學生去分析,使學生學會反思。
還有就是我們在教學過程中還應善於暴露思維過程,留下一定的思維時間與空間,使學生「思在知識的轉折點、思在問題的疑難處、思在矛盾的解決上、思在真理的探索中」,使學生達到融會貫通的境界。
三、多做習題,養成習慣。
要想學好數學,多做題目是難免的,以熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎。再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程,兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
四、有疑必問,提高效率。
有疑必問是提高學習效率的有效辦法。學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂、沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次,從而提高學習效率。發現了不懂的問題,積極向他人請教。這是很平常的道理。但就是這一點,很多同學都做不到。原因可能有兩個方面:一是,對該問題的重視不夠,不求甚解;二是,不好意思,怕問老師被訓,問同學被同學瞧不起。抱著這樣的心態,學習任何東西都不可能學好。「閉門造車」只會讓你的問題越來越多。知識本身是有連貫性的,前面的知識不清楚,學到後面時,會更難理解。這些問題積累到一定程度,就會造成你對該學科慢慢失去興趣,最後無法趕上步伐。
五、調整心態,正確對待。
應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目。而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。要調整好自己的心態,使自己在任何時候都鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
7. 中學數學中四種重要思想方法
函數思想。方程思想。分類討論。轉化思想
8. 數學基本思想方法有哪些
1、數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
2、轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
3、分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
4、整體思想
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。
5、類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
9. 初中數學思想和方法有哪些
所謂數學思想方法是對數學知識的本質認識,是從某些具體的數學內容和對數學的認識過程中提煉上升的數學觀點,他在認識活動中被反復運用,帶有普遍的指導意義,是建立數學和用數學解決問題的指導思想;是在數學地提出問題、解決問題(包括數學內部問題和實際問題)過程中,所採用的各種方式、手段、途徑等。初中數學中常用的數學思想方法有:化歸思想方法、分類思想方法、數形結合的思想方法、函數思想方法、方程思想方法、模型思想方法、統計思想方法、用字母代替數的思想方法、運動變換的思想方法等。
10. 初中數學思想方法有哪些
『2.分類討論思想所謂分類討論是指對於復雜的對象,為了研究的需要.根據對象本質屬性的相同點和差異性,將對象區分為不同種類,通過研究各類對象的性質,從而認識整體的性質的思想方式。在分類討論中要注意標準的同一性.即劃分始終是同一個標准、這個標准必須是科學合理的;分域的互斥性.即所分成的各類既要互不包含.義要使各類總和等於討論的全集;分域的逐級性,有的問題分類後還可在每,類中丙繼續分類。運用分類討論思想指導數學教學,有利於學生歸納、總結所學的數學知識,使之系統化、條理化.並逐步形成一個完整的知識結構網路,這有利於學生嚴密、清晰、合理地探索解題思路,提高數學思維能力。在初中數學中需要分類討淪的問題主要表現個方而:(扮有的數學概念、定理的論證包含多種情況.這類問題需要分類討論。如平面兒何中二角形的分類、四邊形的分類、角的分類、圓周角定理、圓冪定理、弦切角定理等的證明,都涉及到分類i寸論(約解含字毋參數或絕對值符號的為一程、不等式、討論算術根、正比例和反比例的數中二次項系數、,與圖象的開l:]方向等,由於這些參數的取位不同或要去掉絕對值符號就有不同的結果.這類問題需要分類討論(3)有的數學問題.雖結論惟一但導致這結論的前提不盡相同.這類問題也要分類討論3一效形結合思想所謂數形結合是指抽象的數學語言與形象直觀的圖形結合起來.從而實現由抽象向具體轉化的一種思維方式。著名數學家華羅庚說過:數缺形時不直觀,形少數時難人微有些數最關系.藉助於圖形的性質,可以使許多抽象的概念和復雜的關系直觀化、形象化、簡單化,而圖形的一些性質.藉助於數量的計算和分析.得以嚴謹化。在初中階段,數形結合的形可以是數軸、函數的圖象和幾何圖形等等.它們都具有形象化的特點數形結合思想在初中數學中主要表現在以下兩個方面;(l)以形助數,幫助學生深刻理解數學概念如教師可以用數軸上點和實數之間的對應關系來講清相反數、絕對值的概念以及比較兩個數大小的方法;運用函數圖象的性質討淪一元三次方程的根以及討論一7乙一次小等式等等(2)以數助形,幫助學生簡化解題方法。初中數學中還滲透了類比、歸納、聯想等數學思想方法這些思想力一法之間,是相互滲透、互相促進的,在數學教學中要有機地結合起來