導航:首頁 > 數字科學 > 怎麼學好大一數學內容

怎麼學好大一數學內容

發布時間:2022-06-07 05:32:22

『壹』 大一高數應該怎麼學

我學的也是同濟版的,每次考試都是八九十分啊!我以前數學也不怎麼樣!
記住,大學學習不能再像高中那樣,去摳每個細節,而要系統的學,把握整本書的結構,其實也就是學會總結,說到哪章你能把知識點說出來,而每個知識點你都掌握好,考試一定沒問題。還有就是把握重點,注意老師上課總結或強調的,也許那就是考試的內容,一般來說大學里的考試都不會太難,不像高中那樣,大學里考的都是那些基本的東西,所以如果只是為了應付考試,那沒什麼困難的,注意方法就行了。
但是如果你准備考研,那高數你現在學時就應該自己多去鑽研一下,那麼到最後你准備起來就會輕松很多!
呵呵,說了這么多,還是得靠你自己!祝你好運!

『貳』 准大一新生如何學好數學分析

1、貫徹傳授知識和培養能力相結合,面經培養能力為核心的原則,通過傳授知識,有計劃、有步驟、有系統地培養運用數學分析方法的能力,培養與發展創造性思維能力。 2、貫徹抽象與具體相結合,而以培養與發展學生的抽象思維與演繹能力為主的原則。 3、貫徹鞏固與發展相結合,以形成知識單元鏈為核心的原則,促使學生的知識不斷深化,形成知識的有機整體

『叄』 如何學好大一高等數學

你不是數學專業吧!首先要明白你想不想學好?是為了應付考試還是真正學到東西.大學不比高中,因為還要發展自己其他的事情,沒那麼多時間與精力去超前學習了,所以作業還是要做的.大學里的課程如果真的要專研深一點,那可能要象高中一樣地學習,而且絕對不比高中輕松!但是期末考試是很簡單的!它就考查一些直接的知識點,並沒有象高中那樣延伸,你或許問一問比你高一屆的,基本上考的都是題庫裡面的原題!我在想這樣一個問題,如果大學也來舉行一個數學競賽,象高中那樣,把所學知識加倍延伸,我可以說,一些期末考試得一等獎學金的同學,連門都可能摸不到!我的意思是說,如果真的是想搞專研,投入你大學所有的時間也不過份!

『肆』 大一的時候如何學好高等數學

「學習考試,基礎先行」!基本知識是最重要的,最應該首先掌握的,然後才有資格去做題。 在學習基礎理論時配合著獨立去做書上的例題和課後習題,可以加深你對基本理論的理解和記憶,事半功倍。 其實做好以上兩點,考試及格已經沒問題了。如果想得高分,還需要往下繼續進行。 除了書上的題目,再適當找一些課外習題來做,難度適中即可,不必去做偏題、怪題。做題切忌思考過程中翻看答案,不利於獨立思考能力的養成。

『伍』 怎樣學好大一的數學

把微積分學好就行了,尤其是積分。學好數學最重要的是你要真正理解書上的公式,再做題綜合運用一下就差不多了

『陸』 大一新生怎麼學好數學分析

1、課前預習。適當預習,可使聽課有的放矢、重點、難點明確,從而提高聽課效率。預習的目的不是看懂全部內容(當然,能看懂的決不放過),主要是要對教材的內容有一個大概的了解,要了解預習內容需要已學過的那些知識,是否掌握,那些內容能看懂,那些看不懂,並對各種情況用不同的標記標出,以便在聽課時分別弄懂。
2、聽懂概念是重點,要了解概念的來龍去脈,搞清各概念間的關系,尤其是教師強調的地方,要引起注意,這往往是容易出錯的地方。
3、聽定理證明講授時,要聽其證明的思路和方法,注意教師的分析,而不要過於拘泥證明過程中的每一個細小步驟,但對主要步驟要聽懂,下課之後再自行補充,更不要在某一地方卡住之後,中止聽課。
4、要學會合理安排聽課的精力和體力。整堂課上精力集中做不到,建議同學們把主要精力放在概念講述,定理證明方法,易出錯的地方的介紹等。
5、要養成聽課記筆記的習慣。在聽課的同時做好筆記,這對集中注意力聽好課以及復習鞏固聽課內容、掌握知識要點,培養獨立思考深入鑽研的良好學風,扥都有一定的作用。

『柒』 怎麼學好大一的數學和英語

說說我自己的吧
我大一時英語主要就是吃老本,唯一做的就是偶爾背背單詞,成績也不算差,80出頭吧~
數學比較難,要多花一些時間,課外參考書,我想不需要,你能把書上內容全部搞定就很了不起了,我都沒把書上作業全做完,考試不難,也有90+了,不過對於書上的一些知識點要摸透,多想想,其他沒什麼問題。
在有就是別逃課哦!!!~~

『捌』 怎樣學好大學數學

首先,老師講課一定要認真聽,作業認真完成,這是學好數學的必要條件,它的重要性已不必多說。另外,學校有時會為學生統一訂購一些教學輔導書籍,可充分利用。有些超常學生可以加強學習的深度、廣度、但基本功--基礎知識萬萬不可忽視。

其次,要注意效率。不作"重復勞動",每次預復習都要有比較明確的目的。在此,我想提出一點:過多的參考書是毫無必要的。看透一本參考書往往優於"看兩本書,卻均未看透"的情形。著名數學家華羅庚說過:"讀一本書,要越讀越薄。"這就是說,要抓住統帥全書的基本線索,抓住貫穿全書的精神實質。

這不禁使我想到,我們現在每一個學生在汲取知識的同時,都在為自己編織一張知識網路,其主要作用是串連所學知識,提高學習效率。知識網路應當編織得疏密得當。太疏了,不能使自己的思維四通八達,縱橫恣肆;太密了,會影響主線的清晰度,得不償失。在此不妨舉一例:有一位同學,平時學習極其用功,做的數學題極多,但不去理解主旨,幾乎把每本參考書中的每句話都當成重點,以求"滴水不漏"。更可悲的是,在重復勞動之中,他從來不將自己冗長的思維有條理的整理出來,請教老師、同學的一些問題也往往很"低級"--自己腦子稍稍轉個彎就行了!由於不分主次地學習,不注重培養解題感覺,他的成績始終上不去,這就是把書"越讀越厚"的後果。數學的解題往往靈活多變,每個人解數學題都有自己的解題思路,提高學習效率。

許多數學題都是耐人尋味的。立體幾何使我們了解空間的藝術、數學歸納法讓我們領略證明的技巧……中國足球隊主教練米盧諾維奇崇尚"快樂足球",那麼,我們不妨享受數學,體會數學所帶來的樂趣。多思考,多享受,多收獲,這就是我說的第三點。平時學習中,必須留相當一部分題目給自己充分思考,尤其是難題,哪怕想它一小時甚至更長的時間。解難題,只要經過充分思考,即使沒有做出,整個思維過程也是有價值的。因為難題往往綜合較大,能力性較強,對解題者連續發散思維的要求較高,所以解題者往往會有一個長時間的探索過程。在整個探索過程中,解題者不斷尋找突破口,不斷碰壁,不斷調整思維功勢,不斷進展。與此同時,解題者將自己所學到的不少知識、技巧試用一番,起到了很好的復習效果。解題者也通過做題,檢驗了自己掌握有關知識的程度,便於為此後的學習定下適當的目標。記得在《中學數學》雜志中有一個不等式證明題,頗有難度。我苦思冥想四個小時,終於得出了一個優於參考解答的解法。這令我欣喜若狂,當然也令我對此類不等式問題有了更深的理解。這里順便提一下,多思考是培養一個人數學綜合能力的好方法,但有些同學往往忽視計算能力,疏於實踐。盡管考試可以利用計算器,(競賽中不能使用,)但計算器並不能完成代數式、解析式、三角式等運算。有的時候同學們解題思路正確,只是計算有誤,導致最終出錯,這是很可惜的。我不擅長解析幾何,其中一個原因就是解析幾何的計算量大,如果用的方法不好,計算會更繁瑣,更容易出現錯誤。願讀者和我共同努力,使自己具備過硬的計算能力。

除了以上三點,我想,無論是在學習過程中還是在復習迎考階段,都要注意心態調整。一次考砸了,原因是多方面的,可能是知識未掌握牢固,可能是解題感覺不到位,可能是前面所說的計算錯誤,可能是狀態不佳,可能是特殊原因,也可能是太想考好以致心態失衡。我覺得一個人的心態不應過度地為考分所影響,要時刻記住,充足的積累是發揮穩定的保證。平時刻苦鑽研,考前復習中,抽出時間做一定量的中等難度習題,來提高解題熟練程度,並增強信心。考試時保持平靜的心情和興奮的狀態,這樣就可能爆發出無窮的能量。當然,在任何時刻,還要記住一句話;"只滿足於進步,不滿足於成功。"

有的同學知識掌握得不錯,苦於發散思維能力不強,對此,可針對性地購買一些有關發散思維的同步輔導書籍。(註:本人對書市不甚了解。)我覺得同學們不妨逆向思維,改編甚至自編一些題目,並自己解答。一來可以復習已做過的題目,使自己在解決類似問題時更能熟練應對;二來可以探索性地研究,細微的條件變化能否或如何影響解題過程:此外,還可以初步領略命題思想,以此拓廣思路,深化解題思想。

編題目讓你更容易舉一反三。盡管編一道新題往往比解一道習題困難數倍,但通過編題過程中的發散思維所得到的收獲,也往往比做十道題都大。適當抽出少量時間編解題目,也是一個不錯的探索學習的方法。

以上是我的學習心得,僅供參考。有一點需要說明,各人因其不同情況,在無形之中已逐步形成一個適合自己的學習方法,只需適當調整無須刻意改變。其實學數學和學其它學科是可以相互借鑒的。一句話:只要肯動腦筋,事情能做好。
進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。

一、 高中數學與初中數學特點的變化

1、數學語言在抽象程度上突變

初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。

2、思維方法向理性層次躍遷

高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。

3、知識內容的整體數量劇增

高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。

4、知識的獨立性大

初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。

二、如何學好高中數學

1、養成良好的學習數學習慣。

建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

2、及時了解、掌握常用的數學思想和方法

學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。

3、逐步形成 「以我為主」的學習模式

數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。

4、針對自己的學習情況,採取一些具體的措施

² 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中

拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。

² 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再

犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。

² 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化

或半自動化的熟練程度。

² 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,

使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。

² 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課

外題,加大自學力度,拓展自己的知識面。

² 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏

固,消滅前學後忘。

² 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解

題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。

² 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學

思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。

² 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而

不是一味地去追求速度或技巧,這是學好數學的重要問題

『玖』 如何學習高數大一必看

首先要理清高數總體的知識框架。高數的主體是微積分。
微積分分為微分學和積分學兩部分,微分學和積分學的基礎和核心思想都是極限,極限的思想是貫穿於始終的,所以首先要掌握極限的定義。
微分學的中心問題是求導問題,反映在幾何上就是切線問題,求導也就是求函數變化率的極限,所以一定要掌握和理解導數的定義;積分學的中心問題是求積問題,求積是求導的逆過程,難度比微分學要大,積分分為不定積分和定積分,值得注意的是,不定積分和定積分的定義並不相同,但是定積分可以通過不定積分的演算法來求解。
微積分中的難點是復合函數的求導和求積問題,也就是換元思想的應用,需要多做題來更好的理解。
然後要弄清微積分的考點,這樣會更有針對性,比如等價無窮小替換,求極限,連續,間斷,分斷函數分斷點處導數的求法,高階導數,洛必達法則,最值問題(求一階導數),凹凸問題(求二階導數),用換元法和分部積分法求積分等。
課本一定要多看幾遍,每一遍都肯定能有新的收獲。

閱讀全文

與怎麼學好大一數學內容相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1422
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1006
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1667
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071