㈠ 我怎麼才能學好數學
數學如何學好?
你一定會越學越有趣,越學越輕松!
思維也會越來越活躍,頭腦也會越來越聰明!
㈡ 如何學數學
1買一個數學光碟,邊玩邊學。
學習成績就能提高!!
2數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識怎樣才能學好數學
★怎樣才能學好數學?
要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。
事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。
一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。
二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。
三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。
四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。
的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
*****************************************************************************************************
一、 高中數學課的設置
高中數學內容豐富,知識面廣泛,將有:《代數》上、下冊、《立體幾何》和《平面解析幾何》四本課本,高一年級學習完《代數》上冊和《立體幾何》兩本書。高二將學習完《代數》下冊和《平面解析幾何》兩本書。一般地,在高一、高二全部學習完高中的所有高中三年的知識內容,高三進行全面復習,高三將有數學「會考」和重要的「高考」。
二、初中數學與高中數學的差異。
1、知識差異。
初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是「0—1800」范圍內的,但實際當中也有7200和「—300」等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習「排列組合」知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=-1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以後的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課後老師布置作業,然後通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握後再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其後半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由於學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那麼就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變數的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們採用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變數的分析,探索出分析、解決問題的思路和解題所用的數學思想。
三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、 有良好的學習興趣
兩千多年前孔子說過:「知之者不如好之者,好之者不如樂之者。」意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。「好」和「樂」就是願意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的「認識」過程,這自然會變為立志學好數學,成為數學學習的成功者。那麼如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是 的數是_____.②從數軸角度理解:什麼樣的兩點表示數是互為相反數的。(關於原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
3首先,老師講課一定要認真聽,作業認真完成,這是學好數學的必要條件,它的重要性已不必多說。另外,學校有時會為學生統一訂購一些教學輔導書籍,可充分利用。有些超常學生可以加強學習的深度、廣度、但基本功--基礎知識萬萬不可忽視。
其次,要注意效率。不作"重復勞動",每次預復習都要有比較明確的目的。在此,我想提出一點:過多的參考書是毫無必要的。看透一本參考書往往優於"看兩本書,卻均未看透"的情形。著名數學家華羅庚說過:"讀一本書,要越讀越薄。"這就是說,要抓住統帥全書的基本線索,抓住貫穿全書的精神實質。
這不禁使我想到,我們現在每一個學生在汲取知識的同時,都在為自己編織一張知識網路,其主要作用是串連所學知識,提高學習效率。知識網路應當編織得疏密得當。太疏了,不能使自己的思維四通八達,縱橫恣肆;太密了,會影響主線的清晰度,得不償失。在此不妨舉一例:有一位同學,平時學習極其用功,做的數學題極多,但不去理解主旨,幾乎把每本參考書中的每句話都當成重點,以求"滴水不漏"。更可悲的是,在重復勞動之中,他從來不將自己冗長的思維有條理的整理出來,請教老師、同學的一些問題也往往很"低級"--自己腦子稍稍轉個彎就行了!由於不分主次地學習,不注重培養解題感覺,他的成績始終上不去,這就是把書"越讀越厚"的後果。數學的解題往往靈活多變,每個人解數學題都有自己的解題思路,提高學習效率。
許多數學題都是耐人尋味的。立體幾何使我們了解空間的藝術、數學歸納法讓我們領略證明的技巧……中國足球隊主教練米盧諾維奇崇尚"快樂足球",那麼,我們不妨享受數學,體會數學所帶來的樂趣。多思考,多享受,多收獲,這就是我說的第三點。平時學習中,必須留相當一部分題目給自己充分思考,尤其是難題,哪怕想它一小時甚至更長的時間。解難題,只要經過充分思考,即使沒有做出,整個思維過程也是有價值的。因為難題往往綜合較大,能力性較強,對解題者連續發散思維的要求較高,所以解題者往往會有一個長時間的探索過程。在整個探索過程中,解題者不斷尋找突破口,不斷碰壁,不斷調整思維功勢,不斷進展。與此同時,解題者將自己所學到的不少知識、技巧試用一番,起到了很好的復習效果。解題者也通過做題,檢驗了自己掌握有關知識的程度,便於為此後的學習定下適當的目標。記得在《中學數學》雜志中有一個不等式證明題,頗有難度。我苦思冥想四個小時,終於得出了一個優於參考解答的解法。這令我欣喜若狂,當然也令我對此類不等式問題有了更深的理解。這里順便提一下,多思考是培養一個人數學綜合能力的好方法,但有些同學往往忽視計算能力,疏於實踐。盡管考試可以利用計算器,(競賽中不能使用,)但計算器並不能完成代數式、解析式、三角式等運算。有的時候同學們解題思路正確,只是計算有誤,導致最終出錯,這是很可惜的。我不擅長解析幾何,其中一個原因就是解析幾何的計算量大,如果用的方法不好,計算會更繁瑣,更容易出現錯誤。願讀者和我共同努力,使自己具備過硬的計算能力。
除了以上三點,我想,無論是在學習過程中還是在復習迎考階段,都要注意心態調整。一次考砸了,原因是多方面的,可能是知識未掌握牢固,可能是解題感覺不到位,可能是前面所說的計算錯誤,可能是狀態不佳,可能是特殊原因,也可能是太想考好以致心態失衡。我覺得一個人的心態不應過度地為考分所影響,要時刻記住,充足的積累是發揮穩定的保證。平時刻苦鑽研,考前復習中,抽出時間做一定量的中等難度習題,來提高解題熟練程度,並增強信心。考試時保持平靜的心情和興奮的狀態,這樣就可能爆發出無窮的能量。當然,在任何時刻,還要記住一句話;"只滿足於進步,不滿足於成功。"
有的同學知識掌握得不錯,苦於發散思維能力不強,對此,可針對性地購買一些有關發散思維的同步輔導書籍。(註:本人對書市不甚了解。)我覺得同學們不妨逆向思維,改編甚至自編一些題目,並自己解答。一來可以復習已做過的題目,使自己在解決類似問題時更能熟練應對;二來可以探索性地研究,細微的條件變化能否或如何影響解題過程:此外,還可以初步領略命題思想,以此拓廣思路,深化解題思想。
編題目讓你更容易舉一反三。盡管編一道新題往往比解一道習題困難數倍,但通過編題過程中的發散思維所得到的收獲,也往往比做十道題都大。適當抽出少量時間編解題目,也是一個不錯的探索學習的方法。
以上是我的學習心得,僅供參考。有一點需要說明,各人因其不同情況,在無形之中已逐步形成一個適合自己的學習方法,只需適當調整無須刻意改變。其實學數學和學其它學科是可以相互借鑒的。一句話:只要肯動腦筋,事情能做好
㈢ 怎麼學數學
依我個人經歷,你可以找一些數學智力題或奧賽中的有趣的
題,多做做,這樣也許會增加你對數學的興趣.接著你再做練
習冊里的題.也許有用.
我就是從奧賽書中獲得的樂趣,我自認為現在數學學的不錯,
我初三,你呢? +QQ519016783(永遠相伴)
㈣ 怎麼樣能學好數學
數學是必考科目之一,所以從第一天開始,我們一定要認真學習數學。那麼,如何學好數學呢?有幾種方法以供參考:
考勤,課後及時復習的課程重點。
接受新的知識,在課堂上的數學能力,這樣的特點,重視課程的學習效率,尋求正確的學習方法。為了跟上的想法?老師的課,就開始認真的思維預測下面的步驟,比較自己的解題思路與教師說。尤其是要掌握的基本知識和基本技能的學習類審查後不留下任何疑問。首先做各種練習前老師所講的知識的記憶再次的各類公式的推理過程,正確地認識,為了慶祝,要盡量記住,而不是移動目前還不清楚立即翻開的書。認真獨立經營,勤於思考,從某種意義上說,它不應該導致的學習方式不明白,問的一些問題是不清楚自己的想法,發現它難以解決的問題,應讓自己冷靜下來仔細分析的主題,努力解決自己的。每個階段的學習進行梳理和總結,綜合知識的點,線,面交織成知識網路,納入自己的知識系統。
適當多問題,養成良好的解決問題的習慣。
為了學習數學,做的題目是不可避免的熟悉的各種問題的解決思路。開始從基本問題開始,課本的練習,反復的實踐奠定了基礎,找到一些課外練習,以幫助開拓思路,提高他們的分析,解決問題的能力,掌握一般的解決問題的法律。配備的易錯題,錯題集,寫出自己的解題思路和正確的解決問題的過程中,共同確定,為了糾正自己的錯誤。在平時要養成良好的解決問題的習慣。他們的精力高度集中,使大腦興奮,思維敏捷,在考試中輕松進入最佳狀態。實踐證明:關鍵時刻,你的問題解決能力的習慣是通常的做法沒有什麼不同。解決問題的馬虎,粗心,馬虎,等等,往往是完全暴露在期末考試,所以平時養成良好的解決問題的習慣是非常重要的。
調整心態,正確對待考試的。
首先,重點應是知識的基礎上,對三個方面的基本技能,基本方法,每次考試的基本主題,而這些問題,更全面的主題交換認真考慮,並試圖理出頭緒,完成的問題總結。調整好自己的心態,以便在任何時候鎮靜,思路有條不紊地克服浮躁的情緒。特別是,要對自己有信心,永遠鼓勵自己,除了自己,從來沒有讓我下來,有它自己不崩潰,誰也無法摧毀我的驕傲。
在考試前准備和練習常規的問題,並擴大自己的想法,避免考試,以保證正確率的前提下,提高解決問題的速度。第十二掌握一些簡單的基本問題有充分點,對於某些問題,我們應該嘗試得分,要學會嘗試在考試中得分,自己的水平發揮正常甚至是非凡的。
因此,它是必要的數學學習必須找到自己的方式來學習,了解數學的特點,進入數學的廣闊天地。
************************************************** ************************************************** *
一所高中的數學課設置
高中數學內容豐富,范圍廣泛的知識,就會出現:「代數」上,下冊,「立體幾何和平面解析幾何」四課本,高一年級學習結束的「代數」上冊,立體幾何兩本書。高中將學習完「代數」下冊和平面解析幾何的兩本書。在一般情況下,高中二年級的三年的高中高中的知識內容全部結束,第三年進行全面檢討高中數學「考試」重要「入口」。
二,初中數學,高中數學的差異。
1知識的差異。
初中數學小知識,重量輕,便於難度知識屋頂上的瓷磚。高中數學知識,初中數學知識的宣傳和推廣,同時也完美的初中數學知識。如:概念的角度初中學習「0-1800」的范圍,但實際7200和「-300」等距為此,高中壟斷的概念推廣到任意角度,可以所述包括正負,包括的角度的大小。又如:高中學習「立體幾何在三維空間的體積和表面積?幾何實體,排列也學習知識,為了解決排隊問題種類。如:①3人排隊,有幾個排隊方法(= 6);②四人乒乓球雙打比賽,有幾場比賽發揮?(A = 3)和高中將學習統計數據陣列的數學方法。初中負數的平方根是毫無意義的規定,I2 = -1,但在高中時,和的平方根-1±我。數的概念擴展到復雜的數的概念推廣,逐步學生在學習知識的學習。
2,學習的差異。
(1)初中課堂教學的簡單知識,課堂教的教師,速度慢,爭取全面型學生了解的知識和解決問題的方法,課後老師布置的作業,然後通過大量的課堂外練,課外指導,實現知識的反反復理解,直到學生掌握。教訓學生學習的同時學習高中數學課程(九),每天至少上六節課,自習三節課的學習時間將大大減少相對初中老師布置課外標題減少,這樣集中數學學習的時間相對較少比在初中高學校的數學教師監控每個學生的工作和課外練習相對於初中的,可實現相對初中高學校知識作為一個新的教訓每一個學生掌握前。
(2)差異的模仿和創新。
初中學生模仿做題,他們模仿老師的思維推理教多,而高中模仿做題,思考的學生,但知識的困難和廣泛的知識,學生不能全部模仿,模仿訓練學生做題,也不能培養學生的思維能力,學生的數學成績只屬一般水平。高考數學的訪問,以考察學生的能力,避免學生高分低能,避免刻板,促進創新思維,培養學生的創造文化的能力。大量的初中學生模仿的刻板印象的學生帶來負面的思維,高中學生帶來了保守,思想僵化,封閉豐富的學生對創新的精神。如果學生在解決:比較2A的大小時,無論是錯誤的,或不回答。大部分學生將不屬於討論。
3,學生的自主學習能力的差異
初中學生的自我學習能力低,解決問題的方法及數學思維的一般考試基本上重復了培訓初中學校的老師,高老師學生的學生深刻理解的問題,集中表現在他的耐心的解釋和大量的培訓和學生的講座,只需要記住結論,標題(不是全部)可以做的,學生並不需要自我學習。然而,高中的知識范圍廣泛,知識,所有教師完成訓練演習,在高考考試類型是不可能的,只能由小於典型的12例子來解釋這種類型的演習掌握,如果不是自我學習,不使學生依靠大量的閱讀理解失去了一個類型練習的解決方案。科學在不斷的發展,考試在不斷的改革,高考的綜合改革繼續深入發展,在不斷的多樣化,近年來的應用程序類型的問題,探索式的問題和開放式標題的數學問題通過學生的自主學習的深刻理解和創新,以適應現代科學的發展。
事實上,的自我學習能力的提高是又一個生活的需要,他代表一個人的識字率從一個人的生命只有18 - 24年學習的導師在生活中之後,最美妙生活的人學了一輩子,依靠自我研究最終實現自力更生。
4,的思維習慣上的差異
初中學生學習數學知識,低層次的知識,知識屋頂,瓷磚中的實際問題的思想,幾何的限制范圍內的,我們是在一個真正的三維空間中的接觸的生活,但初中學習平面幾何,那麼就不能成為嚴格的邏輯思維和判斷的三維空間。代數數范圍僅限於思維的實數,就不能深刻的解決方程根的類型。多元化和廣泛的知識,高中數學系的學生做了全面,細致的,深刻的,嚴謹的分析和解決問題。學生們也將高品質的思考。提高學生的思想進步的。
5,量化指標的差異
初中數學,標題,已知和結論常數更普遍的方式,得到的答案是一個常數,定量。學生在對問題的分析,主要是通過定量分析的問題,這種思維和解決問題的過程中,只是片面的限制來解決這個問題,大規模的,廣泛使用的代數高中數學學習的退化探索問題的普遍性和特殊性。如:求解一元二次方程,我們使用來求解方程AX2 + BX + C = 0(A≠0),討論是否有它的根和的情況下,所有的根,因此,學生快速掌握所有的解決方案一元二次方程。此外,在高中時,我們也變數分析來探索分析,解決問題的思維和解決問題的數學思維。
三,如何學習高中數學
良好的開端是成功的一半,高中數學課即將開始初中的知識,但比初中數學知識的系統。學習高中數學函數,該函數是高中數學的重點,高中數學所扮演的角色的輪廓,其特色在整個高中數學知識,包括數學數學思維,如:函數和方程的思想,數形結合思想,它也是高考的重點,近年來,的高考壓軸標題中才能正常有權調查方法。高考相關問題的思考練習的功能占整個試卷的60%以上。
1,學習興趣
兩千年前,孔子說:「誰知道更好比好,好不如樂之者。」說,做一件事,知道它,了解它勝過愛它,愛它,是不是不如樂在其中。 「好」與「樂」樂於學習,喜歡學習,這是利益。興趣是最好的老師,興趣愛,愛去實踐它,以達到利益將是樂在其中,形成一個學習的主動性和積極性。在數學學習中,我們把這種從自發上升到意識,有理性的「理解」的過程,這自然成為決定學習數學,成為數學學習成功的感官享受的。如何營造良好的學習數學的興趣呢?
(1)預覽疑問,知識的好奇心。
(2)講座,以配合老師講課,滿足感官的興奮性。重點解決的講座在預覽疑問,在課堂上老師的提問,停頓,教具和演示的模型被認為聽音樂,回答問題,從任課老師及時地,以發展的思維與老師同步,以改善你的問題的評價老師的精神,成為鞭策學習的動力。
(3)思維注意總結,挖掘你的學習潛力。
注(4)演講數學思維,向老師解釋為什麼這樣的想法,這是怎麼產生的呢?
(5)回歸自然的概念。所有受試者總結從實際問題中,回歸現實生活中的數學概念,如角度知己坐標系統生成的,生成的極坐標系統的概念,是從現實生活中抽象出來的??。只有回到現實中,為了使實用,可靠的概念,在應用程序的概念,判斷,推理完全的理解。
2良好的學習數學的習慣。
習慣是一個條件反射和鞏固下來,自然需要經過反復實踐的審慎的和持久的。建立一個良好的學習數學的習慣,使自己的學習,有序的和容易。高中數學的良好習慣:許多問題,勤思考,善於動手,重新歸納,注意應用程序。學生在學習數學的過程中,老師傳授的知識應該被翻譯成自己的特殊語言,並永久記憶在他的腦海里。此外,還要確保每天有一定量的自學,以擴大范圍的知識和能力開發自己的學習。
3,有意識地培養自己的能力
數學能力包括:邏輯推理能力,抽象思維能力,計算能力,空間想像和解決問題的能力的五大能力。的能力,在不同的數學學習環境中得到鍛煉。平時學習要注意開發不同的學習空間,參與的所有有用的學習和實踐活動,如數學課,數學競賽,有獎問答及其他活動。例如,通常觀察,空間想像實例凈化思維,在大腦中的空間高度抽象的實體,並在大腦中的推理分析。其他能力必須學習,理解,培訓,應用程序的開發。尤其是,為了發展這些能力的教師將被精心設計的「知識產權課」和「心理問題」,如練習一個給定的問題的答案,舉一反三的訓練歸類,應用模型,計算機多媒體教學開好課型,類類型,一定要使用專用的,全方位的智力參與和自己的能力,最終實現全面發展的學生的數學能力。
四,其他注意事項
1,要注意改造思想學習。
學習過程中運用所學知識的理解和解決未知的知識。數學學習過程會導致與舊知識,新知識,解決新問題,然後用它來更新自己的知識來解決。初中知識是基礎,如果新知識與舊知識可以回答,你將有一個轉化思想。看,學習是不斷轉化為更新舊知識的繼承和發展。
2,學會數學教科書中數學的思維方式。
數學教科書披露的數學思想溶於數學知識系統,因此,及時作出數學思維能力,歸納概括是必要的。為了推廣數學思維一般分為兩個步驟:首先,以揭示數學思想內容,即將到來的數學對象的屬性或關系已提取的法律,明確知識解決數學思維接觸提取的整體框架。執行這兩個步驟的自我學習的教室上課及課外的措施。
課堂學習是數學學習的主戰場。課堂教師解釋分解教科書中的數學思維和數學能力的培養高中學生學習的數學知識,教師組織的研究活動,課本的數學概念,定理,最大程度上了解采礦的原則。初中學習的相反數概念教學中,任課教師經常有以下幾點認識:①從定義的角度,3,-5,相反數的相反數是_____的數量。了解②軸角度:什麼兩分,表示數的相反數。 (關於原點對稱)③理解:在絕對數的絕對值_______兩個相反數。 (4)零兩個數的相反數?這些不同觀點的教學,拓寬學生的思維,提高思維的質量。希望同學們把握好課堂上學習的主戰場。
學習數學的幾點建議。
1,記數學筆記,特別是不同的側面,概念理解和數學規律,加上老師准備高考和課外知識。
2,建立一個數學錯誤的糾正。平時容易出現錯誤的知識或推理記載,並防止再犯。爭取找到故障分析錯誤,糾錯,防錯。到達:從正面和背面開始深入的了解正確的事情,回答問題;水果朔得到的底部錯誤的原因,掌握,以對症下葯,完整,嚴謹的推理。
3記憶數學規律和數學結論。
4,與學生建立了良好的合作關系,成為「老師」,形成數學學習「互助組」。
5,爭做數學課外活動的問題,提高自學的努力。
6反復鞏固,消除放學後忘了。
7,學會總結歸類。可以:①從數學思想分類②③分級分類的知識應用程序的解決方法
㈤ 怎麼學數學
該記的記,該背的背,不要以為理解了就行
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9*9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。幾個重要的數學思想
1、「方程」的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、「數形結合」的思想
大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的思維訓練,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。
3、「對應」的思想
「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。這就是運用「對應」的思想和方法來解題。初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應。「對應」的思想在今後的學習中將會發揮越來越大的作用。自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班裡幾十個學生,同一個老師教,差異那麼大,這就是學習主動性問題了。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結合新課中的新規定去分析、理解新的學習內容。由於數學知識的無矛盾性,你所學過的數學知識永遠都是有用的,都是正確的,數學的進一步學習只是加深拓廣而已。因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什麼聽老師講新課時總有一種似懂非懂的感覺,或者是「一聽就懂、一做就錯」,就是因為沒有預習,沒有帶著問題學,沒有將「要我學」真正變為「我要學」,力求把知識變為自己的。學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。自信才能自強
在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎麼知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復你。也同樣要先分析、研究,找到正確的思路後才向你講授。不敢去做稍為復雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現。在數學解題中,自信心是相當重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學過的知識把它解出來。要敢於去做題,要善於去做題。這就叫做「在戰略上藐視敵人,在戰術上重視敵人」。
具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。當然,做題先從哪兒下手是一件棘手的事,不一定找得准。但是,做題一定要抓住其特殊性則絕對沒錯。選擇一個或幾個條件作為解題的突破口,看由這個條件能得出什麼,得出的越多越好,然後從中選擇與其它條件有關的、或與結論有關的、或與題目中的隱含條件有關的,進行推理或演算。一般難題都有多種解法,條條大路通北京。要相信利用這道題的條件,加上自己學過的那些知識,一定能推出正確的結論。
數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。當然,題目做得多也有若干好處:一是「熟能生巧」,加快速度,節省時間,這一點在考試時間有限時顯得很重要;一是利用做題來鞏固、記憶所學的定義、定理、法則、公式,形成良性循環。
㈥ 怎樣學才能學好數學
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
㈦ 如何學數學
怎樣學好數學
中山名師 中學數學高級教師 楊明球
著名社會活動家,聯合國教科文組織總幹事埃德加·富爾在其所著《學會生存》一書中指出:未來的文盲不單是指那些不識字的人,而是更廣泛地指那些不會學習的人,微軟公司總裁比爾·蓋茨也說:在未來的世界,財富將首先依賴於人們的學習與創新能力,……對於那些擁有學習與創新能力的人來說,新時代是一個充滿機遇與希望的世界,這兩位著名人物的話告訴我們,隨著二十一世紀信息時代的降臨,學習與創新能力將成為人們賴以生存和發展的最重要條件,現在的中學生,將要在二十一世紀大顯身手,為了迎接二十一世紀的挑戰,我們既要不斷提高自己的科學知識水平,又要逐步學會學習和研究的方法,提高學習和創新的能力。
數學是中學課程中的最重要學科之一。學好數學是廣大同學十分關心的問題。那麼究竟怎樣才能學好數學呢?
首先要有學習數學的興趣。兩千多年前的孔子就說過:「知之者不如好之者,好之者不如樂之者。」這里的「好」與「樂」就是願意學、喜歡學,就是學習興趣,世界知名的偉大科學家、相對論學說的創立者愛因斯坦也說過:「在學校里和生活中,工作的最重要動機是工作中的樂趣。」學習的樂趣是學習的主動性和積極性,我們經常看到一些同學,為了弄清一個數學概念長時間埋頭閱讀和思考;為了解答一道數學習題而廢寢忘食。這首先是因為他們對數學學習和研究感興趣,很難想像,對數學毫無興趣,見了數學題就頭痛的人能夠學好數學,要培養學習數學的興趣首先要認識學習數學的重要性,數學被稱為科學的皇後,它是學習科學知識和應用科學知識必 的工具。可以說,沒有數學,也就不可能學好其他學科;其次必須有鑽研的精神,有非學好不可的韌勁,在深入鑽研的過程中,就可以 略到數學的奧妙,體會到學習數學獲取成功的喜悅。長久下去,自然會對數學產生濃厚的興趣,並激發出學好數學的高度自覺性和積極性。
有了學習數學的興趣和積極性,要學好數學,還要注意學習方法並養成良好的學習習慣。
知識是能力的基礎,要切實抓好基礎知識的學習。數學基礎知識學習包括概念學習,定理公式學習以及解題學習三個方面。學習數學概念,要善於抓住它的本質屬性,也就是區別於這個概念和其他概念的屬性;學習定理公式,要緊緊抓住定理方向的內在聯系,抓住定理公式適用的范圍及題型,做到得心應手地應用這些定理公式,數學解題實№上是在熟練掌握概念與定理公式的基礎上解決矛盾,完成從「未知」向「已知」的轉化。要著重學習各種轉化方式,培養轉化的能力。總而言之,在學習數學基礎知識中,要注意把握知識的整體精髓, 悟其中的規律和實質,形成一個緊密聯系的整體認識體系,以促進各種形式間的相互遷移和轉化。同時,還要注意知識形成過程無處不隱含著人們在教學活動中解決問題的途徑、手段和策略,無處不以數學思想、方法為指南,而這也是我們學習知識時最希望要學到的東西。
數學思想方法是知識、技能轉化為能力的橋粱,是數學結構中強有力的支柱,在中學數學課本里滲透了函數的思想,方程的思想,數形結合的思想,邏輯劃分的思想,等價轉化的思想,類比歸納的思想,介紹了配方法、消元法、換元法、待定系數法、反證法、數學歸納法等,在學好數學知識的同時,要下大力氣理解這些思想和方法的原理和依據,並通過大量的練習,掌握運用這些思想和方法解決數學問題的步驟和技巧。
在數學學習中,要特別重視運用數學知識解決實№問題能力的培養。數學社會化的趨勢,使得「大眾數學」的口號席捲整個世界,有人認為未來的工作崗位是為已作好數學准備的人才提供的,這里所說的「已作好了數學准備」並不僅指懂得了數學理論,更重要的是學會了數學思想,學會了將數學知識靈活運用於解決現實問題中。培養數學應用能力,首先要養成將實№問題數學化的習慣;其次,要掌握將實№問題數學化的一般方法,即建立數學模型的方法,同時,還要加強數學與其他學科的聯系,除與傳統學科如物理、化學聯系外,可適當了解數學在經濟學、管理學、工業等方面的應用。
如果我們在數學學習中,既扎扎實實地學好了數學知識和技能,又牢固地掌握了數學思想和方法,而且能靈活應用數學知識和技能解決實№問題,那麼,我們就走在了一條數學學習成功的大道上。
如何學好數學1
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
如何學好數學2
高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。
有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。
至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
答一送一:
如何在學習上占第一
學習上占第一,每個同學都可以做到。之所以你占不了第一,主要有兩個原因:第一、生活方式、學習方法不正確,第二、沒有堅強的毅力。在這裡面毅力是第一重要的,學習方法是第二重要的。在現實生活中,全中國仍有70%以上的占第一的學生雖然佔了第一,但他們並不是毅力最強的,或者說學習方法生活方式不是最好的。他們也許今天是第一,明天就不是了。也就是說,你如果按占第一的方法去學習、去鍛煉,一般都會超過現有的第一。
輝煌的第一是不是要經過艱苦的努力才能得到呢?說它艱苦是因為「培養堅強的毅力」是世上最艱苦的工作,只有你具有了堅強的毅力才可能成為第一,當然正確的生活方式和學習方法也是特別重要的。在這里什麼是堅強的毅力呢,只要你能按下面幾點要求去做,而且每天都做記錄,持之以恆,每天都不間斷地堅持一個學期、一年、三年,那麼你的毅力就足以達到占第一的要求了。在這項鍛煉中就怕你中間有間斷,風雨、心情、疾病、家務等等都不是你中斷鍛煉的理由。你要記住,學好學業是你學生生活中最重要的,沒有什麼工作的重要性會超過它。除了堅強的毅力,正確的學習方法和生活方式也是很重要的。
第一人人可以占,原來占第一的同學也不一定就比你更聰明多少,腦細胞也不一定比你多。愛迪生不是說過「天才是百分之九十九的汗水加上百分之一的靈感」嗎?!所以你第一要過心理關,就是說:要堅信你一定能成功,一定會超過現有的第一,包括現在是第一的你自已。
第二、你要天天鍛煉。沒有一個健康的身體,你什麼事也做不好,即使偶爾做好了,也不能長久。每天30分鍾左右的鍛煉一定要天天堅持。鍛煉的形式多種多樣,跑步、打乒乓球、打籃球、俯卧撐、立定跳遠等等都可以。有些同學好面子,見到別人不跑步,怕自已跑別人看見了不好意思,那就錯了,真正不好意思的是辛苦了幾年考不上大學,是上了幾年大學還要下崗。如果將來自已養活不了自已,那才是真正不好意思的。
第三、學習態度要端正。每次上課前,一定要把老師准備講的內容預習好,把不好理解的、不會的內容做好標記,在老師講到該處時認真聽講。如果老師講了以後還不會,一定要再問老師,直到明白為止。當一個問題問了兩遍三遍還不會時,一般的同學就不好意思問了,千萬別這樣,老師們最喜歡「不問明白誓不罷休」的性格了。上課時要認真聽講,認真思考,做好筆記。做筆記時一定要清楚,因為筆記的價值比課本還,將來的復習主要靠它。
課下首先要做的不是做作業,而是把筆記、課本上的知識點先學好,該記的內容一定把它背熟。這樣會大大提高你做作業的速度,即平常說的「磨刀不誤砍柴功」。做作業時應該獨立思考,實在不能解決的問題,再和同學、老師商量。問同學時,不要問這道題結果是什麼,而是要問「這道題究竟怎麼做?」「這道題為什麼這樣做?」
第四、正確面對錯誤和失敗。當有的知識你沒有在課上學會、當你的練習做錯時或者在考試中成績太差時,你既不要報怨,也不要氣餒,你應該正視這自已不願得到的現實。沒有學會不要緊,把該知識寫到你的《備忘錄》中,然後問同學問老師,再把正確的解釋或結果,寫到其它頁上。錯了題也是這樣,考試失利不就是錯的題多點嗎,正確的方法是把原題抄到《備忘錄》中,把正確的做法學會後,把做法和結果寫到其它頁上,如果能註上做該類題的注意事項,就會把你的學習效率又提高30%-60%。之所以把答案或解釋寫到其它頁上,就是為了下次看知識點或錯誤的題目時,再動動腦筋,想想該知識點的理解和解釋情況,再練練該題的做法和答案。錯誤和失敗並不可怕,只要你能正視它,一切都會成為你成功的動力。
第五、記帳。你的學習一定要有一本帳,你什麼時候做得好,記下來,什麼時候錯了題,記下來(註:帳本上只記「今天錯題為《備忘錄》××頁×題)。課下幾點幾分學了英語,記錄好;幾點幾分至幾點幾分學了物理記下來。把你生活中鍛煉、學習的分分秒秒記錄在你的帳本上,把你每次作業和考試中的正確題數、錯誤題數和錯誤題號(《備忘錄》上的頁號題號)一一記錄在你的帳本上。把你每天學會的知識點都記錄在帳本上,以備明天、後天再檢查一下自已是否真正掌握了這些知識點。在帳本上過去了幾天的知識點,你一定要學會並能熟練掌握。
帳本記錄的是你學習、鍛煉中每一個細節。這樣記下來,在校生活中,每天約有一頁32開紙的記錄量,不在校時可能有兩頁32紙的記錄量。在星期和假期里千萬不能間斷。把你的帳一天天積累起來,這就是你所走過的第一之路。
雖說在素質教育的今天學校不排名次,但學習出類拔萃是我們努力的目標,是我們考上高一級學校的必要條件,也是我們走向社會後,做好每一件工作的資本。同學們,去爭取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都這樣去做,即使你占不了第一,一定是中國出類拔萃的學生,因為中國大多數的同學沒有這樣的毅力,沒有這樣好的學習方法和生活方式。同學們,為美好的明天奮斗吧
㈧ 怎麼學好數學
一、要做什麼?
首先,我們需要明確一個問題:怎樣才能夠得分?
對於數學考試而言,數學考試成績由兩層組成:「懂知識+會做題」。
所謂懂知識,即能夠將課本和筆記中的公式記憶熟練,別人提問時候自己能夠3-5秒內回答出來。有這一層積累,我們在做題時候就不會因為公式忘了或記錯了,導致做題思路卡住,不能算出題目。一般而言,期末考試60分以下的,往往是公式記憶存在比較多的問題。
而60~90分孩子,往往在「會做題」領域有一定障礙,對於這些孩子而言,他們公式一問也能回答出來,但就是做題時候不會用,導致無法得分。那麼對於他們而言,提升數學做題能力,多經歷、積累和總結不同題型與做題技巧,則是努力的方向。
三、重點已經找到,有沒有行之有效的,更具體的建議呢?
建議你從最近開始,做下面幾件事情:
(1)筆記與課本中有關三角,數列,統計概率與空間幾何平行垂直證明的定理,概念以及附加說明記憶熟練。這是我們保證做題時候自己思路的源泉。
(2)購買往年的模擬題,期末題目套卷。每天做一套試卷中的三角,數列,空間,統計概率大題。做完之後馬上對答案,將自己內容和答案匯總對照,錯誤的進行改正。這個目的是增進我們的做題技巧與經驗。
(3)不會的及時問。對於我們而言,可能我們條件看不懂,或者答案某些位置看不懂,此時如果自己能力無法應對情況下,一定要及時問同學或老師,讓自己弄懂更多的內容。
(4)持之以恆。一般而言,在最開始做這件事情時候,往往是很不習慣,甚至比較痛苦的過程。但是這是我們增進自己做題能力與技巧的重要途徑,因為只有多經歷、多總結,才能夠突破過往的自己,達到新的境界。很多時候,我們所做的選擇,並不是 「正確」和「錯誤」,而是 「正確」和「容易」。
㈨ 孩子會數數,但是算術總是學不會可能是什麼原因教孩子學算術有沒有什麼技巧啊
孩子學數學要結合一些具體的實物,由抽象到具體,尤其是年齡小的孩子。數數和算術是兩回事。這裡面得問題還很多。
1.幼兒學習數學開始於動作。
自從皮亞傑提出「抽象的思維起源於動作」之後,這已經成為幼兒數學教育中廣為接受的觀點。我們也經常能觀察到,幼兒在學習數學時,最初是通過動作進行的。特別是小班的幼兒,在完成某些任務時,經常伴隨著外顯的動作。比如在「對應排列相關聯的物體」活動中,幼兒在放卡片時,總要先和上面一排相對應的卡片碰一下,然後才把它放在下面。這實際上就是一個對應的動作。隨著幼兒動作的逐漸內化,他們才能夠在頭腦中進行這樣的對應。幼兒在最初學習數數的時候,也要藉助於手的點數動作才能正確地計數。直到他們的計數能力比較熟練,才改變為心中默數。
幼兒表現出的這些外部動作,實際上是其協調事物之間關系的過程。這對於他們理解數學關系是不可或缺的。在幼兒學習某一數學知識的初期階段,特別需要這種外部的動作。而對於那些表現出抽象思維有困難的幼兒,也需要給予他們充分的動作擺弄的機會。例如,在學習加減運算時,最能幫助幼兒理解加減的數量關系的方法,就是讓幼兒進行合並和拿取的操作,讓幼兒在實際的動作中理解兩個部分如何合為一個整體、整體中拿走一個部分還剩下另外一個部分。而那些不能擺脫實物進行抽象的數字運算的幼兒,正說明他們還需要動作水平上的操作。在這時給予他們擺弄實物的練習,既符合他們的心理需要,也有助於他們的學習。
2.幼兒數學知識的內化要藉助於表象的作用。
盡管說表象對於幼兒學習數學不起決定性的作用,但並不是說毫無作用。幼兒對數學知識的理解開始於外部的動作,但是要把它們變成頭腦中抽象的數學概念,還有賴於內化的過程,即在頭腦中重建事物之間的邏輯關系。過去有些不適當的做法把表象的作用無限地誇大,甚至以為幼兒學習數學就是在頭腦中形成數學表象的過程,於是通過讓幼兒觀看實物或圖片、教師講解數學概念的方法進行教學,試圖讓幼兒在頭腦中「印下」數的表象、加減的表象。現在看來這樣的方法並不符合幼兒學習數學的心理。不過,如果能在幼兒操作的基礎上,同時引導幼兒觀察實物或圖片及其變化,並鼓勵他們將其轉化為頭腦中的具體表象,不僅能幫助幼兒在頭腦中重建事物之間的邏輯關系,對於幼兒抽象思維能力的發展也有益無害。例如在學習加減運算時,在幼兒進行了一定的操作基礎上,我們可以通過讓幼兒觀察一幅圖中物體之間的關系來理解加減,或者通過三幅圖之間的細微變化來表現加減的關系,甚至通過口述應用題讓幼兒自己在頭腦中形成相應的表象並進行運算,這些都有助於幼兒在抽象的水平上進行加減的運算。
3.幼兒對數學知識的理解要建立在多樣化的經驗和體驗基礎上。
由於數學知識是一種抽象的知識,它的獲得需要擺脫具體事物的其它無關特徵。而幼兒對於數學知識的抽象意義的理解,卻是從具體的事物開始的。可以說,幼兒在概念形成的過程中所依賴的具體經驗越豐富,他們對數學概念的理解就越具有概括性。因此,為他們提供豐富多樣的經驗,能幫助幼兒更好地理解數學概念的抽象意義。比如在認識數字3時,讓幼兒說出各種各樣可以用3來表示的物體,而且讓他們知道,凡是數量是3的物體,無論它們怎樣排列,都是3。這樣幼兒就可以對數字3的抽象意義有所了解。
㈩ 怎麼學習數學
1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授
的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化
思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯
想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互
用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成
「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新
精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問
題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看
書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施
a.記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中
b.拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
c.建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤
原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
d.熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化
或半自動化的熟練程度。
e.經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,
使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
f.
閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
g.
及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏
固,消滅前學後忘。
h.
學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解
題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。