導航:首頁 > 數字科學 > 高考數學總共多少考點

高考數學總共多少考點

發布時間:2022-06-08 12:28:09

⑴ 數學高考都有哪些是考點

一、集合、簡易邏輯(14課時,8個) 1.集合; 2.子集; 3.補集; 4.交集; 5.並集; 6.邏輯連結詞; 7.四種命題; 8.充要條件. 二、函數(30課時,12個) 1.映射; 2.函數; 3.函數的單調性; 4.反函數; 5.互為反函數的函數圖象間的關系; 6.指數概念的擴充; 7.有理指數冪的運算; 8.指數函數; 9.對數; 10.對數的運算性質; 11.對數函數. 12.函數的應用舉例. 三、數列(12課時,5個) 1.數列; 2.等差數列及其通項公式; 3.等差數列前n項和公式; 4.等比數列及其通頂公式; 5.等比數列前n項和公式. 四、三角函數(46課時17個) 1.角的概念的推廣; 2.弧度制; 3.任意角的三角函數; 4,單位圓中的三角函數線; 5.同角三角函數的基本關系式; 6.正弦、餘弦的誘導公式』 7.兩角和與差的正弦、餘弦、正切; 8.二倍角的正弦、餘弦、正切; 9.正弦函數、餘弦函數的圖象和性質; 10.周期函數; 11.函數的奇偶性; 12.函數 的圖象; 13.正切函數的圖象和性質; 14.已知三角函數值求角; 15.正弦定理; 16餘弦定理; 17斜三角形解法舉例. 五、平面向量(12課時,8個) 1.向量 2.向量的加法與減法 3.實數與向量的積; 4.平面向量的坐標表示; 5.線段的定比分點; 6.平面向量的數量積; 7.平面兩點間的距離; 8.平移. 六、不等式(22課時,5個) 1.不等式; 2.不等式的基本性質; 3.不等式的證明; 4.不等式的解法; 5.含絕對值的不等式. 七、直線和圓的方程(22課時,12個) 1.直線的傾斜角和斜率; 2.直線方程的點斜式和兩點式; 3.直線方程的一般式; 4.兩條直線平行與垂直的條件; 5.兩條直線的交角; 6.點到直線的距離; 7.用二元一次不等式表示平面區域; 8.簡單線性規劃問題. 9.曲線與方程的概念; 10.由已知條件列出曲線方程; 11.圓的標准方程和一般方程; 12.圓的參數方程. 八、圓錐曲線(18課時,7個) 1橢圓及其標准方程; 2.橢圓的簡單幾何性質; 3.橢圓的參數方程; 4.雙曲線及其標准方程; 5.雙曲線的簡單幾何性質; 6.拋物線及其標准方程; 7.拋物線的簡單幾何性質. 九、(B)直線、平面、簡單何體(36課時,28個) 1.平面及基本性質; 2.平面圖形直觀圖的畫法; 3.平面直線; 4.直線和平面平行的判定與性質; 5,直線和平面垂直的判與性質; 6.三垂線定理及其逆定理; 7.兩個平面的位置關系; 8.空間向量及其加法、減法與數乘; 9.空間向量的坐標表示; 10.空間向量的數量積; 11.直線的方向向量; 12.異面直線所成的角; 13.異面直線的公垂線; 14異面直線的距離; 15.直線和平面垂直的性質; 16.平面的法向量; 17.點到平面的距離; 18.直線和平面所成的角; 19.向量在平面內的射影; 20.平面與平面平行的性質; 21.平行平面間的距離; 22.二面角及其平面角; 23.兩個平面垂直的判定和性質; 24.多面體; 25.稜柱; 26.棱錐; 27.正多面體; 28.球. 十、排列、組合、二項式定理(18課時,8個) 1.分類計數原理與分步計數原理. 2.排列; 3.排列數公式』 4.組合; 5.組合數公式; 6.組合數的兩個性質; 7.二項式定理; 8.二項展開式的性質. 十一、概率(12課時,5個) 1.隨機事件的概率; 2.等可能事件的概率; 3.互斥事件有一個發生的概率; 4.相互獨立事件同時發生的概率; 5.獨立重復試驗. 選修Ⅱ(24個) 十二、概率與統計(14課時,6個) 1.離散型隨機變數的分布列; 2.離散型隨機變數的期望值和方差; 3.抽樣方法; 4.總體分布的估計; 5.正態分布; 6.線性回歸. 十三、極限(12課時,6個) 1.數學歸納法; 2.數學歸納法應用舉例; 3.數列的極限; 4.函數的極限; 5.極限的四則運算; 6.函數的連續性. 十四、導數(18課時,8個) 1.導數的概念; 2.導數的幾何意義; 3.幾種常見函數的導數; 4.兩個函數的和、差、積、商的導數; 5.復合函數的導數; 6.基本導數公式; 7.利用導數研究函數的單調性和極值; 8函數的最大值和最小值. 十五、復數(4課時,4個) 1.復數的概念; 2.復數的加法和減法; 3.復數的乘法和除法; 4.數系的擴充. 追問: 拜託……我們是新課改的,選修多了去了…… 還有我說的那個 不等式 是怎麼回事? 回答: 至於你說的 不等式 ,高考肯定會考,但很少直接出題考你,而是通過一些題間接的考,特別是一些大體,幾個步驟間接對不等式的性質考察,往往,這是解題關鍵 追問: 那你說比如什麼 柯西不等式 之類的放到大題裡面不就太扯了…… 回答: 新課程教材新增內容考點共14 個,分別是: 1. 冪函數 2. 函數零點 與 二分法 3. 三視圖 4.演算法程序框圖與基本演算法語句 5. 莖葉圖 6.隨機數與 幾何概型 7.全稱量詞與存在 量詞 8.積分(理科) 9.合情推理與演繹推理 10. 條件概率 (理科) 補充: 並不是很扯,這是可能的,比如在大體往往有一個小問是證明題,這個證明題可以出為用 柯西不等式 證明,但往往只是一個有限個數的式子。 我經歷過高三和高考,做過很多題, 不等式 往往重在不等式的證明,而證明方法和思維是很重要的,常用的要記熟( 放縮法 ……)

⑵ 高考數學考點有哪些

函數與不等式、數列、解析幾何、平面下向量的數量積、一元二次不等式、直線方程、指數與對數、函數與方程、線性規劃、流程圖、基本演算法語句、充分條件、必要條件、簡單的邏輯連接詞。考數學對數學基礎知識考察既全面又突出重點,扎實的數學基礎是成功解題的關鍵。

高考數學考點答題技巧

函數或方程或不等式的題目,先直接思考後建立三者的聯系。首先考慮定義域,其次使用三合一定理。如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法。

面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質。如所過的定點,二次函數的對稱軸。選擇與填空中出現不等式的題目,優選特殊值法。

求參數的取值范圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法。

恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏。

圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法。使用韋達定理必須先考慮是否為二次及根的判別式。

⑶ 高考數學考點有哪些呢

高考數學考點如下:

1、若an+1/an=q(q為非零常數)或an/an-1=q(q為非零常數且n≥2且n∈N_),則{an}是等比數列。

2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系。

3、若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。

4、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

5、利用一次函數在區間上的保號性可解決求一類參數的范圍問題。

⑷ 高考數學259個核心考點

有函數、三角函數,平面向量,不等式,數列,立體幾何,解析幾何,概率與統計,導數等。
平面向量與三角函數、三角變換及其應用,這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
概率和統計,這部分和生活聯系比較大,屬應用題。
考查圓錐曲線的定義和性質,軌跡方程問題、含參問題、定點定值問題、取值范圍問題,通過點的坐標運算解決問題。專業老師在線權威答疑 zy.offercoming.com

⑸ 高考數學一共多少個知識點

高考數學的知識點,一年一個數,沒有統一的數據。

⑹ 高考的數學考點有哪些

高考的數學考點有:

1、【數列】&【解三角形】

數列與解三角形的知識點在解答題的第一題中,是非此即彼的狀態,近些年的特徵是大題第一題兩年數列兩年解三角形輪流來,2014、2015年大題第一題考查的是數列,2016年大題第一題考查的是解三角形,故預計2017年大題第一題較大可能仍然考查解三角形。

數列主要考察數列的定義,等差數列、等比數列的性質,數列的通項公式及數列的求和。解三角形在解答題中主要考查正、餘弦定理在解三角形中的應用。

2、【立體幾何】

高考在解答題的第二或第三題位置考查一道立體幾何題,主要考查空間線面平行、垂直的證明,求二面角等,出題比較穩定,第二問需合理建立空間直角坐標系,並正確計算。

3、【概率】

高考在解答題的第二或第三題位置考查一道概率題,主要考查古典概型,幾何概型,二項分布,超幾何分布,回歸分析與統計,近年來概率題每年考查的角度都不一樣,並且題干長,是學生感到困難的一題,需正確理解題意。

4、【解析幾何】

高考在第20題的位置考查一道解析幾何題。主要考查圓錐曲線的定義和性質,軌跡方程問題、含參問題、定點定值問題、取值范圍問題,通過點的坐標運算解決問題。

5、【導數】

高考在第21題的位置考查一道導數題。主要考查含參數的函數的切線、單調性、最值、零點、不等式證明等問題,並且含參問題一般較難,處於必做題的最後一題。

⑺ 高考數學考點有多少個

一、集合與函數

1.進行集合的交、並、補運算時,不要忘了全集和空集的特殊情況,不要忘記了藉助數軸和文氏圖進行求解。

2.在應用條件時,易A忽略是空集的情況

3.你會用補集的思想解決有關問題嗎?

4.簡單命題與復合命題有什麼區別?四種命題之間的相互關系是什麼?如何判斷充分與必要條件?

5.你知道「否命題」與「命題的否定形式」的區別。

6.求解與函數有關的問題易忽略定義域優先的原則。

7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關於原點對稱。

8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域。

9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調。例如:。

10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值, 作差, 判正負)和導數法

11. 求函數單調性時,易錯誤地在多個單調區間之間添加符號「∪」和「或」;單調區間不能用集合或不等式表示。

12.求函數的值域必須先求函數的定義域。

13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恆成立問題)。這幾種基本應用你掌握了嗎?

14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

(真數大於零,底數大於零且不等於1)字母底數還需討論

15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

16.用換元法解題時易忽略換元前後的等價性,易忽略參數的范圍。

17.「實系數一元二次方程有實數解」轉化時,你是否注意到:當時,「方程有解」不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

二、不等式

18.利用均值不等式求最值時,你是否注意到:「一正;二定;三等」。

19.絕對值不等式的解法及其幾何意義是什麼?

20.解分式不等式應注意什麼問題?用「根軸法」解整式(分式)不等式的注意事項是什麼?

21.解含參數不等式的通法是「定義域為前提,函數的單調性為基礎,分類討論是關鍵」,注意解完之後要寫上:「綜上,原不等式的解集是……」。

22. 在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示。

23. 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意「同號可倒」即a》b》0,a

三、數列

24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

25.在「已知,求」的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什麼樣的無窮等比數列的所有項的和必定存在?

27.數列單調性問題能否等同於對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)

28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

四、三角函數

29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?

30.三角函數的定義及單位圓內的三角函數線(正弦線、餘弦線、正切線)的定義你知道嗎?

31. 在解三角問題時,你注意到正切函數、餘切函數的定義域了嗎?你注意到正弦函數、餘弦函數的有界性了嗎?

32. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角。異角化同角,異名化同名,高次化低次)

33. 反正弦、反餘弦、反正切函數的取值范圍分別是

34.你還記得某些特殊角的三角函數值嗎?

35.掌握正弦函數、餘弦函數及正切函數的圖象和性質。你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

36.函數的圖象的平移,方程的平移以及點的平移公式易混:

(1)函數的圖象的平移為「左+右-,上+下-」;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即。

(2)方程表示的圖形的平移為「左+右-,上-下+」;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即。

(3)點的平移公式:點按向量平移到點,則。

37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)

38.形如的周期都是,但的周期為。

39.正弦定理時易忘比值還等於2R.

五、平面向量

40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

41.數量積與兩個實數乘積的區別:

在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出。

已知實數,且,則a=c,但在向量的數量積中沒有。

在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量。

42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

六、解析幾何

43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?

44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。

45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

46. 定比分點的坐標公式是什麼?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?

47. 對不重合的兩條直線

(建議在解題時,討論後利用斜率和截距)

48. 直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。

49.解決線性規劃問題的基本步驟是什麼?請你注意解題格式和完整的文字表達。(①設出變數,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到並求出最優解⑦應用題一定要有答。)

50.三種圓錐曲線的定義、圖形、標准方程、幾何性質,橢圓與雙曲線中的兩個特徵三角形你掌握了嗎?

51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?

52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前後項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?

53. 通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結論?)

54. 在用圓錐曲線與直線聯立求解時,消元後得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行)。

55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?

七、立體幾何

56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什麼?

58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什麼嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為」一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行」而導致證明過程跨步太大。

60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那麼就不要忘了還有一種求角的方法即用證明它們垂直的方法。

61.異面直線所成角利用「平移法」求解時,一定要注意平移後所得角等於所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。

62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

63. 兩條異面直線所成的角的范圍:0°《α≤90°

直線與平面所成的角的范圍:0o≤α≤90°

二面角的平面角的取值范圍:0°≤α≤180°

64.你知道異面直線上兩點間的距離公式如何運用嗎?

65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前後有關幾何元素的「不變數」與「不變性」。

66.立幾問題的求解分為「作」,「證」,「算」三個環節,你是否只注重了「作」,「算」,而忽視了「證」這一重要環節?

67.稜柱及其性質、平行六面體與長方體及其性質。這些知識你掌握了嗎?(注意運用向量的方法解題)

68.球及其性質;經緯度定義易混。 經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。這些知識你掌握了嗎?

八、排列、組合和概率

69. 解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。

解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排後排法;至多至少問題間接法。

70.二項式系數與展開式某一項的系數易混, 第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混。二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.

71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式。)

72. 二項式展開式的通項公式、n次獨立重復試驗中事件A發生k次的概率易記混。

通項公式:它是第r+1項而不是第r項;

事件A發生k次的概率: 。其中k=0,1,2,3,…,n,且0

73.求分布列的解答題你能把步驟寫全嗎?

74.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義。)

75.你還記得一般正態總體如何化為標准正態總體嗎?(對任一正態總體來說,取值小於x的概率,其中表示標准正態總體取值小於的概率)

九、導數及其應用(上海高考不要求)

76.在點處可導的定義你還記得嗎?它的幾何意義和物理意義分別是什麼?利用導數可解決哪些問題?具體步驟還記得嗎?

77.你會用「在其定義域內可導,且不恆為零,則在某區間上單調遞增(減)對恆成立。」解決有關函數的單調性問題嗎?

78.你知道「函數在點處可導」是「函數在點處連續」的什麼條件嗎

⑻ 高考數學有幾道大題,分別是考哪幾個知識點

高考數學的大題
涉及到6個考點分別圓錐曲線、導數、概率、數列、三角函數和立體幾何。

⑼ 高考數學都有哪些知識點

第一,函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數

第二,平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題

第三,數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題

第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小是高考的重點和難點

第五,概率和統計。這部分和我們的生活聯系比較大,屬應用題

第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離

第七,解析幾何是高考的難點,運算量大,一般含參數

高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。針對數學高考強調對基礎知識與基本技能的考查我們一定要全面、系統地復習高中數學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、並形成記憶,形成技能。以不變應萬變

⑽ 高考數學主要考什麼內容

選擇題和填空題常考的考點主要有集合部分、函數部分、三角形與三角函數、平面向量與復數部分、數量章節、不等式章節、平面與立體幾何部分、統計部分、概率部分等。

解答題主要涉及到的知識有選考部分、正態分布、離散型分布、統計、圓錐曲線、橢圓、曲線與方程、直線與方程、立體幾何部分、數列求和、解三角形、導數部分等。

當然,以上只是一個大致的高考數學考點分析,每年數學考試內容都會有所調整,但是考試內容都萬變不離其宗。



高考數學的復習方法

數學在高三分為三輪復習,只要跟住老師即可,每個階段把數學知識梳理好,做相應的習題訓練,爭取把每個知識點都學到位,就不會在臨考時慌神。

第一遍復習數學時,要以課本為主,每一個知識點都要認真去再學一遍,不要著急去做題,理論一定要砸實,這是最後一遍系統性復習,所以每個公式、定理、定義都要爛熟於心,並知其所以然。

數學做題時要注重查缺補漏,因為學習時有些知識點已經掌握了,沒有必要再挑會做的題目去做,所以這時要把沒學會的知識點學透了,尤其是做錯的題目要對照課本知識點認真看,下次不要再錯。

第二輪復習是專題復習,時間很短,第三輪復習做綜合題目速度會更快,所以要掌握好時間。

閱讀全文

與高考數學總共多少考點相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1422
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1006
武大的分析化學怎麼樣 瀏覽:1256
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1667
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071