Ⅰ 數學手抄報應該有哪些內容
第一、 弄清句子中某些詞語的意義.
例如,「m與13的差」與「m減去13的差」,兩者意思是相同的,應該寫成m-13,而不能寫作13-m.也就是說,求兩數的差,先給的數應該是被減數,後給的數則是減數.二者次序不可顛倒.
又如,「a被9除」,「用9來除a」與「a除以9」的意思是相同的,應該寫成a÷9.而不能寫作9÷a.
再如,「x與y的立方差」與「x與y差的立方」意義則是不同的,前者應該表示成,後者則為.
以上都是列代數式時容易出錯的地方.為了避免此類錯誤,審題時一定要把題目中的一些重要詞語的意義弄清楚,特別是要區分一些容易混淆的數學概念,防止張冠李戴.
第二、 抓住句子中的「的」字劃分層次.
在分析題意時,要特別注意抓住句子中的「的」字來劃分層次.下面舉兩個例子.
例 用代數式表示:比a、b兩數的立方差的3倍小c的數.
分析:句子里共有三個「的」字,我們根據它們所在的位置,用不同的線條劃出句子的不同層次.
我們先表示 「a、b兩數的立方差」:──.
其次,表示「a、b兩數的立方差的3倍」:──.
最後,表示 「比a、b兩數的立方差的3倍小c的數」:──.
第三、不能忽視逆向訓練.
「翻譯」總是相互的.例如進行中英文互譯,既要會把英文翻譯成中文,也應會把中文翻譯成英文.代數「翻譯」也是如此,既要練習把日常語言「譯」成代數語言,又要練習把代數語言「譯」成日常語言.從正逆兩方面練習,可以融匯貫通,相互促進.
Ⅱ 數學時間手抄報怎麼寫
小學生數學手抄報資料:
「學生能夠認識到數學存在於現實生活中,並被廣泛應用於現實世界,才能切實體會到數學的應用價值。」學習數學知識,是為了便於更好地去服務生活。應用與生活,學以致用
數學手抄報資料:
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
3/5
在小學數學學習中,必不可少的是數學手抄報,因為這樣可以增加學生對數學的興趣,也提高學生主動學習數學的能力,那小學數學的手抄報一般都有那些內容呢?查字典板報網為大家整理了關於小學數學手抄報資料,小學數學手抄報設計圖片。
4/5
數學手抄報資料
數學家陳景潤的故事:
Ⅲ 數學手抄報有哪些簡單的
手抄報是一種可傳閱、可觀賞、也可張貼的報紙的另一種形式。在學校,手抄報是第二課堂的一種很好的活動形式,和ppt有異曲同工之妙,不過與ppt不同的是手抄報是純手工的,只有一頁紙,所以要合理安排內容。手抄報和黑板報一樣,手抄報也是一種群眾性的宣傳工具。它就相當於縮小版的黑板報。
如何使一張手抄報在有限的空間內,既容納一定的知識內容,版面設計又精彩美觀呢?這不單純是技巧問題,對編者來說,組稿、編輯、排版、插圖、書寫,這是一個全神貫注、腦手並用的創造過程,是他的文化修養、生活情趣、精神風貌和藝術修養的綜合體現。這對一個學生來說,無疑是發展個性才能的廣闊天地。
辦手抄報,從總體上考慮,首先要確立主題思想。一期手抄報,版面很有限,要辦出特色,必須在內容上突出一個主題,做到主題突出,又豐富多彩。版面編排和美化設計,也要圍繞著主題,根據主題和文章內容決定形式的嚴肅與活潑,做到形式與內容的統一。
Ⅳ 關於數學手抄報都有什麼題目
數學天地、數學樂園、趣味數學、快樂數學、開心數學、幾何迷宮、數學王國、有趣的數學、身邊的數學、數學世界、走進數學、數學故事、數學王國之旅、數學小報、數學謎。估計這些數學手抄報題目夠用了!
Ⅳ 小孩數學手抄報有哪些
數學手抄報的故事內容:
小歐拉智改羊圈
小歐拉的爸爸決定建造一個新的羊圈。他用尺量出了一塊長方形的土地,長40米,寬15米,他一算,面積正好是600平方米,平均每一頭羊佔地6平方米。正打算動工的時候,他發現他的材料只夠圍100米的籬笆,不夠用。若要圍成長40米,寬15米的羊圈,其周長將是110米。父親感到很為難,小歐拉卻向父親說,只有稍稍移動一下羊圈的樁子就行了。他以一個木樁為中心,將原來的40米邊長截短,縮短到25米。將原來15米的邊長延長,又增加了10米,變成了25米。經這樣一改,原來計劃中的羊圈變成了一個25米邊長的正方形。父親照著小歐拉設計的羊圈紮上了籬笆,100米長的籬笆真的夠了,面積也足夠了,而且還稍稍大了一些。父親心裡感到非常高興。後來,歐拉成為了數學史上著名的數學家
Ⅵ 時間手抄報內容
小故事:
1、齊白石
我國著名畫家齊白石,無論是畫蝦、蟹、小雞、牡丹、菊花、牽牛花,還是畫大白菜, 無不形神兼備,充韻生動,奧秘晚窮,據說他在八十五歲那年的一天上午,寫了四幅條幅,並在上面題詩:「昨日大風,心緒不安,不曾作畫,今朝特此補充之,不教一日閑過也。」
2、李四光
我國的地質學家李四光,在野外進行地質勘察時,經常用石頭做枕頭睡覺,一旦被石頭硌醒,馬上又開始工作。
3.魯迅
魯迅先生是十分珍惜時間的,他「把別人喝咖啡的工夫用在寫作上」,從而一生著作頗豐,成為一代文壇巨匠。
4.陳景潤
著名數學家陳景潤十分珍惜時間,他曾給自己擬訂出一張工作時間表,把一天24小時的分分秒秒都充分利用起來。即使在路上走,也在讀讀背背,他的英文、俄文、法文、德文四門外語的單詞,就是這樣掌握的。
名人名言:
1、三更燈火五更雞,正是男兒讀書時,黑發不知勤學早,白發方悔讀書遲。——顏真卿
2、一寸光陰一寸金,寸金難買寸光陰。
3、少年易學老難成,一寸光陰不可輕。——朱熹
4、吾生也有涯,而知也無涯。——莊子
5、少壯不努力,老大徒傷悲。——《長歌行》
6、時間的步伐有三種:未來姍姍來遲,現在像箭一樣飛逝,過往永遠靜立不動。——席勒
7、一萬年太久,只爭朝夕。 ——毛澤東
8、人生有一道困難,那就是如何使一寸光陰即是一寸生命。
9、時間就是生命,時間就是速度,時間就是氣力。——郭沫若
10、最嚴重的浪費就是時間的浪費。——布封
成語:
日積月累 分秒必爭
日暮途窮 千鈞一發
日日夜夜 日新月異
千載難逢 日以繼夜
窮年累月 轉瞬即逝
寸陰尺璧 分秒必爭
見縫插針 爭分奪秒
時不我待 愛日惜力
光陰荏苒 一刻千金
日月如梭 宵衣旰食
稍縱即逝 惜時如金,寸陰寸金,廢寢忘食,通宵達旦.聞雞起舞 時光倒流
返老還童 寸陰尺璧 分秒必爭 見縫插針 爭分奪秒 夜以繼晝
忙裡偷閑 只爭朝夕 時不我待 愛日惜力 磨刀不誤砍柴工
光陰荏苒 一刻千金 流年似水 日月如梭 宵衣旰食
日旰忘餐 讀書三餘 少縱即逝 華不再揚
日積月累 分秒必爭
日暮途窮 千鈞一發
日日夜夜 日新月異
千載難逢 日以繼夜
窮年累月 轉瞬即逝
寸陰尺璧 分秒必爭
見縫插針 爭分奪秒
時不我待 愛日惜力
光陰荏苒 一刻千金
日月如梭 宵衣旰食
Ⅶ 關於數學手抄報的內容有哪些
第一寫關於數學的名言
羅素說:「數學是符號加邏輯」
畢達哥拉斯說:「數支配著宇宙」
哈爾莫斯說:「數學是一種別具匠心的藝術」
米斯拉說:「數學是人類的思考中最高的成就」
培根(英國哲學家)說:「數學是打開科學大門的鑰匙」
布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」
黑格爾說:「數學是上帝描述自然的符號」
魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」
柏拉圖說:「數學是一切知識中的最高形式」
考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
Ⅷ 數學手抄報!!快呀
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。
這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。
二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。
當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。
高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。
1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。
1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。
1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。
1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。
在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。
1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。
1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。
高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。
1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。
高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:
to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。
早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了......
1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
答案:10秒.
2 計算1234+2341+3412+4123=?
答案:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
答案:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
答案:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 答案: 48
9 100條直線最多能把平面分為幾個部分?
答案:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
答案:8天
11 100以內所有能被2或3或5或7整除的自然數個數
答案:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
答案:1005
14 求360的全部約數個數. 答案: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. 答案:10輛.
16 約數共有8個的最小自然數為____. 答案:24
17求所有除4餘一的兩位數和 答案;1210
Ⅸ 數學手抄報資料急需!!!!!
數學報就需要你寫一些數學的故事,一些小難題!
如:有這樣一個傳說,一次,數學家歐基里德教一個學生學習某個定理。結束後這個年輕人問歐基里德,他學了能得到什麼好處。歐基里德叫過一個奴隸,對他說:「給他3個奧波爾,他說他學了東西要得到好處。」在數學還非常哲學化的古希臘,探究世界的本原、萬物之道,而要得到什麼「好處」,受到鄙視是可以理解的。這就像另一個故事:在巴黎的一個酒吧里,一個姑娘問她的情人遲到的原因,那年輕人說他在趕做一道數學題,姑娘搖著腦袋,不解地問:「我真不明白,你花那麼多時間搞數學,數學到底有什麼用啊?」那年輕人長久地看著她,然後說:「寶貝兒,那麼愛情,到底有什麼用啊?」
由經驗構成的分散的知識,顯然沒有成體系的知識可信,我們歷來都對知識的體系更有信任感。例如牛頓的力學體系,可以精確地計算物體的運動,即使推測1億年的日食也幾乎絲毫不差;達爾文以物種進化和自然選擇為核心的進化論,把整個生物世界統括為一個有序的、有機的系統,使得我們知道不同物種之間的關系。
但是,即使是經典的知識體系,也不足以始終承載我們的全部信任,因為新的經驗、新的研究會調整、更新舊的知識體系,新理論會替代舊理論。愛因斯坦相對論的出現,使得牛頓的力學體系成為一種更廣泛理論中的特例;基因學說的發展和化石證據的積累,使得達爾文進化論中漸變的思想受到挑戰,這樣的事例充滿了整個科學發展的歷史,讓我們不時用懷疑的眼光打量一下那些彷彿無懈可擊的知識體系,對它們心存警惕。
不過,在人們追求確定性、可靠性的時候,還有一塊安寧的綠洲,那就是數學。數學是我們最可信賴的科學,什麼東西一經數學的證明,便板上釘釘,確鑿無疑。另外,新的數學理論開拓新的領域,可以包容但不會否定已有的理論。數學是惟一一門新理論不推翻舊理論的科學,這也是數學值得信賴的明證。
終極的確定
數學追求什麼?我們稱古希臘的賢哲泰勒斯是古代數學第一人,是因為他不像埃及或巴比倫人那樣,對任意一個規則物體求數值解,他的雄心是揭示一個系列的真理。比如圓,他的答案不是關於一個特殊圓,而是任意圓,他對全世界所有的圓感興趣,他創造的理想的圓可以斷言:任何經過圓心的直線都將圓分割為兩等分,他找到的真理揭示了圓的性質。
數學要求普遍的確定性。
數學要劃清結果和證明的界限。
世界再變幻不定,我們也總要有所憑信,有所依託,把這種憑信的根據推到極致,我們能體會到數學的力量。數學之大用也在於此。
我們的先人很早就開始用數學來解決具體的工程問題,在這方面,各古文明都有上佳的表現,但是古希臘人對數學的理解更值得我們敬佩。首先是畢達哥拉斯學派,他們把數看作是構成世界的要素,世上萬物的關系都可以用數來解析,這絕不是我們現代「數字地球」之類的概念可以比擬的,那是一種世界觀,萬物最終可以歸結為數,由數學說明的東西可以成為神聖的信仰,我想,持這樣想法的人,一定對自然常存敬畏,不會專橫自欺的。
其次,古希臘人把數學用於辯論,他們要求數學提供關於政治、法律、哲學論點的論據,要求絕對可靠的證據,要求「不可駁斥性」;他們也不滿足於(例如埃及、巴比倫前輩那樣的)經驗性的證據,而是進一步要求證明,要求普遍的確定性。多麼可愛、嚴正的要求!有這樣要求的人,必定明達事理,光明磊落。
為了保證思想可靠,古希臘的思想家制定了思想的規則,在人類歷史上,思想第一次成為思想的對象,這些規則我們稱之為邏輯。比如不可同時承認正命題和反命題,換句話說,一個論點和它的反論點不能同時為真,即矛盾律;比如一正論點與反論點不可同時為假,即排中律。所有這些努力,都特別體現著人類對確定、可靠的知識的追求,一部數學史,就是人類不斷擴大確知領域的歷史。
1、一個長方形的長、寬、高分別是8、6、4分米,把它截成棱長為整分米數的小正方體,最少能截多少個,截成後表面積增加了多少平方分米?
要截得最少,則正方體的邊長要最大,8、6、4的最大公約數是:2,所以正方體的邊長是:2
那麼截成:8/2*6/2*4/2=24個
一個正方體的表面積是:2*2*6=24平方厘米
則所有正方體的表面積是:24*24=576平方厘米
原來表面積是:2*(8*6+8*4+6*4)=208
增加:576-208=368平方厘米
2、把10克水加到鹽的質量分數為20%的50克鹽水中,要使鹽的質量分數為37.5%的鹽水需要加鹽多少克?
原來鹽的質量是:50*20%=10克,水是:50+10-10=50克
那麼現在的鹽水重量是:50/[1-37。5%]=80克
即要加鹽:80-(10+50)=20克
Ⅹ 小學三年級時分秒的手抄報有哪些
浮誇風獨肆皮膚構賈