① 高中數學證明題思考方法
高中數學證明題思考方法:
1. 幾何證明是平面幾何中的一個重要問題,它對培養學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。 2. 掌握分析、證明幾何問題的常用方法:
(1)綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題的解決;
(2)分析法(執果索因)從命題的結論考慮,推敲使其成立需要具備的條件,然後再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止;
(3)兩頭湊法:將分析與綜合法合並使用,比較起來,分析法利於思考,綜合法易於表達,因此,在實際思考問題時,可合並使用,靈活處理,以利於縮短題設與結論的距離,最後達到證明目的。
3. 掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善於將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。
② 高中數學證明題(分析法解題)
證明:
∵a>0,b>0,且a+b=1
∴1=a+b≥2√ab
∴ab≤1/4,
要證:(a+1/a)×(b+1/b)≥25/4
只要證ab+1/ab+b/a+a/b≥25/4
因為b/a+a/b≥2
所以只要證ab+1/ab+2≥25/4
即證ab+1/ab≥17/4;
又因為y=x+1/x在(0,1/4】上是減函數,
所以ab+1/ab≥1/4+4=17/4成立
因為最後一個不等式成立,所以原不等式成立
③ 數學的證明方法有哪些,如反證法,綜合法,分析法,還有嗎什麼是綜合法,分析法能舉例嗎
綜合法,分析法在平面幾何中常見
分別是從條件網結論推和從結論網條件到推
各個分支有著不同的證明方法
比如無窮遞降法 奇偶分析法大部分用於數論
三角法 解析法 同一法 用於幾何
求導法 著名不等式法 用於證明不等式和最值
比較基本的方法就是直接證或者反證
④ 高中數學常用證明方法有哪些
高考試題主要從以下幾個方面對數學思想方法進行考查: 常用數學方法:配方法、換元法、待定系數法、數學歸納法、參數法、消去法等; 數學邏輯方法:分析法、綜合法、反證法、歸納法、演繹法等; 數學思維方法:觀察與分析、概括與抽象、分析與綜合、特殊與一般、類比、歸納和演繹等; 常用數學思想:函數與方程思想、數形結合思想、分類討論思想、轉化(化歸)思想等。 數學思想方法與數學基礎知識相比較,它有較高的地位和層次。數學知識是數學內容,可以用文字和符號來記錄和描述,隨著時間的推移,記憶力的減退,將來可能忘記。而數學思想方法則是一種數學意識,只能夠領會和運用,屬於思維的范疇,用以對數學問題的認識、處理和解決,掌握數學思想方法,不是受用一陣子,而是受用一輩子,即使數學知識忘記了,數學思想方法也還是對你起作用。 數學思想方法中,數學基本方法是數學思想的體現,是數學的行為,具有模式化與可操作性的特徵,可以選用作為解題的具體手段。數學思想是數學的靈魂,它與數學基本方法常常在學習、掌握數學知識的同時獲得。 可以說,「知識」是基礎,「方法」是手段,「思想」是深化,提高數學素質的核心就是提高學生對數學思想方法的認識和運用,數學素質的綜合體現就是「能力」。 為了幫助學生掌握解題的金鑰匙,掌握解題的思想方法,本書先是介紹高考中常用的數學基本方法:配方法、換元法、待定系數法、數學歸納法、參數法、消去法、反證法、分析與綜合法、特殊與一般法、類比與歸納法、觀察與實驗法,再介紹高考中常用的數學思想:函數與方程思想、數形結合思想、分類討論思想、轉化(化歸)思想。最後談談解題中的有關策略和高考中的幾個熱點問題,並在附錄部分提供了近幾年的高考試卷。 在每節的內容中,先是對方法或者問題進行綜合性的敘述,再以三種題組的形式出現。再現性題組是一組簡單的選擇填空題進行方法的再現,示範性題組進行詳細的解答和分析,對方法和問題進行示範。鞏固性題組旨在檢查學習的效果,起到鞏固的作用。每個題組中習題的選取,又盡量綜合到代數、三角、幾何幾個部分重要章節的數學知識。 http://www.2jiaoyu.com/
⑤ 怎樣學習數學的證明題
學習是一步一個腳印的事情,沒有捷徑讓你一蹴而就,下面我把自己多年的一些心得總結下來,供你參考。
與小學數學相比,初中數學的內容多、抽象性強、理論性強,因為不少同學進入初中後很不適應,特別是初一年級,進校後,代數里首先遇到的是負數,這使一些習慣於自然數運算的學生感到無所適從,產生恐懼心理,就使一些小學數學學的還不錯的同學不能很快地適應而感到困難。以下就怎樣學好初中數學談以下幾點意見和建議:
一、首先要改變觀念
小學階段,尤其是小學六年級,通過大量的練習可使你的成績有明顯的提高,這是因為小學數學知識相對比較淺顯,更易於掌握,通過反復練習,提高了熟練程度,即可提高成績。即使是這樣,一些問題理解不夠深刻,甚至是不理解的。初中數學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考、多研究。
二、提高聽課的效率是關鍵
學生在校期間,在聽課的時間佔了大部分。因此,聽課的效率如何,決定著學習的成績的好壞。提高聽課效率,應注意以下幾個方面:
1、課前預習能提高聽課的針對性。
預習中發現的難點,就是聽課的重點,對預習中遇到的不理解的新知識,可進行有針對性的聽講,預習後把自己理解了的東西與老師的講解進行比較、分析即可提高自己的思維水平。預習還可以培養自己的學習能力。
2、合理安排聽課過程。
首先應做好課前的物質准備和精神准備,以使得上課時不至於出現書、練習本等物尋而不見的現象。上課前也不應做過於激烈的體育運動和看課外情節激烈的書、下棋、打牌、激烈爭論等,以免上課後還氣喘吁吁,或心裡想著其它的不能平靜下來。
其次就是聽課要全神貫注,全神貫注就是全身心地投入到課堂學習中,耳到、眼到、心到、口到、手到。
3、特別注意老師講課的開頭與結尾。
老師講的開頭,一般是概括前節課的要點,指出本節課的內容,是把舊知識和新知識聯系起來的環節。而結尾常常是對上一節課所學的知識的歸納總結,具有高度的概括性,是在理解的基礎上,掌握本節知識方法的綱要。
4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。中考數學命題除了著重考查基礎知識之外,還十分重視對數學方法的考查,如配方法、換元法、判別式法等操作性較強的數學方法。同學們在學習時應對每一種方法的實質,它所適應的題型,包括解題的步驟應該熟練掌握。其次應重視對數學立項的理解及運用;如函數思想,在初中的試題中,明確告訴了自變數與函數,要求寫函數解析式,或者隱含用函數解析式去求交點等問題,同學們應加深對這一思想的深刻理解,多做一些相關內容的題目;如方程思想,它是已知量與未知量之間的聯系和制約,把未知量轉化成已知量的思想。牢固樹立建立方程的思想,比如要求兩個量必須根據已知條件建立關於這兩個量的方程(或等式);再如數性結合的思想,各省市近幾年中考「壓軸題」都與此相關,如把圖式三角形放到直角坐標系中利用它們圖形上的互相關系,熟練進行代數知識與幾何知識的相互轉化;如坐標系中點的坐標與幾何圖形中線段的關系,坐標系中的x軸與y軸相互垂直與幾何圖形中的直角、垂直、對稱及切線等關系;函數解析式與圖形的交點之間的關系等,建議同學們著重分析幾個題目,悉心體會上述的三種關系在題目中如何出現、如何轉換。此外,還要特別注意老師講課中的提示。
老師講課中常常對一些重點難點會做出某些語音、語氣,甚至是某種動作的提示。
最後一點是做好筆記,筆記不是泛泛記錄,而是將上述聽課中的要點思維分析方法等做出簡單扼要的記錄,以便復習,消化思考。
三、做好復習和總結工作
1、做好及時的復習。聽完課的當天,必須做好當天的復習。復習的有效方法不是一遍遍地看書或筆記,而是採取回憶式的復習,先把書、筆記合起來回憶,上課老師講的內容、例題、分析問題的思路、方法等。盡量想得完整些,然後打開筆記本或書本,對照一下還有哪些沒記住的把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
2、做好單元復習。學習一個單元後應進行階段復習,復習方法也應同復習一樣,採取回憶式復習,而後與書、筆記相對照,使其內容完善,而後應做好單元小結。
3、做好單元小結。單元小結內容應包括以下部分:
(1)單元(章)的知識網路。
(2)章的基本思想與方法(應以典型例題形式將其表達出來)。
(3)自我體會,對本章內自己做錯的典型問題應有記載,分析錯誤的原因及正確答題,應記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便之後將其補上。
四、做一定數量的題,做一定質量的題
有不少同學把提高數學成績的希望寄託在大量做題上,我認為這樣是不妥當的。我認為:重要的不在做題多,而在於做題的效益要高,做題的目的在於檢查你學習的知識、方法是否掌握的很好。如果你掌握的不準,甚至有偏差,那麼多做題的結果反而鞏固了你的缺欠。因此,要在准確地把握住基本的知識和方法的基礎上做一定量的練習題是必要的。而對於中檔題,尤其要講究做題的效益,即做題有多大收獲,這就需要在做題後就進行一定的「反思」,思考一下本題所用的基礎知識,數學思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯系起來,你就會得到更多的經驗和教訓。更重要的是養成善於思考的好習慣,這將大大有利於你今後的學習,當然沒有一定量(老師布置的作業量)的練習就不能形成技能,這是不行的。
另外,就是無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,然後去追求速度和技巧,也是學習數學的重要問題。
最後想說的是:「興趣」和「信心」是學習好數學的最好的老師,有了一定的興趣,隨之信心就會增強,也就不會因為某次考試的成績不理想而泄氣,在不斷總結經驗和教訓的過程中你信心就不斷地增強,成績就會不斷地提高。
⑥ 數學證明方法的分類
證明命題的方法:
大多數命題都取下面兩種形式中的一種:
「若P,則Q」 P=>Q
「P,當且僅當Q」 P<=>Q
要證後一種。我們先證「P蘊涵Q」再證「Q蘊涵P」即可。
而證明「P蘊涵Q」通常有三種方法:
1。最直接的方法是,假設P使真的在設法去推導Q是真的。這里不必擔心P是假的的情況。因為「P蘊涵Q」自然是真的。(這涉及蘊涵的概念,相信你是清楚的)
2。第二種方法是寫出它的逆否「(非Q)蘊涵(非P)」然後證明它。
這時我們假定(非Q)是真的,然後設法推證非P是真的。
3。歸謬法。(反證法就是歸謬法!!!)
想真正弄清反證法,我們還得做些准備。
先看看什麼是矛盾吧,它的定義是精確的。
觀察P與(非P)這個命題。用真值表。
P 非P P與(非P)
T F F
F T F
我們發現,無論P是T還是F,命題P與(非P)永遠是F.這時我們說P與(非P)是一個矛盾。
再看一個真值表,討論P與(非Q).
P Q 非Q P與(非Q) 非[P與(非Q)] P蘊涵Q
T T F F T T
T F T T F F
F T F F T T
F F T F T T
我們發現非[P與(非Q)]和P蘊涵Q同T同F,他們是邏輯等價的。
現在我們可以討論反證法了。
運用反證法。假設P和非Q都是真的。然後尋找一個矛盾。由此斷定我們的假設是假的。即「非[P與(非Q)]」是真的。而這與 「P蘊涵Q 」等價。從而證明了P蘊涵Q真。
具體的證明需要運用具體數學知識,以上只是最一般的方法以及邏輯原理。
⑦ 高中數學分析法
你要明白充分條件與必要條件的意思,逆向找充分條件。
有兩個原因導致一個結果的,如x>1和x>2都導致x>3。
最後一句話沒理解清楚,分析法只是提供一個思路,有時結論比較難證明,我們可以通過變形等等,來尋找充分條件,是通過逐步的方式,一步一步尋找充分條件,即正推成立的條件!
⑧ 數學分析怎麼證明
這個題目剛剛在頭條上看到有人視頻解答了這個問題,方法一你可以嘗試使用數學歸納法,方法二就是平均值不等式,先兩邊平方,然後利用放縮,這樣也可以得到結論,當然了,這個平均值不等式是n元的不等式,
⑨ 請問,高中數學證明方法有哪些謝謝!
.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。 2.綜合法利用已知事實(已知條件、重要不等式或已證明的不等式)作為基礎,藉助不等式的性質和有關定理,經過逐步的邏輯推理,最後推出所要證明的不等式,其特點和思路是「由因導果」,從「已知」看「需知」,逐步推出「結論」。3.分析法分析法是指從需證的不等式出發,分析這個不等式成立的充分條件,進而轉化為判定那個條件是否具備,其特點和思路是「執果索因」,即從「未知」看「需知」,逐步靠攏「已知」。4.反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質,推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有「至多」、「至少」、「不存在」、「不可能」等詞語時,可以考慮用反證法。 5.換元法換元法是對一些結構比較復雜,變數較多,變數之間的關系不甚明了的不等式可引入一個或多個變數進行代換,以便簡化原有的結構或實現某種轉化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用於條件不等式的證明,當所給條件較復雜,一個變數不易用另一個變數表示,這時可考慮三角代換,將兩個變數都有同一個參數表示。此法如果運用恰當,可溝通三角與代數的聯系,將復雜的代數問題轉化為三角問題根據具體問題,實施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對於含有的不等式,由於|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱式(任意交換兩個字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進行換元,其目的是通過換元達到減元,使問題化難為易,化繁為簡。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進行換元。 6.放縮法放縮法是要證明不等式A<B成立不容易,而藉助一個或多個中間變數通過適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個分式大小的比較。常用的放縮技巧有:①舍掉(或加進)一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進行放縮。
⑩ 常用的數學分析方法有哪些
1.避免「一步到位」
是指解題過程中,省略關鍵步驟,而直接得到答案,這樣扣分是嚴重的.由於解答題是嚴格按照步驟給分的,如果解題過程中失去關鍵步驟,跳過擬考查的知識點、能力點,就意味著失去得分點,自然被扣分.
例1(2000年全國高考題) 已知函數y= cos2x+ sinxcosx+1,x∈R.
(I) 當函數y取得最大值時,求自變數x的集合;
(II) 該函數的圖像可由y=sinx(x∈R)的圖像經過怎樣的平移和伸縮變換得到?
解:(I)由題設可得,y= sin(2x+ )+ ,故有
當 x= +k ,k∈Z,函數y取得最大值.
(II) 略.
評註:在(Ⅰ)的解答中犯了「大題小作」中的「一步到位」錯誤,缺少了化簡過程的3個要點與何時取到最大值的1個要點,因而被扣分.
2. 避免「使用升華結論」
在解選擇和填空題中,使用升華結論(教材中未給出的正確結論)是允許的,而且還是一種簡捷快速的答題技巧.而直接運用(不加說明或證明)在解答題中是不合適的,且是「大題小作」,要適當扣分的.
解答高考解答題的理論根據應該是教材中的定義、定理、公理和公式,而學生使用「升華結論」則達不到考查能力、考查過程的目的,因此不能以題解題,不能直接運用教材以外別的東西,以免被扣分.
例2⑴(1991年全國高考題) 根據函數單調性的定義,證明函數f (x)=-x3+1在(-∞,+∞)上是減函數.
⑵(2001年全國高考題) 設拋物線y2 =2px (p>0)的焦點為F,經過點F的直線交拋物線於A、B兩點,點C在拋物線的准線上,且BC∥x軸.證明直線AC經過原點O.
評分標准中指出:
對於⑴:「利用y=x3在[0,+∞)上是增函數的性質,未證明y=x3在(-∞,+∞)上也是增函數而直接寫出f(x1)-f(x2)= - <0,未能證明為什麼 - <0過程,由評分標准知最多得3分.
對於⑵:有些考生證明時,直接運用課本中的引申結論「y1 y2=p2」而跳過擬考查的知識點、能力點而被扣2分.
對於課本習題、例題的結論,是要通過證明才能直接使用(黑體字結論例外),否則將被「定性」為解題不完整而被扣分.又如1996年高考理科第22(Ⅱ)及2001年全國高考理科第17(Ⅱ)利用面積射影定理,由於不加證明而直接使用,因而被扣分.
3 避免「答非所問」
是指沒有根據題意要求或沒有看清題意要求,用其它方法或結論作答,這明顯也要被扣分的.
例3(1993年全國高考題)已知數列
Sn為其前n項和.計算得 觀察上述結果,推測出計算Sn的公式,並用數學歸納法加以證明.
解:依據題意,推測出Sn的公式為:
Sn= .
∵ ak= = - ,
分別取k=1,2,3,…,n,並將n個式子相加得:
Sn=1- = .
評注 以上解法可謂「簡單、明了」,但證明時不用數學歸納法,為「答非所問」,不合題意,扣分是必然的. 又如1999年高考第22題(應用題),第(Ⅰ)問中求「冷軋機至少需要安裝多少對軋輥」,要求是用整數作答,不少考生未能用整數作答,違背題意而被扣分.
(四)了解「評分標准」,把握得分點
掌握解答題的「得分點」就要了解高考的評分標准,解答題評分標準是分步給分,但並非寫得越多得分越高,而是踏上得分點就給分,即按所用的數學知識,數學思想方法要點式給分,允許「等價答案」,允許「跳步得分」. 因此解答時,應步驟清,要點明,格式齊. 對於不同題型的給分規律有:
1.立幾題得分點
通常分作證,計算兩部分給分,各段中間又按要點給分.證明主要寫清兩點:①空間位置關系的判斷推理的依據(課本中的定理、公理);②什麼是空間角和距離及理由(緊扣定義). 特別要注意沒有寫清角、距離要被扣分. 計算過程的書寫:計算一般是解三角形,要寫清三角形的條件及解出的結果. 用等積法解題,要找出等積關系並計算. 都是分段得分的,如1998年23題,1999年22題,都有3個小題,每小題4分,其中作證2分,計算2分.
2.分類討論題得分點
按所分類分別給分,加上歸納的格式(即寫為「綜上:當××時,結論是××」)分. 如1996年第20題,按a>1和0<a<1兩類分別給5分,歸納給1分. 2000年理19(Ⅱ),求 a 的取值范圍,使函數在區間[0,+∞)上是單調函數,按 a≥1和0<a<1討論各得2分.
3.應用題得分點
按設列、解答兩部分給分. 特別要注意不答和答錯都要扣1分,應注意設、列、解、答的完整性,爭取步驟階段分.
4.推理證明題得分點
按推理格式,推理變形步驟給分. 對於用定義證明函數的單調性、奇偶性,用數學歸納法證題,都有嚴格的格式分,應完整,避免失分. 即使推理證明不出,寧可跳步作答,也要套用格式. 從條件、結論兩頭往中間靠,這樣寫完格式,這樣可以少扣分.
5.綜合題得分點
按解答的過程,分步給分,每個步驟又按要點給分. 盡可能把過程分步寫出,盡量不跳步,根據題意
列出關系,譯出題設中每一個條件,能演算幾步算幾步,尚未成功不等於失敗,特別是那些解題層次分明的題目,那些已經程序化的方法,每進行一步得分點的演算都可以得到這一步的滿分,最後結論雖然沒有算出來,但分數已過半,所以說,「大題拿小分」也是一個好主意. 因此盡量增加分步得分機會,千萬別輕易留空白題.
(五)常用的解答題解題技巧
1.較簡單的解答題的求解
對於比較容易解答的解答題(一般是前面3道),宜採用一慢一快的方法,就是審題要慢,解題要快,速戰速決,為後面3道解答題留下時間.
找到解題方法後,書寫要簡明扼要,快速規范,不要拖泥帶水,羅唆重復,用閱卷老師的話,就是寫出「得分點」,一般來講,一個原理寫一步就可以了。至於不是題目直接考查的過渡知識,可以直接寫出結論,高考允許合理省略非關鍵步驟,應詳略得當。
例2004北京理科第15題
在 中, , , ,求 的值和 的面積.
分析:本小題主要考查三角恆等變形、三角形面積公式等基本知識,考查運算能力
解:
又 ,
.
2.較難的解答題的求解
對於較難的解答題(後面3道)來說,要想在有限的時間內做全對是不大現實的.當然也不能全部放棄,應該盡可能的爭取多拿分.對於絕大多數考生來說,在這里重要的是:如何從拿不下來的題目中分段得點分。我們說,有什麼樣的解題策略,就有什麼樣的得分策略,下面談四個觀點。
(1)、缺步解答
如果我們遇到一個很困難的問題,確實啃不動,一個明智的策略是:將它分解成為一個系列的步驟,或者是一個個子問題,能演算幾步就演算幾步,尚未成功不等於徹底失敗,每進行一步得分點的演算就可以得到這一步的滿分,最後結論雖然沒有得出來,但分數卻已過半。因為近幾年高考解答題的特點是:入口易完善難,不可輕易放棄任何一題。
例: (2004浙江理科第21題)已知雙曲線的中心在原點,右頂點為A(1,0)點P、Q在雙曲線的右支上,支M(m,0)到直線AP的距離為1.
(Ⅰ)若直線AP的斜率為k,且 ,求實數m的取值范圍;
(Ⅱ)當 時,ΔAPQ的內心恰好是點M,求此雙曲線的方程.
解: (Ⅰ)由條件得直線AP的方程
即
因為點M到直線AP的距離為1,
∵ 即 .
∵ ∴
解得 +1≤m≤3或--1≤m≤1-- .
∴m的取值范圍是
(Ⅱ)可設雙曲線方程為 由
得 .
又因為M是ΔAPQ的內心,M到AP的距離為1,所以∠MAP=45º,直線AM是∠PAQ的角平分線,且M到AQ、PQ的距離均為1.因此, (不妨設P在第一象限)
直線PQ方程為 .
直線AP的方程y=x-1,
∴解得P的坐標是(2+ ,1+ ),將P點坐標代入 得,
所以所求雙曲線方程為
即
(2)、跳步解答
解題卡在某一過渡環節上是常見的,這時,我們可以先承認中間結論,往後推,看能否得到結論。如果得不出,證明這個途徑不對,立即改變方向;如果能得出預期結論,我們再回過頭來,集中力量攻克這個「中途點」。由於高考時間的限制,「中途點」的攻克來不及了,那麼可以把前面的寫下來,再寫上「證明某步之後,繼而有……」一定做到底。也許,後來中間步驟又想出來了,這時不要亂七八糟地補上去,可補在後面,可書寫為「事實上,某步可證如下」。
有的題目可能設有多問,第一問求不出來,可以把第一問當成已知,先做第二問,這也算做是跳步解答。
例: (2004天津文科第18題) 從4名男生和2名女生中任選3人參加演講比賽.
(I) 求所選3人都是男生的概率;
(II)求所選3人中恰有1名女生的概率;
(III)求所選3人中至少有1名女生的概率.
解: (I) 所選3人都是男生的概率為
(II)所選3人中恰有1名女生的概率為
(III)所選3人中至少有1名女生的概率為
這3道小題可以說是互相獨立的,彼此不相干.所以如果第1小題做不來,可以跳過去,直接做第2小題.
(3)、退步解答
「以退求進」是一個重要的解題策略,如果你不能解決題中所提出的問題,那麼,你可以從一般退到特殊,從復雜退到簡單,從整體退到局部。總之,退到一個你能夠解決的問題,比如,{an}是公比為q的等比數列,Sn為{an}的前n項和,若Sn成等差數列,求公比q=____.
對等比數列問題,我們需考慮到q=1,q≠1兩種情況,你可以先對特殊的q=1進行討論,滿足題意,找到解題思路和情緒上的穩定後,再討論q≠1時是否也滿足題意,發現無解,如果對q≠ 1的情況你確實不會解,你還可以開門見山的寫上:本題分兩種情況:q=1或q≠1.
也許你只能完成一種情況,但你沒有用一種情況來代替主體。在概念上、邏輯上是清楚的。另外「難的不會做簡單的」還為尋找正確的、一般的解題方法提供了有意義的啟發。
4、輔助解答
一道題目的完整解答,即要有主要的實質性的步驟,也要有次要的輔助性的步驟,如:准確的作圖,把題目中的條件翻譯成數學表達式,設應用題中的未知量,函數中變數的取值范圍,軌跡題中的動點坐標,數學歸納法證明時,第一步n的取值等,如果處理得當,也會增分,不要小視它們。
另外,書寫也是輔助解答,卷面隨意塗改及正確答案的位置不合理,都會造成不必要的失分。
所以,有人說,書寫工整,卷面整齊也得分,不無道理。