㈠ 數學所有數的分類
數的最大集合是復數,復數集:實數、虛數
虛數分為:實部不為零的一般虛數、實部為零的純虛數;虛數沒有正負之分;
實數按符號分:正實數、零、負實數
(1)數學中有哪些數擴展閱讀
自然數:即正整數,從0、1、2、3、4、5、6..
整數:包含正整數、0、負整數,.-5、-4、-3、-2、-1、0、1、2、3、4、5.
有理數,包含整數及小數(不包含無限不循環小數),通俗理解就是可以寫成分數形式的數,所有有理數都可以用分數表示.
無理數:即無限不循環小數,不可以用分數形式表示.如圓周率,根號2等.
實數:實數就是有理數和無理數的統稱
復數:復數是指能寫成如下形式的數a+bi,這里a和b是實數,i是虛數單位(即-1開方)
㈡ 數學中的Z,Q,R分別是什麼…有哪些數
Z:在數學中代表的是整數集。
包括數字:
1、正整數,即大於0的整數如,1,2,3······直到n。
2、零,既不是正整數,也不是負整數,它是介於正整數和負整數的數。
3、負整數,即小於0的整數如,-1,-2,-3······直到-n。(n為正整數)
Q:在數學中代表的是有理數集。
包括數字:
1、正有理數,包括正整數和正分數,例如1,2,3······直到n,以及1/2,1/3······正分數。
2、負有理數,包括負整數和負分數,例如-1,-2,-3······直到-n,以及-1/2,-1/3······負分數。
3、零。
R:在數學中代表的是實數集。
包括數字:
1、有理數,由所有分數,整數組成,總能寫成整數、有限小數或無限循環小數,並且總能寫成兩整數之比。
2、無理數,實數范圍內不能表示成兩個整數之比的數。常見的無理數有:圓周長與其直徑的比值,歐拉數e,黃金比例φ等等。
(2)數學中有哪些數擴展閱讀:
1、整數集Z的由來:
德國女數學家諾特在引入整數環概念的時候(整數集本身也是一個數環),她是德國人,德語中的整數叫做Zahlen,於是當時她將整數環記作Z,從那時候起整數集就用Z表示了。
2、有理數集可以用大寫黑正體符號Q代表。但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
有理數的小數部分是有限或為無限循環的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不循環的數。
3、實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
4、有理數集與整數集的一個重要區別是,有理數集是稠密的,而整數集是密集的。將有理數依大小順序排定後,任何兩個有理數之間必定還存在其他的有理數,這就是稠密性。整數集沒有這一特性,兩個相鄰的整數之間就沒有其他的整數了。
㈢ 數學中有哪些數字
埃及好象有
中國也有 就是一 二 還有以前商朝大鼎上那些古數字
其實文明古國以前很多都有自己的數字,不過由於歷史原因,很多都消失了
㈣ 數學中都有什麼數
分數(小數),整數,負數,正數,自然數,不循環小數
㈤ 數學中有哪些數
1.質數與合數
質數,又名素數,是指只能被1和自身整除的數。如2,3, 5, 7, 11……
合數,是指除了1與自身之外還有其他的約數,如4,除了1與4之外,它還能被2整除。
2、公因數、最大公約數和最小公倍數
公因數,又稱公約數,在兩個或兩個以上的自然數中,如果它們有相同的因數,那麼這些因數就叫做它們的公因數。任何兩個自然數都有公因數1.(除零以外)而這些公因數中最大的那個稱為這些正整數的最大公因數。
求幾個整數的最大公因數,只要把它們的所有共有的素因數連乘,所得的積就是它們的最大公因數。
3、 實數與虛數
負數開平方,在實數范圍內無解。
數學家們就把這種運算的結果叫做虛數,因為這樣的運算在實數范圍內無法解釋,所以叫虛數。
實數和虛數組成的一對數在復數范圍內看成一個數,起名為復數。
於是,實數成為特殊的復數(缺序數部分),虛數也成為特殊的復數(缺實數部分)。
虛數單位為i, i即根號負1。
3i為虛數,即根號(-3), 即3×根號(-1)
2+3i為復數,(實數部分為2,虛數部分為3i)
復數和虛數不一樣,形如a+bi的數。式中a,b 為實數,i是 一個滿足i2=-1的數,因為任何實數的平方不等於-1,所以i不是實數,而是實數以外的新的數。在復數a+bi中,a 稱為復數的實部,b稱為復數的虛部,i稱為虛數單位。當虛部等於零時,這個復數就是實數;當虛部不等於零時,這個復數稱為虛數,虛數的實部如果等於零,則稱為純虛數。由上可知,復數集包含了實數集,因而是實數集的擴張.
4、、有理數與無理數
有理數(rational number):能精確地表示為兩個整數之比的數.
如3,-98.11,5.72727272……,7/22都是有理數.
整數和通常所說的分數都是有理數.有理數還可以劃分為正有理數,0和負有理數.
無理數指無限不循環小數
非負整數集(或自然數集)記作 N 都指的那些?
N---0和自然數,如:0。1。2。3。。。
正整數集 記作 N + 都指的那些?
N+----正整數,如:1。2。3。。。。
整數集 記作 Z 都指的那些?
Z---正整數和負整數和0,如:。。。-2。-1。0。1。2。3。。。
實數集 記作 R 指的那些 ?
R---有理數和無理數
無限不循環小數和開根開不盡的數叫無理數
整數和分數統稱為有理數
數學上,有理數是兩個整數的比,通常寫作 a/b,這里 b 不為零。分數是有理數的通常表達方法,而整數是分母為1的分數,當然亦是有理數。
數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογος ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。
所有有理數的集合表示為 Q,有理數的小數部分有限或為循環。
5、 整數
整數(Integer):像-2,-1,0,1,2這樣的數稱為整數。(整數是表示物體個數的數,0表示有0個物體)整數是人類能夠掌握的最基本的數學工具。整數的全體構成整數集,整數集合是一個數環。在整數系中,自然數為0和正整數的統稱,稱0為零,稱-1、-2、-3、…、-n、… (n為整數)為負整數。正整數、零與負整數構成整數系。 一個給定的整數n可以是負數(n∈Z-),非負數(n∈Z*),零(n=0)或正數(n∈Z+).
我們以0為界限,將整數分為三大類 1.正整數,即大於0的整數如,1,2,3,…,n,… 2.0 既不是正整數,也不是負整數,他是介於正整數和負整數的數 3.負整數,即小於0的整數如,-1,-2,-3,…,-n,…
6、 奇數與偶數
奇數(英文:odd)數學術語 , 整數中,能被2整除的數是偶數,不能被2整除的數是奇數,偶數可用2k表示,奇數可用2k+1表示,這里k是整數。 奇數包括正奇數、負奇數。
關於奇數和偶數,有下面的性質: (1)奇數不會同時是偶數;兩個連續整數中必是一個奇數一個偶數。 (2)奇數跟奇數的和是偶數;偶數跟奇數的和是奇數;任意多個偶數的和是偶數。 (3)兩個奇(偶)數的差是偶數;一個偶數與一個奇數的差是奇數。 (4)若a、b為整數,則a+b與a-b有相同的奇偶性,即a+b與a-b同為奇數或同為偶數。 (5)n個奇數的乘積是奇數,n個偶數的乘積是偶數;順式中有一個是偶數,則乘積是偶數,即:A*B*C*…*偶數*X*Y=偶數,式中A、B、C、…X、Y皆為整數,公式可簡化為:奇數*偶數=偶數。 (6) 奇數的個位是1、3、5、7、9;偶數的個位是0、2、4、6、8.(0是個特殊的偶數。2002年國際數學協會規定,零為偶數.我國2004年也規定零為偶數。小學規定0為最小的偶數,但是在初中學習了負數,出現了負偶數時,0就不是最小的偶數了.) (7)奇數的平方除以8餘1
7、 基數
在數學上,基數(cardinal number)也叫勢(cardinality),指集合論中刻畫任意集合所含元素數量多少的一個概念。兩個能夠建立元素間一一對應的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一 一對應,是兩個對等的集合。此外還有語言學和軍事上的基數。
8、 浮點數
浮點數是屬於有理數中某特定子集的數的數字表示,在計算機中用以近似表示任意某個實數。具體的說,這個實數由一個整數或定點數(即尾數)乘以某個基數(計算機中通常是2)的整數次冪得到,這種表示方法類似於基數為10的科學記數法。
9、 布爾值
布爾值是 true 或 false 中的一個。動作腳本也會在適當時將值 true 和 false 轉換為 1 和 0。布爾值經常與動作腳本語句中通過比較控制腳本流的邏輯運算符一起使用。
㈥ 數學中的自然數指哪些數
零和正整數統稱為自然數,就是大於等於0的整數,
㈦ 數學中都有什麼數
實數
有理數:自然數:0 與 正數:分數(真分數假分數)(無限循環小數),整數。
負數。
無理數:無限不循環小數。
虛數
公因數公倍數,素數(質數),合數……
對數,倒數……
那個,函數算不算?三角函數那些……
能想到的就這些了,望採納~
㈧ 數學中,數字都有那些
數字的號就是0123456789
你所說的負數,那是數的范圍,包括正數,負數和0
也可以說數分為實數和虛數
㈨ 數學中 有哪些數
一般研究的是復數系
復數包括實數和虛數
實數有2種分類,第一種是分為正數、負數和0,正數又分正有理數和正無理數,負數分為負有理數和負無理數
第二種分類是分為有理數和無理數,有理數又分為整數和分數
(小數可以化成分數,所以一般都用分數表示,很少用小數表示)
㈩ 數學中除了實數還有哪些數
虛數。
其實,按不同的分法,還有不同叫法的數。如:代數數、友好數、完全數等等。