『壹』 數學建模是什麼,他有什麼用
數學建模是數學分支,作用是根據結果去解決實際問題。
數學建模,就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
應用:
自從20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在21世紀這個知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國家經濟和科技的後備走到了前沿。
經濟發展的全球化、計算機的迅猛發展、數學理論與方法的不斷擴充,使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。
『貳』 數學模型有哪些
模型種類
用字母、數字和其他數學符號構成的等式或不等式,或用圖表、圖像、框圖、數理邏輯等來描述系統的特徵及其內部聯系或與外界聯系的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。
靜態和動態模型
靜態模型是指要描述的系統各量之間的關系是不隨時間的變化而變化的,一般都用代數方程來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表達式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統的傳遞函數也是動態模型,因為它是從描述系統的微分方程變換而來的(見拉普拉斯變換)。
分布參數和集中參數模型
分布參數模型是用各類偏微分方程描述系統的動態特性,而集中參數模型是用線性或非線性常微分方程來描述系統的動態特性。在許多情況下,分布參數模型藉助於空間離散化的方法,可簡化為復雜程度較低的集中參數模型。
連續時間和離散時間模型
模型中的時間變數是在一定區間內變化的模型稱為連續時間模型,上述各類用微分方程描述的模型都是連續時間模型。在處理集中參數模型時,也可以將時間變數離散化,所獲得的模型稱為離散時間模型。離散時間模型是用差分方程描述的。
隨機性和確定性模型
隨機性模型中變數之間關系是以統計值或概率分布的形式給出的,而在確定性模型中變數間的關系是確定的。
參數與非參數模型
用代數方程、微分方程、微分方程組以及傳遞函數等描述的模型都是參數模型。建立參數模型就在於確定已知模型結構中的各個參數。通過理論分析總是得出參數模型。非參數模型是直接或間接地從實際系統的實驗分析中得到的響應,例如通過實驗記錄到的系統脈沖響應或階躍響應就是非參數模型。運用各種系統辨識的方法,可由非參數模型得到參數模型。如果實驗前可以決定系統的結構,則通過實驗辨識可以直接得到參數模型。
線性和非線性模型
線性模型中各量之間的關系是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用於系統的響應,等於幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數,保留一階項,略去高階項,就可得到近似的線性模型。
『叄』 數學模型
4月21日 21:38 數學模型:對於現實世界的一個特定對象,為了一個特定目的,根據特有的內在規律,做出一些必要的簡化假設,運用適當的數學工具,得到的一個數學結構。
一般說來建立數學模型可以分為表述、求解、解釋、驗證幾個階段,並且通過這些階段完成從現實對象到數學模型,再從數學模型回到現實對象。建立數學模型沒有固定的模式。
數學模型的分類
基於不同的出發點可以有各種不同的分法:
按照模型的應用領域分:如人口模型、交通模型、環境模型、生態模型、城鎮規劃模型、水資源模型、再生資源利用模型、污染模型等。范疇更大一些則形成許多邊緣學科如生物數學、醫學數學、地質數學、數量經濟學、數學社會學等。
按照建立模型的方法分:如初等數學模型、幾何模型、微分方程模型、圖論模型等
數學模型的作用
數學是研究現實世界中的數量關系和空間形式的科學。它的產生和許多重大發展都和現實世界的生產活動和其他相應的學科的需要密切相關的。一般的說,當實際問題需要我們對所研究的現實對象提供分析、預報、決策、控制等方面的定量結果時,往往都離不開數學的應用,而建立數學模型則是這個過程的關鍵環節。
分析 通常是指定量研究現實對象的某種現象,或定量描述某種特性。例如 研究不同種群的生物在同一自然環境下生存時,相互競爭和依存的現象;描述葯物濃度在人體內的變化規律以分析葯物的療效。
預報 一般是根據對象的固有特性預測當時間或環境變化時對象的發展規律。人口預報、天氣預報以及傳染病蔓延高潮時刻的預報可以作為這方面的例子。
決策 其含義很廣,譬如根據對象滿足的規律作出使某個數量指標達到最優的決策。使經濟效益最大的價格策略,使總費用最少的設備維修方案都是這類決策。
控制 一般是指根據對象的特徵和某些指標給出盡可能滿意的控制方案。例如化工生產過程中溫度和流量的控制,利用紅綠燈對交流進行控制等
『肆』 數學建模中的那些模型究竟能有多大實際作用
很有用;只要你敢想,想得到就非常有用:比如1根據車流量控制任何交通路口紅綠燈秒數;2一張椅子不管路面多不平,在一定范圍內都可以放平3根據一定數據可以在商業經濟中使用,如商品庫存量計算,采購量計算;定價;4項目可行性研究中的建模,包含工程項目模擬化施工及開發等5科技領域,導彈火箭衛星;基本涉及計算應用領域都可以使用到,用途非常廣泛。
『伍』 自動控制系統中數學模型的作用及常見形式有哪些
控制系統的數學模型是描述系統內部物理量(或變數)之間關系的數學表達式。在靜態條件下(即變數各階導數為零),描述變數之間關系的代數方程叫靜態數學模型;而描述變數各階導數之間關系的微分方程叫數學模型。如果已知輸入量及變數的初始條件,對微分方程求解就可以得到系統輸出量的表達式,並由此可對系統進行性能分析。因此,建立控制系統的數學模型是分析和設計控制系統的首要工作
建立控制系統數學模型的方法有分析法和實驗法兩種。分析法是對系統各部分的運動機理進行分析,根據它們所依據的物理規律或化學規律分別列寫相應的運動方程。例如,電學中有基爾霍夫定律,力學中有牛頓定律,熱力學中有熱力學定律等。實驗法是人為地給系統施加某種測試信號,記錄其輸出響應,並用適當的數學模型去逼近,這種方法稱為系統辨識。
『陸』 數學建模是干什麼的
數學建模是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。數學模型Mathematical Model是一種模擬,是用數學符號數學式子程序圖形等對實際課題本質屬性的抽象而又簡潔的刻畫。
數學建模的特點
創造性和經驗模型的構建給定一種實現情景,學習識別問題做出假設和收集數據提出模型,測試假設必要時精煉模型在情況適宜時看看模型和數據是否一致,以及分析模型的基本數學結構以評價並不完全精確地滿足假設時對結論的敏感性。
模型分析給定一個模型,學會分析反向推理以揭示那些不一定是顯式表示的基本假設,審慎嚴謹地評估這些假設和手頭要處理的情景相符合的程度,並估計不完全精確地滿足假設時對結論的敏感性。
『柒』 學習數學建模有什麼利用價值
可以讓學習者勤於思考,鍛煉開發能力和自主學習能力,因為期間一切問題都應該自己解決。
同時在建模過程中學會MATLAB和lingo等軟體的使用。
我們書記說如果這對考研也有一定的幫助,在面試中如果和主考官說自己參加過數學建模培訓,能增加面試分,因為你已經掌握了研究生必備的自主學習的能力,老師當然喜歡省心的學生啦.....在我們學校,如果可以參加比賽還能加創新學分,這也算好處之一吧!
『捌』 學數學建模有什麼用
我們可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只研究數學而不管數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。
數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立數學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分析和解決問題。這就需要深厚扎實的數學基礎,敏銳的洞察力和想像力,對實際問題的濃厚興趣和廣博的知識面。數學建模是聯系數學與實際問題的橋梁,是數學在各個領域廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之一。為了適應科學技術發展的需要和培養高質量、高層次科技人才,數學建模已經在大學教育中逐步開展,國內外越來越多的大學正在進行數學建模課程的教學和參加開放性的數學建模競賽,將數學建模教學和競賽作為高等院校的教學改革和培養高層次的科技人才的一個重要方面,許多院校正在將數學建模與教學改革相結合,努力探索更有效的數學建模教學法和培養面向21世紀的人才的新思路,與我國高校的其它數學類課程相比,數學建模具有難度大、涉及面廣、形式靈活,對教師和學生要求高等特點,數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。為了改變過去以教師為中心、以課堂講授為主、以知識傳授為主的傳統教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分析和解決問題的全過程,提高他們分析問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力,使他們在以後的工作中能經常性地想到用數學去解決問題,提高他們盡量利用計算機軟體及當代高新科技成果的意識,能將數學、計算機有機地結合起來去解決實際問題。數學建模以學生為主,教師利用一些事先設計好問題啟發,引導學生主動查閱文獻資料和學習新知識,鼓勵學生 積極開展討論和辯論,培養學生主動探索,努力進取的學風,培養學生從事科研工作的初步能力,培養學生團結協作的精神、形成一個生動活潑的環境和氣氛,教學過程的重點是創造一個環境去誘導學生的學習慾望、培養他們的自學能力,增強他們的數學素質和創新能力,提高他們的數學素質,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。接受參加數學建模競賽賽前培訓的同學大都需要學習諸如數理統計、最優化、圖論、微分方程、計算方法、神經網路、層次分析法、模糊數學,數學軟體包的使用等等「短課程」(或講座),用的學時不多,多數是啟發性的講一些基本的概念和方法,主要是靠同學們自己去學,充分調動同學們的積極性,充分發揮同學們的潛能。培訓中廣泛地採用的討論班方式,同學自己報告、討論、辯論,教師主要起質疑、答疑、輔導的作用。
『玖』 數學模型有什麼用
數學模型是數學抽象的概括的產物,其原型可以是具體對象及其性質、關系,也可以是數學對象及其性質、關系。數學模型有廣義和狹義兩種解釋.廣義地說,數學概念、如數、集合、向量、方程都可稱為數學模型,狹義地說,只有反映特定問題和特定的具體事物系統的數學關系結構方數學模型大致可分為二類:(1)描述客體必然現象的確定性模型,其
數學工具
一般是代效方程、微分方程、
積分方程
和
差分方程
等,(2)描述客體或然現象的
隨機性
模型,其
數學模型方法
是科學研究相創新的重要方法之一。在體育實踐中常常提到優秀運動員的數學模型。如經調查統計.現代的世界級短跑運動健將模型為身高1.80米左右、體重70公斤左右,100米成績10秒左右或更好等。
用字母、數字和其他
數學符號
構成的等式或不等式,或用圖表、圖像、框圖、
數理邏輯
等來描述系統的特徵及其內部聯系或與外界聯系的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。
靜態和動態模型
靜態模型是指要描述的系統各量之間的關系是不隨時間的變化而變化的,一般都用
代數方程
來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表達式,一般用微分方程或差分方程來表示。
經典控制理論
中常用的系統的
傳遞函數
也是動態模型,因為它是從描述系統的微分方程變換而來的(見
拉普拉斯變換
)。
分布參數和集中參數模型
分布參數模型是用各類偏微分方程描述系統的動態特性,而集中參數模型是用線性或非線性
常微分方程
來描述系統的動態特性。在許多情況下,分布參數模型藉助於空間
離散化
的方法,可簡化為復雜程度較低的集中參數模型。
連續時間和離散
時間模型
模型中的
時間變數
是在一定區間內變化的模型稱為連續時間模型,上述各類用微分方程描述的模型都是連續時間模型。在處理集中參數模型時,也可以將時間變數離散化,所獲得的模型稱為離散時間模型。離散時間模型是用差分方程描述的。
隨機性和確定性模型
隨機性模型中變數之間關系是以統計值或
概率分布
的形式給出的,而在確定性模型中變數間的關系是確定的。
參數與非參數模型
用代數方程、微分方程、微分方程組以及傳遞函數等描述的模型都是參數模型。建立參數模型就在於確定已知模型結構中的各個參數。通過理論分析總是得出參數模型。非參數模型是直接或間接地從實際系統的實驗分析中得到的響應,例如通過實驗記錄到的系統脈沖響應或階躍響應就是非參數模型。運用各種
系統辨識
的方法,可由非參數模型得到參數模型。如果實驗前可以決定系統的結構,則通過實驗辨識可以直接得到參數模型。
線性和非線性模型
線性模型中各量之間的關系是線性的,可以應用
疊加原理
,即幾個不同的輸入量同時作用於系統的響應,等於幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以
線性化
為線性模型,方法是把非線性模型在工作點
鄰域
內展成
泰勒級數
,保留一階項,略去高階項,就可得到近似的線性模型。