① 小學數學如何進行概念教學
4
二
有效鞏固概念
教學中不僅要求學生理解概念,
而且還要使學生熟記並靈活地運用概念。
我
認為概念的記憶與應用是相輔相成的。
因此在教學中,
加強練習,
及時復習並做
歸納整理,對鞏固概念具有特殊意義。
1
、學過的概念要歸納整理才能系統鞏固
學習一個階段以後,
引導學生把學過的概念進行歸類整理,
明確概念間的聯
系與區別,從而使學生掌握完整的概念體系。如學生學了
「
比
」
的全部知識後,我
幫助他們歸納整理了什麼叫比;比和除法、分數的關系;比的基本性質,利用比
的基本性質,
可以化簡比;
這一系列知識復習清楚之後,
才能很好地解決求比例
尺三種類型題和比例分配的實際問題。
只有把比的意義理解得一清二楚,
才能繼
續學習比例。
表示兩個比相等的式子叫做比例。
這樣做,
就構成了一個概念體系,
既便於理解,
又便於記憶。
概念學得扎扎實實,
應用概念才會順利解決實際問題。
2
、通過實際應用,鞏固概念
學習的目的是為了解決實際問題。
而通過解決實際問題,
勢必加深對基本概
念的理解。
如學生學了小數的意義之後,
我就讓學生利用課外時間,
到商店了解
幾種商品的價錢,
寫在作業本上,
第二天讓他們在課上向大家匯報。
通過了解的
過程,非常自然地對小數的意義,讀、寫法得以運用與理解。又如學了各種平面
圖形後,
我讓學生回家後,
觀察家裡那些地方有這些平面圖形。
通過這種形式的
作業,學生感到新鮮,有趣。這不僅鞏固了所學概念,還提高了學生運用數學概
念解決實際問題的能力。
3
、綜合運用概念,不僅鞏固概念,而且檢驗概念的理解情況。
在學生形成正確的數學概念之後,進一步設計各種不同形式的概念練習題,
讓學生綜合運用、
靈活思考、
達到鞏固概念的目的,
這也是培養檢查學生判斷能
力的一種良好的練習形式。這種題目靈活,靈巧,能考察多方面的數學知識,是
近些年來鞏固數學概念一種很好的練習內容。
練習概念性的習題,目的在於讓學生綜合運用,區分比較,深化理解概念。
所安排的練習題,
應有一定梯度和層次,
按照概念的序,
學生認識的序去考慮習
題的序。
要根據學生實際和教學的需要,
採用多種形式和方法設計,
藉以激發學
生鑽研的興趣,
達到鞏固概念的目的。
尤其應組織好概念性習題的教學,
引導學
生共同分析判斷。
多年來的教學實踐,
使我深刻地體會到:
要想提高教學質量,
教師用心講好
概念是非常重要的,
既是落實雙基的前提,
又是使學生發展智力,
培養能力的關
鍵。
但這也僅僅是學習數學的一個起步,
更重要的是在學生形成概念之後,
要善
於為學生創造條件,
使學生經常地運用概念,
才能有更大的飛躍。
只有學生會運
用所掌握的概念,
才能更深刻地理解概念,
從而更好地掌握新的數學知識。
只有
這樣,培養能力,發展智力才會有堅實的基礎。
② 如何教好小學數學中的概念
概念教學對於數學學科尤其重要。不明概念,無法學習數學。那麼什麼叫「數學概念」呢?數學概念是人腦對現實對象的數量關系和空間形式的本質特徵的一種反映形式,即一種數學的思維形式,是形成數學能力的基礎。小學生正處在邏輯抽象思維形成的階段上,要使他們全面、正確的理解數學概念,就應該靈活採取各種教學方法。筆者根據多年的教學經驗,把數學概念教學的具體方法歸納如下:一、直觀形象,引入概念可用學生在日常生活中所接觸到的事物或教材中的實際問題以及模型、圖形、圖表等作為直觀感性的材料,引導學生通過觀察、分析、比較、歸納和概括去獲取概念。例如,在學習「平行線」的概念時,筆者讓學生觀察一些熟悉的實例,像黑板的上下邊緣、桌子及門框的上下兩條邊、鐵軌等,然後根據各例的屬性,從中找出共同的本質屬性。黑板可以看成是兩條直線在同一個平面內,兩條邊可以無限延長、永不相交等。同樣可分析出桌子、門框和鐵軌的屬性。通過比較可以發現,它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內;彼此間距離處處相等;兩條直線沒有公共點等。
③ 如何進行小學數學概念教學
1.直觀形象地引入概念
數學概念比較抽象,而小學生,特別是低年級小學生,由於年齡、知識和生活的局限,其思維處在具體形象思維為主的階段。認識一個事物、理解一個數學道理,主要是憑借事物的具體形象。因此,教師在數學概念教學的過程中,一定要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。如在教平均數應用題時,利用鉛筆做教具,重溫「平均分」的概念。用9個同樣大的小木塊擺出三堆,第一堆1塊,第二堆2塊,第三堆6塊,問:「每堆一樣多嗎?哪堆多?哪堆少?」學生都能正確回答。這時,又把這三堆木塊混到一起,重新平均分三份,每份都是3塊,告訴學生「3」這個新得到的數,是這三堆木塊的「平均數」。再演示一遍,要求學生仔細看,用心想:「平均數」是怎樣得到的。學生看把原來的三堆合並起來,變成一堆,再把這堆木塊分做3份,每堆正好3塊。這個演示過程,既揭示了「平均數」的概念,又有意識地滲透「總數量÷總份數=平均數」的計算方法。然後,又把木塊按原來的樣子1塊,2塊、6塊地擺好,讓學生觀察,平均數「3」與原來的數比較大小。學生說,平均數3比原來大的數小,比原來小的數大,這樣,學生就形象地理解了「求平均數」這一概念的本質特徵。
2.運用舊知識引出新概念
數學中的有些概念,往往難以直觀表述。如比例尺、循環小數等,但它們與舊知識都有內在聯系。就充分運用舊知識來引出新概念。在備課時要分析這個新概念有哪些舊知識與它有內在的聯系。利用學生已掌握的舊知識講授新概念,學生是容易接受的。蘇霍姆林斯基說:「教給學生能藉助已有的知識去獲取知識,這是最高的教學技巧之所在。」從心理學來分析,無恐懼心理,學生容易活躍;無畏難情緒,易於啟發思維;舊知識記憶好,容易受鼓舞;所以運用舊知識引出新概念教學效果好。例如從求出幾個數各自的「倍數」從而引出「公倍數」、「最小公倍數」等概念。總之,把已有的知識作為學習新知識的基礎,以舊帶新,再化新為舊,如此循環往復,既促使學生明確了概念,又掌握了新舊概念間的聯系。
3.通過實踐認識事物本質、形成概念
常言說,實踐出真知,手是腦的老師。學生通過演示學具,可以理解一些難以講解的概念。如一年級小學生初學數的大小比較。是用小雞小鴨學具,一一對比。如一隻小雞對一隻小鴨,第二隻小雞對第二隻小鴨,……直到第六隻小雞沒有小鴨對比了,就叫小雞比小鴨多1隻。又如二年級小學生學習「同樣多」這個概念也是用學具紅花和黃花,學生先擺5朵紅花、再擺和紅花一樣多的5朵黃花,這樣就把「同樣多」這個數學概念,通過演示(手),思維(腦),形成概念,符合實踐、認識,再實踐、再認識的規律。這比老師演示、學生看,老師講解、學生聽效果好,印象深、記憶牢。
4、從具體到抽象,揭示概念的本質
在教學中既要注意適應學生以形象思維為主的特點,也要注意培養他們的抽象思維能力。在概念教學中,要善於為學生創造條件,引導他們通過觀察、思考、探求概念的含義,沿著由感性認識到理性認識的認知過程去掌握概念。這樣,可以培養學生的邏輯思維能力。如圓周率這個概念比較抽象。一般教師都是讓學生通過動手操作認識圓的周長與直徑的關系,學生通過觀察、思考,分析,很快就發現不管圓的大小如何,每個圓的周長都是直徑的3倍多一點。教師指出:「這個倍數是個固定的數,數學上叫做「圓周率」。這樣,引導學生把大量感性材料,加以分析綜合,抽象概括拋棄事物非本質東西(如圓的大小,紙板的顏色,測量用的單位等)抓住事物的本質特徵(不論圓的大小,周長總是直徑的3倍多一點)。形成了概念。
5、用「變式」引導學生理解概念的本質
在學生初步掌握了概念之後,經常變換概念的敘述方法,讓學生從各個側面來理解概念。概念的表述方式可以是多種多樣的。如質數,可以說是「一個自然數除了1和它本身,不再有別的因數,這個數叫做質數。」有時也說成「僅僅是1和它本身兩個因數的倍數的數」。學生對各種不同的敘述都能理解,就說明他們對概念的理解是透徹的,是靈活的,不是死背硬記的。有時可以變概念的非本質特徵,讓學生來辨析,加深他們對本質特徵的理解。
6、對近似的概念加以對比
在小學數學中,有些概念的含義接近,但本質屬性有區別。例如:數位與位數、體積與容積,減少與減少到等等相對應概念,存在許多共同點與內在聯系。對這類概念,學生常常容易混淆,必須把它們加以比較,避免互相干擾。比較,主要是找出它們的相同點和不同點,這就要對進行比較的兩個概念加以分析,看各有哪些本質特點。然後把它們的共同點和不同點分別找出來,使學生既看到進行比較對象的內在聯系,又看到它們的區別。這樣,學的概念就會更加明確。對近似的概念經常引導學生進行比較和區分,既能培養學生對易混概念自覺地進行比較的習慣,也能提高學生理解概念的能力。多年來教學實踐的體會:重視培養學生的比較思想有幾點好處:(1)有利於培養學生思維的邏輯性。(2)有利於提高學生的分析問題的能力。(3)有利於培養學生系統化的思維方式。
5、教師要幫助學生總結歸納出概念的含義
教學中學生的主體地位是必要的,但教師在教學的全過程中的主導地位也不能忽視。教師應發揮好主導作用。教師與學生的主、客體地位是相互依存,在一定條件下又相互轉化。在概念教學中,教師要善於為學生創造條件,讓學生沿著觀察、思維、理解、表達的過程,由感性到理性的過程,由具體到抽象的過程去掌握概念。這樣極易調動學生的積極性、主動性,也可以教會學生去發現真理。
④ 小學數學如何實施概念教學
一、數學和生活實際聯系,引入概念
數學知識來源於生活,又應用於生活。把點滴生活經驗變成系統數學知識目的在於使其更好地運用到生活中去,除了在課堂上一些與生活相連的習題更好體會知識的還是生活本生。
例如,在教學《認識鍾表》時,認識整時和大約幾時這兩個數學概念本身就比較抽象,你若直接告訴孩子看鍾點的方法:分針對著12,時針對著幾就是幾時,1時=60分,1分=60秒,孩子未必真正理解,而且長期地這樣教學學生就不會去思考,產生一種依賴的心理。因此我們在課起始時便以猜謎揭示課題,而後分認識鍾面,認識整時和大約幾時三步走。認識鍾面環節讓學生根據已有經驗說說鍾面的認識,為了讓學生的介紹更為有針對性把提問變成「你知道鍾面上有什麼?」這樣學生根據手中的鬧鍾很容易回答。在學生撥鍾也讓學生自由的撥出一些整時並說說在這一時刻在干什麼,這樣學生對各個時段的認識就能聯系生活而不僅僅停留在1~12各個數上。在「兩個8時」這一環節,讓學生根據生活經驗充分的討論兩個8時的存在和不同,再指導學生會照樣子用一句話說一說,同時從數學角度提醒學生在平時說話時要注意用上「早晨、上午、下午、晚上」
等詞語,這樣說起來就更清楚明白。鍾面、整時和大約幾時三個環節層層遞進,每一個環節與學生經驗緊密聯系。
低年級小學生,由於年齡、知識和生活的局限,理解一個概念主要是憑借事物的具體形象。因此,在低年級數學概念教學的過程中,要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。
二、迎合學生學習興趣,引入概念
托爾斯泰說過:「成功的教育所需要的不是強制,而是激發學生的興趣。」興趣是成功的秘訣,是獲取知識的開端,是求知慾的基礎。學生對學習數學的興趣,直接影響到課堂教學效率的高低。抽象的理論如果再加上乾巴巴的講解,必然不會引起學生的學習興趣。
例如,在教學《認識角》時,
既要讓學生感知直角、銳角、鈍角等不同種類的角,又要注意變化角的大小和角的開口方向,這樣才能獲得對角的清晰認識。教師可以事先做好一個只露出三角形一個角的教具,讓學生觀察露出的一個角,判斷整個三角形是什麼三角形。當露出一個直角時,學生馬上回答這是個直角三角形;當露出一個鈍角時,學生馬上回答這是個鈍角三角形;當露出一個銳角時,學生就自然而然地回答這是個銳角三角形。這時教師拿出的卻不是銳角三角形,這樣,學生就有了懸念:為什麼有一個直角的是直角三角形,有一個鈍角的是鈍角三角形?而一個角是銳角的三角形就不一定是銳角三角形了呢?這時學生強烈的求知慾已經成為一種求知的「自我需要」,學生的學習興趣得到了激發,使興趣成為學生學習的動力,為教學新概念創造良好的學習氣氛,使學生在獲得概念的整個過程中感到學習的快樂。
三、動手操作,引入概念
低段小學生他們愛擺弄東西,什麼都想嘗試。但若遇到困難而無法解決時,操作的積極性就會下降。所以利用學生這種心理適當安排動手嘗試的學習內容可以激發起學生的學習興趣,更好得形成概念。
例如,在教學《米和厘米》時,在認識了「厘米」以後我安排學生通過測量,看看你身體上哪個部位的長度最接近一厘米。學生的積極性很高,先是拿出尺子不停的比劃,然後三五成群的議論開了,積極主動地去尋求答案。在交流想法時,小朋友不僅給出了我想要的答案,更讓我收獲了不少的驚喜。
學生在操作、實踐中獲得感性認識,經歷「充分感知-豐富表象-領悟內涵」的過程,在頭腦中切實、清楚地建立了1厘米的實際長度和空間觀念,突出了本節課的教學重點。
四、巧用多媒體,引入概念
應用多媒體輔助教學,充分激活課堂教學中的各個要素,全方位地調動和發揮教師在課堂教學中的主導作用和學生學習的主體作用,建立合理的教與學的關系,
例如,在教學《認識分數》時,我設計了這樣一個動畫:周末,同學們去野餐,在優美的音樂的聲中,一群活潑可愛的小朋友來到了郊外,貼近生活化的情境一下子就吸引了學生的注意力。跟著提出問題:「把8個蘋果和4瓶果汁平均分給2人,每人分得多少」?學生回答後動畫演示分得的結果,非常直觀地顯示出「平均分」,加強了學生對「平均分」這個概念的理解。接著提出:「把一個生日蛋糕平均分成2份,每人分得多少」?演示「一半」,提出「一半」用什麼數來表示?自然地引出本節課要研究的認識分數。
我們在教學中,要結合概念的特點和學生的實際,靈活掌握使用,優化數學概念教學,提高概念教學的有效性,更好地進行概念教學。
⑤ 如何指導小學生學習的數學數學概念
具體如下:
第一、富的實例,使學生充分感知。
在進行概念教學時,應使學生從各種情境中去接觸概念,以使其便於理解。例如:在導入一個新的概念時,最好使用大量的實物,事實和事例等,並必要的說明,使得有關的事物連續出現,相同的刺激重復出現,就易於區分哪些是重要的屬性,哪些是次要的屬性。
第二、抓概念的內涵和外延。
在教學中幫助學生建立清晰的概念,明確其內涵和外延,例如:「整除」這個概念著重指導學生抓住「數a除以數b,除得的商正好是整數而沒有餘數」這一內涵,在些基礎上,強調「相除的兩個數是自然數,商是整數而沒有餘數」這一外延,並且實例說明,這樣抓住念的內涵和外延教學就能讓學生真正掌握「整除」這一概念。
第三、用「變式」引導學生理解概念的本質。
在學生初步掌握了概念以後,可以變換概念的敘述方法,讓學生從不同的角度,各個方面來理解概念,概念的表述可以是多種多樣的,如講述「質數」這一概念時,可以說是「要個數除了1和它本身兩個約數經外,不再有別的約數,這個數叫做質數」有時也可以這樣說「只有被1和它本身兩個整除的數叫質數」。這樣學生對這同的敘述都能理解,說明他們對概念的理解是透徹的,是靈活的,不是死記硬背的。
第四、抓概念的實例的反例。
對於學生有些不易弄清的概念,先指導學生分析一些有關的概念的實例和反例,再與學生一起歸納總結出正確的概念,例如:「奇數與質數」、「偶數與合數」這幾組概念,可讓學生舉出若干實例,找出每組兩個數之間的聯系與區別,並出示一些判斷題,讓學生作出判斷,這樣學生經過了由正到反、由反到正的認識過程,有助於學生對概念的深化和理解。
第五、抓概念的本質屬性
例如:在教學「圓的認識」時,教師可以先提問學生:「日常生活中我們見到的哪些物體的形狀是圓形的?」學生在這一問題下,肯定爭先恐後的回答出老師所提出的問題,於是「圓」在學生的頭腦中已有了一定的形狀。這樣直觀形象地引進概念,為學生提供了適合概念的感性經驗,並引導學生發現其基本屬性。然後,教師在學生已經形成「圓」這一概念的基礎上出示這一概念的名詞,這樣學生更容易對這一類似概念的掌握
⑥ 淺談在小學數學中如何有效進行概念教學
數學概念不僅是小學數學知識的基本要素,也是培養和發展學生數學能力的重要內容。對它的理解和掌握,關繫到學生學習數學的興趣,關繫到學生計算能力和邏輯思維能力的培養,關繫到學生解決實際問題的能力。由於小學生的年齡特點,直觀形象思維制約了對數學中抽象概念的掌握,導致孩子們在學習和運用概念的過程中,經常出現這樣或那樣的錯誤。那麼,怎樣才能使數學概念教學更有效呢?
一、數學和生活實際聯系,引入概念
數學知識來源於生活,又應用於生活。把點滴生活經驗變成系統數學知識目的在於使其更好地運用到生活中去,除了在課堂上一些與生活相連的習題更好體會知識的還是生活本生。
例如,在教學《認識鍾表》時,認識整時和大約幾時這兩個數學概念本身就比較抽象,你若直接告訴孩子看鍾點的方法:分針對著12,時針對著幾就是幾時,1時=60分,1分=60秒,孩子未必真正理解,而且長期地這樣教學學生就不會去思考,產生一種依賴的心理。因此我們在課起始時便以猜謎揭示課題,而後分認識鍾面,認識整時和大約幾時三步走。認識鍾面環節讓學生根據已有經驗說說鍾面的認識,為了讓學生的介紹更為有針對性把提問變成「你知道鍾面上有什麼?」這樣學生根據手中的鬧鍾很容易回答。在學生撥鍾也讓學生自由的撥出一些整時並說說在這一時刻在干什麼,這樣學生對各個時段的認識就能聯系生活而不僅僅停留在1~12各個數上。在「兩個8時」這一環節,讓學生根據生活經驗充分的討論兩個8時的存在和不同,再指導學生會照樣子用一句話說一說,同時從數學角度提醒學生在平時說話時要注意用上「早晨、上午、下午、晚上」 等詞語,這樣說起來就更清楚明白。鍾面、整時和大約幾時三個環節層層遞進,每一個環節與學生經驗緊密聯系。
低年級小學生,由於年齡、知識和生活的局限,理解一個概念主要是憑借事物的具體形象。因此,在低年級數學概念教學的過程中,要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。
二、迎合學生學習興趣,引入概念
托爾斯泰說過:「成功的教育所需要的不是強制,而是激發學生的興趣。」興趣是成功的秘訣,是獲取知識的開端,是求知慾的基礎。學生對學習數學的興趣,直接影響到課堂教學效率的高低。抽象的理論如果再加上乾巴巴的講解,必然不會引起學生的學習興趣。
例如,在教學《認識角》時, 既要讓學生感知直角、銳角、鈍角等不同種類的角,又要注意變化角的大小和角的開口方向,這樣才能獲得對角的清晰認識。教師可以事先做好一個只露出三角形一個角的教具,讓學生觀察露出的一個角,判斷整個三角形是什麼三角形。當露出一個直角時,學生馬上回答這是個直角三角形;當露出一個鈍角時,學生馬上回答這是個鈍角三角形;當露出一個銳角時,學生就自然而然地回答這是個銳角三角形。這時教師拿出的卻不是銳角三角形,這樣,學生就有了懸念:為什麼有一個直角的是直角三角形,有一個鈍角的是鈍角三角形?而一個角是銳角的三角形就不一定是銳角三角形了呢?這時學生強烈的求知慾已經成為一種求知的「自我需要」,學生的學習興趣得到了激發,使興趣成為學生學習的動力,為教學新概念創造良好的學習氣氛,使學生在獲得概念的整個過程中感到學習的快樂。
三、動手操作,引入概念
低段小學生他們愛擺弄東西,什麼都想嘗試。但若遇到困難而無法解決時,操作的積極性就會下降。所以利用學生這種心理適當安排動手嘗試的學習內容可以激發起學生的學習興趣,更好得形成概念。
例如,在教學《米和厘米》時,在認識了「厘米」以後我安排學生通過測量,看看你身體上哪個部位的長度最接近一厘米。學生的積極性很高,先是拿出尺子不停的比劃,然後三五成群的議論開了,積極主動地去尋求答案。在交流想法時,小朋友不僅給出了我想要的答案,更讓我收獲了不少的驚喜。
學生在操作、實踐中獲得感性認識,經歷「充分感知-豐富表象-領悟內涵」的過程,在頭腦中切實、清楚地建立了1厘米的實際長度和空間觀念,突出了本節課的教學重點。
四、巧用多媒體,引入概念
應用多媒體輔助教學,充分激活課堂教學中的各個要素,全方位地調動和發揮教師在課堂教學中的主導作用和學生學習的主體作用,建立合理的教與學的關系,
例如,在教學《認識分數》時,我設計了這樣一個動畫:周末,同學們去野餐,在優美的音樂的聲中,一群活潑可愛的小朋友來到了郊外,貼近生活化的情境一下子就吸引了學生的注意力。跟著提出問題:「把8個蘋果和4瓶果汁平均分給2人,每人分得多少」?學生回答後動畫演示分得的結果,非常直觀地顯示出「平均分」,加強了學生對「平均分」這個概念的理解。接著提出:「把一個生日蛋糕平均分成2份,每人分得多少」?演示「一半」,提出「一半」用什麼數來表示?自然地引出本節課要研究的認識分數。
我們在教學中,要結合概念的特點和學生的實際,靈活掌握使用,優化數學概念教學,提高概念教學的有效性,更好地進行概念教學。
⑦ 如何培養小學生數學概念理解能力
概念、原理、性質等數學知識點,都是經過數學家們不斷地研究而提煉出來的。概念是對相關知識點的高度概括總結,也是解題的依據所在。可見掌握好數學概念、原理、公式等知識點,對於學生解題、得高分尤為重要。
然而小學生往往缺乏對概念、原理、公式的理解,只是在做題時單純的去套用,不能真正領會其含義。在學習數學的過程中,由於缺乏對基本概念的理解,往往造成了一些問題:1.學生對概念的理解不求甚解,往往是一知半解,做題效率低。2.對於概念、公式等往往是死記硬背,不能將基本概念與題目聯系起來。只是單純的套用,缺乏舉一反三的能力。3.最終造成的結果:數學成績差,進而失去學習數學的興趣。
如何提高小學生對數學概念、原理、公式的理解,是教學一線的老師們一直在摸索探討的問題,本文將從以下幾個方面入手,談談如何提高學生對於概念的理解與運用。
第一:例題、教具的選擇。教具、例題的選擇多採用直觀的事例,在講解的過程中,盡可能的選取與學生生活接近的實物進行舉例,便於學生的理解。因為小學生處於直觀思維水平,其抽象思維能力較欠缺,枯燥的概念不利於學生理解。因此在教學的過程中應選取直觀教具,有利於學生理解。
第二:學生的參與。讓學生多參與,適當增加學生的工作量。「授人以魚,不如授之以漁」這句話道出了老師真正的目的。作為一名老師教會學生做題只是淺顯的目的之一,真正的目的是幫助學生提高其學習能力,從而學生自己可以解答更多的題目。因此在講解概念的時候,應讓學生多參與,增加學生的參與度,從而有利於其自己去探索、總結,進而真正理解數學概念的含義,能夠將基本概念與題目聯系起來。
第三:對老師的要求。首先,由於概念、公式比較乏味,老師提出的問題,應該能夠引起學生的興趣。同時問題不能太難,也不能過於簡單。適當難度的題目,學生做對後能夠增強學生的成就感。其次:在講解概念的過程中,老師應該對學生有足夠的耐心,鼓勵學生多思考,老師不能全盤托出。
⑧ 小學數學中如何進行概念教學
如何有效進行數學概念的教學 數學概念在數學學習中佔有非常重要的地位,是不斷積累的數學精華,它的語言非常精練、抽象。因此,在教學中如何使學生形成概念,正確地掌握和運用概念是極為重要的。 1.具體直觀地引入概念 數學概念較抽象,而小學生,其思維處在具體形象思維為主的階段。因此,教師在數學概念教學的過程中,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。 2.以舊知引出新概念 數學中的有些概念,往往難以直觀表述。我就運用舊知識來引出新概念。在備課時要分析這個新概念有哪些舊知識與它有內在的聯系。利用學生已掌握的舊知識講授新概念,學生是容易接受的。 3.通過實踐活動認識本質、形成概念 實踐出真知,手是腦的老師。學生通過演示學具,可以理解一些難以講解的概念。 4、由具體到抽象,揭示概念的本質 在教學中要注意培養他們的抽象思維能力。在概念教學中,要善於為學生創造條件,引導他們通過觀察、思考、探求概念的含義,沿著由感性認識到理性認識的認知過程去掌握概念。這樣,可以培養學生的邏輯思維能力。
⑨ 怎樣熟練掌握小學數學概念、公式和定理
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
一、重視課內聽講,課後及時進行復習.
新知識的接受和數學能力的培養主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學習技能,並及時審查它們以避免疑慮.首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,並試著記住而不是採用"不確定的書籍閱讀".勤於思考,對於一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習題,養成解決問題的好習慣.
如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標准,反復練習基本知識,然後找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規律.對於一些易於查找的問題,您可以准備一個用於收集的錯題本,編寫自己的想法來解決問題,在日常養成解決問題的好習慣.學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態並在考試中自由使用.
三、調整心態並正確對待考試.
首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出於基本問題,較難的題目也是出自於基本.所以只有調整學習的心態,盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對於簡單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正常或者超常發揮.
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
⑩ 小學數學概念的小學數學概念教學注意問題
1、把握概念教學的目標,處理好概念教學的發展性與階段性之間的矛盾。
概念本身有自己嚴密的邏輯體系。在一定條件下,一個概念的內涵和外延是固定不變的,這是概念的確定性。由於客觀事物的不斷發展和變化,同時也由於人們認識的不斷深化,因此,作為人們反映客觀事物本質屬性的概念,也是在不斷發展和變化的。但是,在小學階段的概念教學,考慮到小學生的接受能力,往往是分階段進行的。如對「數」這個概念來說,在不同的階段有不同的要求。開始只是認識1、2、3、……,以後逐漸認識了零,隨著學生年齡的增大,又引進了分數(小數),以後又逐漸引進正、負數,有理數和無理數,把數擴充到實數、復數的范圍等。又如,對「0」的認識,開始時只知道它表示沒有,然後知道又可以表示該數位上一個單位也沒有,還知道「0」可以表示界限等。
因此,數學概念的系統性和發展性與概念教學的階段性成了教學中需要解決的一對矛盾。解決這一矛盾的關鍵是要切實把握概念教學的階段性目標。
為了加強概念教學,教師必須認真鑽研教材,掌握小學數學概念的系統,摸清概念發展的脈絡。概念是逐步發展的,而且諸概念之間是互相聯系的。不同的概念具體要求會有所不同,即使同一概念在不同的學習階段要求也有差別。
有許多概念的含義是逐步發展的,一般先用描述方法給出,以後再下定義。例如,對分數意義理解的三次飛躍。第一次是在學習小數以前,就讓學生初步認識了分數,「像上面講的、、、、、等,都是分數。」通過大量感性直觀的認識,結合具體事物描述什麼樣的是分數,初步理解分數是平均分得到的,理解誰是誰的幾分之幾。第二次飛躍是由具體到抽象,把單位「1」平均分成若干份,表示其中的一份或幾份都可以用分數來表示。從具體事物中抽象出來。然後概括分數的定義,這只是描述性地給出了分數的概念。這是感性的飛躍。第三次飛躍是對單位「1」的理解與擴展,單位「1」不僅可以表示一個物體、一個圖形、一個計量單位,還可以是一個群體等,最後抽象出,分誰,誰就是單位「1」,這樣單位「1」與自然數「1」的區別就更加明確了。這樣三個層次不是一蹴而就的,要展現知識的發展過程,引導學生在知識的發生發展過程中去理解分數。
再如長方體和立方體的認識在許多教材中是分成兩個階段進行教學的。在低年級,先出現長方體和立方體的初步認識,通過讓學生觀察一些實物及實物圖,如裝墨水瓶的紙盒、魔方等。積累一些有關長方體和立方體的感性認識,知道它們各是什麼形狀,知道這些形狀的名稱。然後,通過操作、觀察,了解長方體和立方體各有幾個面,每個面是什麼形狀,進一步加深對長方體和立方體的感性認識。再從實物中抽象出長方體和立方體的圖形(並非透視圖)。但這一階段的教學要求只要學生知道長方體和立方體的名稱,能夠辨認和區分這些形狀即可。僅僅停留在感性認識的層次上。第二階段是在較高年級。教學時仍要從實例引入。教學長方體的認識時,先讓學生收集長方體的物體,教師先說明什麼是長方體的面、棱和頂點,讓學生數一數面、棱和頂點各自的數目,量一量棱的長度,算一算各個面的大小,比較上下、左右、前後棱和面的關系和區別。然後歸納出長方體的特徵。再從長方體的實例中抽象出長方體的幾何圖形。進而可以讓學生對照實物,觀察圖形,弄清楚不改變觀察方向,最多可以看到幾個面和幾條棱。哪些是看不見的,圖中是怎樣來表示的。還可以讓學生想一想,看一看,逐步看懂長方體的幾何圖形,形成正確的表象。
在把握階段性目標時,應注意以下幾點:
(1)在每一個教學階段,概念都應該是確定的,這樣才不致於造成概念混亂的現象。有些概念不嚴格下定義,但也要依據學生的接受能力,或者用描述代替定義,或者用比較通俗易懂的語言揭示概念的本質特徵。同時注意與將來的嚴格定義不矛盾。
(2)當一個教學階段完成以後,應根據具體情況,酌情指出概念是發展的,不斷變化的。如:有一位學生在認識了長方體之後,認為課本中的任何一張紙的形狀也是長方體的。說明該學生對長方體的概念有了更進一步的理解,教師應加以肯定。
(3)當概念發展後,教師不但指出原來概念與發展後概念的聯系與區別,以便學生掌握,而且還應引導學生對有關概念進行研究,注意其發展變化。如「倍」的概念,在整數范圍內,通常所指的是,如果把甲量當作1份,而乙量有這樣的幾份,那麼乙量就是甲量的幾倍。在引入分數以後,「倍」的概念發展了,發展後的「倍」的概念,就包含了原來的「倍」的概念。如果把甲量當作l份,乙量也可以是甲量的幾分之幾。
因此,在數學概念教學中,要搞清概念之間的順序,了解概念之間的內在聯系。數學概念隨著客觀事物本身的發展變化和研究的深入不斷地發展演變。學生對數學概念的認識,也需要隨著數學學習的程度的提高,由淺入深,逐步深化。教學時既要注意教學的階段性,不能把後面的要求提到前面,超越學生的認識能力;又要注意教學的連續性,教前面的概念要留有餘地,為後繼教學打下埋伏。從而處理好掌握概念的階段性與連續性的關系。
2、加強直觀教學,處理好具體與抽象的矛盾
盡管教材中大部分概念沒有下嚴格的定義,而是從學生所了解的實際事例或已有的知識經驗出發,盡可能通過直觀的具體形象,幫助學生認識概念的本質屬性。對於不容易理解的概念就暫不給出定義或者採用分階段逐步滲透的辦法來解決。但對於小學生來說,數學概念還是抽象的。他們形成數學概念,一般都要求有相應的感性經驗為基礎,而且要經歷一番把感性材料在腦子里來回往復,從模糊到逐漸分明,從許多有一定聯系的材料中,通過自己操作、思維活動逐步建立起事物一般的表象,分出事物的主要的本質特徵或屬性,這是形成概念的基礎。因此,在教學中,必須加強直觀,以解決數學概念的抽象性與學生思維形象性之間的矛盾。
(1)通過演示、操作進行具體與抽象的轉化
教學中,對於一些相對抽象的內容,盡可能地利用恰當的演示或操作使其轉化為具體內容,然後在此基礎上抽象出概念的本質屬性。
幾何初步知識,無論是線、面、體的概念還是圖形特徵、性質的概念都非常抽象,因此,教學中更要加強演示、操作,通過讓學生量一量、摸一摸、擺一擺、拼一拼來讓學生體會這些概念,從而抽象出這些概念。
例如「圓周率」這一概念非常抽象,有的教師在課前,布置每個學生用硬紙製做一個圓,半徑自定。上課時,就讓每個學生在課堂作業本上寫出三個內容:(1)寫出自己做的圓的直徑;(2)滾動自己的圓,量出圓滾動一周的長度,寫在練習本上;(3)計算圓的周長是直徑的幾倍。全班同學做完後,要求每個同學匯報自己計算的結果,並把結果整理成下表。
圓直徑(厘米)圓的周長(厘米)周長是直徑的幾倍
A26.23.1
B39.63.2
C412.63.15
D515.73.14
然後引導學生分析發現:不管圓的大小,它的周長總是直徑的3倍多一點。這時再揭示:這個倍數是個固定的數,數學上叫做圓周率。再讓學生任意畫一個圓,量出直徑和周長加以驗證。這樣,引導學生把大量的感性材料,加以分析、綜合、抽象、概括,拋棄事物的非本質屬性(如圓的大小、測量時用的單位等),抓住事物的本質特徵(圓的周長總是直徑的3倍多一點),形成了概念。
這樣教師藉助於直觀教學,運用學生原有的一些基礎知識,逐步抽象,環環緊扣,層次清楚。通過實物演示,使學生建立表象,從而解決了數學知識的抽象性與兒童思維的形象性的矛盾。
(2)結合學生的生活實際進行具體與抽象的轉化
教學中有許多數量關系都是從具體生活內容中抽象出來的,因此,在教學中應該充分利用學生的生活實際,運用恰當的方式進行具體與抽象的轉化,即把抽象的內容轉化為學生的具體生活知識,在此基礎上又將其生活知識抽象為教學內容。
例如乘法交換律的教學,往往讓學生先解答這樣的習題:一種鋼筆,每盒10支,每支3元,買2盒鋼筆要多少元?學生在實際解答中發現,這道題可以有兩種解答思路,一種是先求出「每盒多少元」,再求出「2盒要多少元」,算式是(3×10)×2=60元;另一種是先求出「一共有多少支鋼筆」,再求出「2盒多少元」,算式是3×(2×10)=60元。乘法分配律的教學也是讓學生解答類似的問題,如:一件上衣50元,一條褲子30元,買這樣的5套衣服需要多少元?這樣藉助於學生熟悉的生活情景,使抽象的問題變得具體化。
同樣常見數量關系中的單價、總價與數量之間的關系;路程、速度與時間的關系,工作量、工作效率與工作時間之間的關系等,都應結合學生的生活經驗,通過具體的題目將其抽象出來,然後又利用這些關系來分析解決問題。這樣的訓練有利於使學生的思維逐漸向抽象思維過渡,逐步緩解知識的抽象性與學生思維的具體形象性的矛盾。
但是,運用直觀並不是目的,它只是引起學生積極思維的一種手段。因此概念教學不能只停留在感性認識上,在學生獲得豐富的感性認識後,要對所觀察的事物進行抽象概括,揭示概念的本質屬性,使認識產生飛躍,從感性上升到理性,形成概念。
3、遵循小學生學習概念的特點,組織合理有序的教學過程
盡管小學生獲取概念有概念形成和概念同化這兩種基本形式,各類概念的形成又有各自的特點,但不管以何種方式獲得概念,一般都會遵循從「引入一理解一鞏固一深化」這樣的概念形成路徑。下面就概念教學中每個環節的教學策略及應注意的問題作一闡述。
(1)概念的引入要注重提供豐富而典型的感性材料
在概念引入的過程中,要注意使學生建立起清晰的表象。因為建立能突出事物共性的、清晰的典型表象是形成概念的重要基礎,因此,在小學數學的概念教學中,無論以什麼方式引入概念,都應考慮如何使小學生在頭腦中建立起清晰的表象。概念教學一開始,應根據教學內容運用直觀手段向學生提供豐富而典型的感性材料,如採用實物、模型、掛圖,或進行演示,引導學生觀察,並結合實驗,讓學生自己動手操作,以便讓學生接觸有關的對象,豐富自己的感性認識。
如在一節教學分數的意義的課上,一位教師為了突破單位「l」這一教學難點,事先向學生提供了各種操作材料:一根繩子,4隻蘋果圖,6隻熊貓圖,一張長方形紙,l米長的線段等,通過比較、歸納出:一個物體、一個計量單位、一個整體都可以用單位「1」表示,從而突破理解單位「1」這一難點,為理解分數的意義奠定了基礎。
但概念引入時所提供的材料要注意三點:一是所選材料要確切。例如角的認識,小學里講的角是平面角,可以讓學生觀察黑板、書面等平面上的角。有的教師讓學生觀察教室相鄰兩堵牆所夾的角,那是兩面角,對於小學教學要求來說,就不確切了。二是所選材料要突出所授知識的本質特徵。例如直角三角形的本質特徵是「有一個角是直角的三角形」,至於這個直角是三角形中的哪一個角,直角三角形的大小、形狀,則是非本質的。因此教學時應出示不同的圖形,使學生在不同的圖形中辨認其不變的本質屬性。
(2)概念的理解要注重正反例證的辨析,突出概念的本質屬性
概念的理解是概念教學的中心環節,教師要採取一切手段幫助學生逐步理解概念的內涵和外延,以便讓學生在理解的基礎上掌握概念。促進對概念理解的途徑有:
1)剖析概念中關鍵詞語的真實含義
例如,分數定義中的單位「1」、「平均分」、「表示這樣的一份或幾份的數」,學生只有對這些關鍵詞語的真實含義弄清楚了,才會對分數的概念有了深刻的理解。再如教學「整除」概念之後應幫助學生從以下三方面進行判斷,一是判斷是否具有「整除」關系的兩個數都必須是自然數;二是這兩個數相除所得的商是整數;三是沒有餘數。對定義的分析是幫助學生認識概念的又一次提高。三角形的高的定義:「從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條邊叫做三角形的底。」這里的「一個頂點」、「垂線」、「垂足」都是一些關鍵詞語。為了讓學生理解三角形的高,除了讓學生理解字面意思外,往往還需要學生通過實際操作,體會畫「高」的全過程。指出畫「高」的關鍵是畫垂線,並注意限制條件:「過三角形的一個頂點(可以是任何一個頂點),作到它對邊的垂線,頂點和垂足之間的線段」。這樣把實際操作的過程和所畫的三角形高的圖形與定義所敘述的內容對照,使學生准確地理解三角形的高的定義。這實際上是在數學概念建立後,幫助學生對本質屬性進行剖析,既將本質屬性再次從定義中分離出來,加以明確。
2)辨析概念的肯定例證和否定例證
學生能背誦概念並不等於真正理解概念,還要通過實例突出概念的主要特徵,幫助他們加深對概念的理解。教師不僅要充分運用肯定例證來幫助學生理解概念的內涵,同時要及時運用否定例證來促進學生對概念的辨析。在概念揭示後往往要針對教學要求組織學生進行一些練習,如教完三角形按角分類後,可以出示:一個三角形不是直角三角形,並且有兩個角是銳角,這個三角形一定是銳角三角形。讓學生進行判斷,引起學生討論來鞏固三角形的分類,以深化對三角形這一概念的外延的進一步認識。再如,小數的性質揭示後,可以讓學生判斷0.40、0.030、20.020、2.800、10.404、5.0000各數,哪些「0」可以去掉,哪些「0」不能去掉?從而加深學生對小數性質的理解。
3)變換本質屬性的敘述或表達方式
小學生理解和掌握概念的特點之一往往是:對某一概念的內涵不很清楚,也不全面,把非本質的特徵作為本質的特徵。例如,有的學生誤認為,只有水平放置的長方形才叫長方形,如果斜著放就辨認不出來。為此,往往需要變換概念的敘述或表達方式,讓學生從各個側面來理解概念。旨在從變式中把握概念的本質屬性,排除非本質屬性的干擾。因為事物的本質屬性可以運用不同的語言來表達,如果學生對各種不同的敘述和表達都能理解和掌握,就說明學生對概念的理解是透徹的,是靈活的,不是死記硬背的。
4)對近似的概念及時加以對比辨析
在小學數學中,有些概念其含義接近,但本質屬性又有區別。如數與數字,數位與位數,奇數與質數,偶數與合數,化簡比與求比值,時間與時刻,質數、質因數與互質數,周長與面積,等等。對這類概念,學生常常容易混淆,必須及時把它們加以比較,以避免互相干擾。
如學習了「整除」,為了和以前學的「除盡」加以比較,可以設計這樣的練習題:下列等式中,哪些是整除,哪些是除盡?
(1)8÷2=4(2)48÷8=6
(3)30÷7=4……2(4)8÷5=1.6
(5)6÷0.2=30(6)1.8÷3=0.6
引導學生通過分析、比較,從而得出:第(3)題是有餘數的除法,當然不能說被除數被除數整除或除盡,其他各題當然能說被除數被除數除盡了。其中只有第(1)、(2)題,被除數、除數和商都是自然數,而且沒有餘數,這兩題既可以說被除數被除數除盡,又能說被除數被除數整除。從上面的分析中,讓學生明白:整除是除盡的一種特殊情況,除盡包括了整除和一切商是有限小數的情況。
學習了比之後,可以用列表法設計比與除法、分數之間的聯系的習題,從中明確「除法是一種運算,分數是一個數,比是一個關系式」的區別。
3)重視概念的運用,發揮概念的作用
正確、靈活地運用概念,就是要求學生能夠正確、靈活地運用概念組成判斷,進行推理、計算、作圖等,能運用概念分析和解決實際問題。理解概念的目的在於運用,運用的途徑有:
1)自舉實例
這是要求學生把已經初步獲得的概念簡單運用於實際,通過實例來說明概念,加深對概念的理解。有經驗的教師,根據小學生對概念的認識通常帶有具體性的特點,在學生通過分析、綜合、抽象、概括出概念後,總是讓他們自舉例證,把概念具體化。從具體到抽象又回到具體,符合小學生的認識規律,使學生更准確把握概念的內涵和外延。
例如在學生初步獲得了真分數、假分數的概念後,就可以讓學生分別舉一些真分數和假分數的實例;知道了圓柱的特徵後,讓學生說說日常生活中有哪些物品的形狀是圓柱形的。
2)運用於計算、作圖等
例如,如學了乘法的運算定律後,就可以讓學生簡便計算下面各題。
104×2548×25101×35×2
14×99+1425×32146+9×146
(80+8)×258×(125+50)34×5×2
在掌握分數的基本性質後,就要求學生能熟練地進行通分、約分,並說明通分、約分的依據。學習了小數的性質後,就可以讓學生把小數按要求進行化簡或改寫;學習了等腰三角形,可設計一組操作題;畫一個等腰三角形;畫一個頂角60度的等腰三角形;畫一個腰長為2厘米的等腰直角三角形。
3)運用於生活實踐
數學概念來源於生活,就必然要回到生活實際中去。教師引導學生運用概念去解決數學問題,是培養學生思維,發展各種數學能力的過程。並且,也只有讓學生把所學習到的數學概念,拿到生活實際中去運用,才會使學到的概念鞏固下來,進而提高學生對數學概念的運用技能。為此,教師在教學中應當根據教材內容和學生實際,在掌握小學數學教材邏輯系統的基礎上,有意識地深化和發展學生的數學概念。
例如在學習圓的面積後,一位教師就設計了這樣的問題:「我們已經學習了圓面積公式,誰能想辦法算一算,學校操場上白楊樹樹乾的橫截面面積?」同學們就討論開了,有的說,算圓面積一定要先知道半徑,只有把樹砍下來才能量出半徑;有的不贊成這樣做,認為樹一砍下來就會死掉。這時教師進一步引導說:「那麼能不能想出不砍樹就能算出橫截面面積的辦法來呢?大家再討論一下。」學生們渴望得到正確的答案,通過積極思考和爭論,終於找到了好辦法,即先量出樹乾的周長,再算出半徑,然後應用面積公式算出大樹橫截面面積。課後許多學生還到操場上實際測量了樹乾的周長,算出了橫截面面積。再如,在教學正比例應用題時,可以啟發學生運用旗桿高度與影長的關系,巧妙地算出了旗桿的高度。這樣通過創設有效的教學情景,教師適時點撥,不但啟迪了學生的思維,而且培養了學生學以致用的興趣和能力,也加深了對所學概念的理解。
(4)注重概念之間的比較分類,深化概念
小學數學知識的特點是系統性強,前後聯系密切,但是由於小學生思維發展水平和接受能力的限制,有些知識的教學往往是分幾節課或幾個學期來完成,這樣難免在不同程度上削弱知識間的聯系。對一些有聯系的概念或法則,在一定階段應進行系統的整理,使學生在頭腦中建立起知識的網路,形成良好的認知結構。尤其是中高年級,可以引導學生將概念進行分類,明確概念間的聯系和區別,以形成概念系統。