導航:首頁 > 數字科學 > 數學二考哪些

數學二考哪些

發布時間:2022-01-30 22:31:42

㈠ 考研數學二都考哪些哪些不考

考研數學二考試科目:只考高數(78%)和線代(22%) ,也就是不考概率。

高等數學:同濟六版高等數學中除了第七章微分方程考帶*的伯努力方程外,其餘帶*號的都不考;所有」近似「的問題都不考;第四章不定積分不考積分表的使用;不考第八章空間解析幾何與向量代數;第九章第五節不考方程組的情形;到第十章二重積分、重積分的應用為止,後面不考了。

線性代數:數學二用的教材是同濟五版線性代數,1-5章:行列式、矩陣及其運算,矩陣的初等變換及其方程組、向量組的線性相關性、相似矩陣及二次型。

概率與數理統計:不考。

(1)數學二考哪些擴展閱讀:

全國碩士研究生統一招生考試(Unified National Graate Entrance Examination),簡稱「考研」。是指教育主管部門和招生機構為選拔研究生而組織的相關考試的總稱,由國家考試主管部門和招生單位組織的初試和復試組成。

思想政治理論、外國語、大學數學等公共科目由全國統一命題,專業課主要由各招生單位自行命題(部分專業通過全國聯考的方式進行命題)。碩士研究生招生方式分為全日制和非全日制兩種。培養模式分為學術型碩士和專業型碩士研究生兩種。

㈡ 研究生考試中數學二主要考試內容包含哪些

1、考研科目數學二的主要內容:

(1)高數:極限、導數與導數的應用、中值定理、不定積分、定積分、定積分的應用、多元函數微分學、二重積分、常微分方程。

(2)線代:行列式、矩陣、向量組的相關性與秩、線性方程組、特徵值和特徵向量。

2、考數二的一般都是專碩,當然也有一些專碩的是考數一的。紡織科學與工程、輕工技術與工程、農業工程、林業工程、控制工程、集成電路、通信工程等等。

(2)數學二考哪些擴展閱讀:

1、數一要考的內容有:

高等數學:函數、極限、連續、一元函數微積分學、向量代數與空間幾何、多元函數微積分學、級數、常微分方程。

線代:行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型。

概率論與數理統計:隨機事件和概率、隨機變數及其概率分布、多維隨機變數及其分布、隨機變數的數字特徵、大數定律和中心極限定理、樣本及抽樣分布、參數估計、假設檢驗。對於考數一的專業也是和數二、數三不同的。大部分考數一的都是學術型專業。力學、機械工程、光學工程、儀器科學與技術、動力工程、電氣工程、控制科學與工程等等專業。

2、數三要考的內容有:

高數:函數、連續、一元函數微積分學、多元函數微積分學、級數、常微分方程和差分方程線代:行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型。

概率:隨機事件和概率、隨機變數及其概率分布、多維隨機變數及其分布、隨機變數的數字特徵、大數定律和中心極限定理、樣本及抽樣分布、參數估計、假設檢驗考數三的專業一般都是偏向文科性質的專業,經濟類管理類較多。統計學、數量經濟學、國民經濟學、財政學、金融學、企業管理、技術經濟及管理等等專業。

㈢ 哪些專業考數學二

一般來看理科類的考數一,工科類的考數二,經濟管理類的考數三。 這樣的話一些工科就是考數二了,如工學類專業 林業工程類森林工程木材科學與工程林產化工 公安技術類刑事科學技術消防工程 工程力學類工程力學 生物工程類生物工程 地礦類采礦工程石油工程礦物加工工程勘察技術與工程資源勘察工程 材料類冶金工程金屬材料工程無機非金屬材料工程高分子材料與工程 機械類機械設計製造及其自動化材料成型及控制工程工業設計過程裝備與控制工程 儀器儀表類測控技術與儀器 能源動力類熱能與動力工程核工程與核技術 電氣信息類電氣工程及其自動化自動化電子信息工程通信工程計算機科學與技術電子科學與技術生物醫學工程 土建類建築學城市規劃土木工程建築環境與設備工程給水排水工程 水利類水利水電工程水文與水資源工程港口航道與海岸工程 測繪類測繪工程 環境與安全類環境工程安全工程 化學與制葯類化學工程與工藝制葯工程 交通運輸類交通運輸交通工程油氣儲運工程飛行技術航海技術輪機工程 海洋工程類船舶與海洋工程 輕工紡織食品類食品科學與工程輕化工程包裝工程印刷工程紡織工程服裝設計與工程 航空航天類飛行器設計與工程飛行器動力工程飛行器製造與工程行器環境與生命保障工程 武器武器系統與發射工程探測指導與控制技術彈葯工程與爆炸技術特種能源工程與煙火技術地面武器機動工程信息對抗技術農業工程類農業機械化及其自動化農業電氣化與自動化農業建築環境與能源工程農業水利工程

㈣ 考研數學二包括哪些課程

  1. 考試科目

    (一)高等數學

    (二)線性代數

  2. 考試形式和試卷結構

    (一)試卷滿分及考試時間

    1.試卷滿分為150分

    2.考試時間為180分鍾。

    (二)答題方式

    1.答題方式為閉卷

    2.筆試。

    (三)試卷內容結構

    1.高等數學 78%

    2.線性代數 22%

    (四)試卷題型結構

    1.試卷題型結構為:

    單項選擇題 8小題,每題4分,共32分

    2.填空題 6小題,每題4分,共24分

    3.解答題(包括證明題) 9小題,共94分

  3. 詳情請在網路搜素「考研數學--網路」,裡面有更詳盡的解釋。


㈤ 考研考數二,具體考哪些,哪些章節

高等數學考點:

第一章 函數、極限、連續

拓展資料:

數學二形式與結構:

(一)試卷滿分及考試時間

1.試卷滿分為150分

2.考試時間為180分鍾。

(二)答題方式

1.答題方式為閉卷

2.筆試。

(三)試卷內容結構

1.高等數學 78%

2.線性代數 22%

(四)卷題型結構

1.試卷題型結構為:

單項選擇題 8小題,每題4分,共32分

2.填空題 6小題,每題4分,共24分

3.解答題(包括證明題) 9小題,共94分

資料鏈接:網路--考研數學二

㈥ 考研數學二高數第二冊考哪些內容

數學二考察高等數學和線性代數兩部分,分別占總分的78%和22%。
根據考研大綱,數二考察144個考點,不考察:向量代數與空間解析幾何、三重積分、曲線積分、曲面積分以及無窮級數。根據每年的考研真題,數學二隻覆蓋考試大綱的82.5%,所以復習時要懂得抓重點,數學二重點考察的內容是:曲率、弧長以及質心問題。在復習時要重點關注。

㈦ 考研數學是考哪些內容

數學考研歷年題目

鏈接:

提取碼:9c0p

若資源有問題歡迎追問

㈧ 數二考哪些

給你比較下數一數二,再說下數一二三全什麼專業考,讓你有個總體印象先。再給你個大綱,對著復習吧。今年的大綱還沒出,要下半年呢。多關注一點

第一:考研數一與數二難度,數一大,這是大廢話。你也知道的吧。
第二:數一范圍大,數二隻有高數(也就是微積分)的一部分,而且很多章節都考的不深入,線性代數也少考幾個章節,還沒有概率論與數理統計。
第三:數二的題目和數三比起來還是有難度的。
第四:考數二的人數比數一數三少的多的多,很少有人關注數二的。
第五:想考好的話,建議在看完數二的參考資料後,可以適當練習下數一的題目。

數一:高等數學、線性代數、概率論(理工科類專業)
數二:高等數學、線性代數(部分理工科類專業及專業碩士)
數三:高等數學、線性代數、概率論(經濟、管理類專業)

高等數學
一、函數、極限、連續
考試內容
函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關系的建立 數列極限與函數極限的定義及其性質 函數的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個准則:單調有界准則和夾逼准則 兩個重要極限:
函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質
考試要求
1. 理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.
2. 了解函數的有界性、單調性、周期性和奇偶性.
3. 理解復合函數及分段函數的概念了解反函數及隱函數的概念
4. 掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5. 理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系.
6. 掌握極限的性質及四則運演算法則
7. 掌握極限存在的兩個准則,並會利用它們求極限,掌握利用兩個重要極限求極限的方法.
8. 理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
9. 理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
10. 了解連續函數的性質和初等函數一的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質.
二、一元函數微分學
考試要求
1. 理解導數和微分的概念,理解導數和微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系.
2. 掌握導數的四則運演算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運演算法則和一階微分形式的不變性,會求函數的微分.
3. 了解高階導數的概念,會求簡單函數的高階導數.
4. 會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數.
5. 理解並會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解並會用柯西( Cauchy )中值定理.
6. 掌握用洛必達法剛求未定式極限的方法.
7. 理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用.
8. 會用導數判斷函數圖形的凹凸性(註:在區間(a,b)內,設函數f(x)具有二階導數。當 >0時,f(x)的圖形是凹的;當 <0時,f(x)的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形.
9. 了解曲率、曲率圓和曲率半徑的概念,會計算曲率和曲率半徑.
三、一元函數積分學
考試內容:原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數、三角函數的有理式和簡單無理函數的積分反常(廣義)積分 定積分的應用
考試要求
1. 理解原函數的概念,理解不定積分和定積分的概念.
2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.
3. 會求有理函數、三角函數有理式和簡單無理函數的積分.
4. 理解積分上限的函數,會求它的導數,掌握牛頓一萊布尼茨公式.
5. 了解反常積分的概念,會計算反常積分.
6. 掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數的平均值.
四、多元函數微積分學
考試要求
1. 了解多元函數的概念,了解二元函數的幾何意義.
2. 了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質.
3. 了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數.
4. 了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並求解一些簡單的應用問題.
5. 了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標).
五、常微分方程
考試內容
常微分方程的基本概念 變數可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程 高於二階的某些常系數齊次線性微分方程 簡單的二階常系數非齊次線性微分方程 微分方程的簡單應用
考試要求
1. 了解微分方程及其階、解、通解、初始條件和特解等概念.
2. 掌握變數可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程
3. 會用降階法解下列形式的微分方程: , 和 .
4. 理解二階線性微分方程解的性質及解的結構定理.
5. 掌握二階常系數齊次線性微分方程的解法,並會解某些高於二階的常系數齊次線性微分方程.
6. 會解自由項為多項式、指數函數、正弦函數、餘弦函數以及它們的和與積的二階常系數非齊次線性微分方程.
7. 會用微分方程解決一些簡單的應用問題.
線性代數
一、行列式
考試內容
行列式的概念和基本性質 行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質.
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.
二、矩陣
考試內容
矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價分塊矩陣及其運算
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質.
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法. 5.了解分塊矩陣及其運算.
三、向量
考試內容
向量的概念 向量的線性組合和線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的正交規范化方法
考試要求
1.理解n維向量、向量的線性組合與線性表示的概念.
2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法.
3.了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.
4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關系
5.了解內積的概念,掌握線性無關向量組正交規范化的施密特(Schmidt)方法.
四、線性方程組
考試內容
線性方程組的克萊姆(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質和解的結構 齊次線性方程組的基礎解系和通解 非齊次線性方程組的通解
考試要求
1.會用克萊姆法則.
2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.
3.理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組的基礎解系和通解的求法.
4.理解非齊次線性方程組的解的結構及通解的概念.
5.會用初等行變換求解線性方程組.
五、矩陣的特徵值和特徵向量
考試內容
矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特徵值、特徵向量及其相似對角矩陣
考試要求
1.理解矩陣的特徵值和特徵向量的概念及性質,會求矩陣的特徵值和特徵向量.
2.理解矩陣相似的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣.
3.理解實對稱矩陣的特徵值和特徵向量的性質.
六、二次型
考試內容
二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標准形和規范形用正交變換和配方法化二次型為標准形 二次型及其矩陣的正定性
考試要求
1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
2.了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形.
3.理解正定二次型、正定矩陣的概念,並掌握其判別法。

㈨ 考研數二考哪些科目

沒有了。就考高等數學和線性代數。而且數學二的高數部分還不考向量代數。數學二沒有概率部分,數學一、三、四才考概率

㈩ 考研數學二考什麼

數學二考試科目:高等數學、線性代數

高等數學:同濟六版高等數學中除了第七章微分方程考帶*的伯努力方程外,其餘帶*號的都不考;所有」近似「的問題都不考;第四章不定積分不考積分表的使用;不考第八章空間解析幾何與向量代數;第九章第五節不考方程組的情形;到第十章二重積分、重積分的應用為止,後面則不考。

線性代數:數學二用的教材是同濟五版線性代數,1-5章:行列式、矩陣及其運算,矩陣的初等變換及其方程組、向量組的線性相關性、相似矩陣及二次型。

(10)數學二考哪些擴展閱讀:

考試要求介紹:

1、理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系。

2、了解函數的有界性、單調性、周期性和奇偶性。

3、理解復合函數及分段函數的概念了解反函數及隱函數的概念。

4、掌握基本初等函數的性質及其圖形,了解初等函數的概念。

5、理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系。

6、掌握極限的性質及四則運演算法則。

7、掌握極限存在的兩個准則,並會利用它們求極限,掌握利用兩個重要極限求極限的方法。

8、理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限。

閱讀全文

與數學二考哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:701
乙酸乙酯化學式怎麼算 瀏覽:1369
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1007
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1366
中考初中地理如何補 瀏覽:1257
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:668
數學奧數卡怎麼辦 瀏覽:1347
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1445
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:821
武大的分析化學怎麼樣 瀏覽:1210
ige電化學發光偏高怎麼辦 瀏覽:1299
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1385
化學理學哪些專業好 瀏覽:1449
數學中的棱的意思是什麼 瀏覽:1015