導航:首頁 > 數字科學 > 控制系統的數學模型有什麼用

控制系統的數學模型有什麼用

發布時間:2022-06-12 23:50:16

Ⅰ 什麼是數學模型,靜態數學模型什麼是自動控制,反饋控制和自動控制系統

數學模型就是,根據關系建立起來的數學公式。靜態就是結果和原因都不變。有因果關系,但因果都不隨時間而改變。自動控制是按一定程序自動運行,不用人為干涉。反饋是在輸出的誤差拿回來給輸入端,用來矯正輸出的錯誤。自動控制系統,包括了與之有關的各環節。如一個溫度控制系統就包括了:溫度計,晶體管放大,繼電器,中間繼電器,接觸器,排風扇等。

Ⅱ 控制系統的數學模型性質是什麼

你明白這是不完全正確的,傳輸功能,只有輸入參數的變化。
的數學模型,建立數學輸入輸出的傳遞函數的組成,改變輸入,輸出量的改變。
該模型的目的是通過在系統的穩定性的形式的函數模型視圖\靈敏度等一般模型的傳遞函數是一個反饋系統。上述數學方程模型
歐姆定律U = IR
這種模式應該是這樣的:我= U / R
I OUT,如果電壓的傳遞函數為U,輸入是R,通過改變輸入參數來改變輸出。

Ⅲ 對於自動控制系統的「數學模型」的理解是不是這樣

你這樣理解不完全正確,傳遞函數是一定的,改變的只是輸入的參數.
一個數學模型是有輸入輸出和傳遞函數組成,改變輸入量來改變輸出量.
建立數學模型的目的是通過函數模型的形式來看系統的穩定性\靈敏性等等,一般的傳遞函數的模型都有一個反饋系統.
上面提出的模型歐姆定律的數學方程U=IR
這個模型應該是這樣的:I=U/R
I輸出,如果電壓是一定的,傳遞函數就是U,輸入就是R,通過改變輸入的參數來改變輸出.

Ⅳ 何謂自動控制系統的數學模型建立數學模型的目的何在

自控系統的數學模型主要包括被控對象的數學模型與校正裝置的數學模型。設計自控系統的目的在於令系統在某種控制量輸入時獲得需要的被控量輸出,比如對一個直流電機調速系統而言,輸入的控制量是電樞電壓,而輸出的被控量是電機轉速(或轉矩),我們設計系統的目的就是當輸入特定的電壓時可以得到需要的轉速。那麼到底多高的電壓(輸入量)對應多高的轉速(輸出量)呢?使用如微分方程等數學語言描述輸出對應輸入的關系就叫建立數學模型。而數學模型的作用在於:1.描述被控對象自身特性;2.根據被控對象的特性定量的設計校正環節;3.用於分析整個系統的性能指標,作為系統是否達標的判斷標准。

Ⅳ 在控制系統分析中,為什麼一定要建立數學模型

-般說來建立數學模型的方法大體上可分為兩大類、一類是機理分析方法,一類是測試分析方法.機理分析是根據對現實對象特性的認識、分析其因果關系,找出反映內部機理的規律,建立的模型常有明確的物理或現實意義. 下面給出建模的-般步驟: 模型准備 首先要了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料. 模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣. 模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞. 模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術. 模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等. 模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意. 模型應用 應用的方式自然取決於問題的性質和建模的目的,這方面的內容不是本書討論的范圍。 應當指出,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,本書的建模實例就採取了靈活的表述方式.

Ⅵ 自動控制系統中數學模型的作用及常見形式有哪些

控制系統的數學模型是描述系統內部物理量(或變數)之間關系的數學表達式。在靜態條件下(即變數各階導數為零),描述變數之間關系的代數方程叫靜態數學模型;而描述變數各階導數之間關系的微分方程叫數學模型。如果已知輸入量及變數的初始條件,對微分方程求解就可以得到系統輸出量的表達式,並由此可對系統進行性能分析。因此,建立控制系統的數學模型是分析和設計控制系統的首要工作
建立控制系統數學模型的方法有分析法和實驗法兩種。分析法是對系統各部分的運動機理進行分析,根據它們所依據的物理規律或化學規律分別列寫相應的運動方程。例如,電學中有基爾霍夫定律,力學中有牛頓定律,熱力學中有熱力學定律等。實驗法是人為地給系統施加某種測試信號,記錄其輸出響應,並用適當的數學模型去逼近,這種方法稱為系統辨識。

Ⅶ 試說明採用控制系統的結構圖作為數學模型有何優點

它是傳遞函數的一種圖形描述方式,它可以形象的描述自動控制系統各單元之間和各作用量之間的相互聯系,具有簡明直觀、運算方便的優點
各方框之間的基本連接方式只有串聯、並聯和反饋連接三種。方框結構圖的簡化是通過移動引出點、比較點,交換比較點,進行方框運算後,將串聯、並聯和反饋連接的方框合並。

Ⅷ 控制系統的數學模型取決於系統的什麼和什麼

控制系統的數學模型取決於系統的目標函數和約束條件。

目標函數是指所關心的目標(某一變數)與相關的因素(某些變數)的函數關系。簡單的說,就是你求解後所得出的那個函數。在求解前函數是未知的,按照你的思路將已知條件利用起來,去求解未知量的函數關系式,即為目標函數。

解某些線性規劃問題時,該問題已知的並須遵守的前提條件稱為約束條件。

Ⅸ 什麼是控制系統的數學模型

數學模型是指控制系統設計依據的理論的計算原理、方法、工式等。比如很多閉環調節控制的數學模型是PID演算法。

Ⅹ 數學模型有什麼用

數學模型是數學抽象的概括的產物,其原型可以是具體對象及其性質、關系,也可以是數學對象及其性質、關系。數學模型有廣義和狹義兩種解釋.廣義地說,數學概念、如數、集合、向量、方程都可稱為數學模型,狹義地說,只有反映特定問題和特定的具體事物系統的數學關系結構方數學模型大致可分為二類:(1)描述客體必然現象的確定性模型,其數學工具一般是代效方程、微分方程、積分方程和差分方程等,(2)描述客體或然現象的隨機性模型,其數學模型方法是科學研究相創新的重要方法之一。在體育實踐中常常提到優秀運動員的數學模型。如經調查統計.現代的世界級短跑運動健將模型為身高1.80米左右、體重70公斤左右,100米成績10秒左右或更好等。
用字母、數字和其他數學符號構成的等式或不等式,或用圖表、圖像、框圖、數理邏輯等來描述系統的特徵及其內部聯系或與外界聯系的模型。它是真實系統的一種抽象。數學模型是研究和掌握系統運動規律的有力工具,它是分析、設計、預報或預測、控制實際系統的基礎。數學模型的種類很多,而且有多種不同的分類方法。

靜態和動態模型 靜態模型是指要描述的系統各量之間的關系是不隨時間的變化而變化的,一般都用代數方程來表達。動態模型是指描述系統各量之間隨時間變化而變化的規律的數學表達式,一般用微分方程或差分方程來表示。經典控制理論中常用的系統的傳遞函數也是動態模型,因為它是從描述系統的微分方程變換而來的(見拉普拉斯變換)。

分布參數和集中參數模型 分布參數模型是用各類偏微分方程描述系統的動態特性,而集中參數模型是用線性或非線性常微分方程來描述系統的動態特性。在許多情況下,分布參數模型藉助於空間離散化的方法,可簡化為復雜程度較低的集中參數模型。

連續時間和離散時間模型 模型中的時間變數是在一定區間內變化的模型稱為連續時間模型,上述各類用微分方程描述的模型都是連續時間模型。在處理集中參數模型時,也可以將時間變數離散化,所獲得的模型稱為離散時間模型。離散時間模型是用差分方程描述的。

隨機性和確定性模型 隨機性模型中變數之間關系是以統計值或概率分布的形式給出的,而在確定性模型中變數間的關系是確定的。

參數與非參數模型 用代數方程、微分方程、微分方程組以及傳遞函數等描述的模型都是參數模型。建立參數模型就在於確定已知模型結構中的各個參數。通過理論分析總是得出參數模型。非參數模型是直接或間接地從實際系統的實驗分析中得到的響應,例如通過實驗記錄到的系統脈沖響應或階躍響應就是非參數模型。運用各種系統辨識的方法,可由非參數模型得到參數模型。如果實驗前可以決定系統的結構,則通過實驗辨識可以直接得到參數模型。

線性和非線性模型 線性模型中各量之間的關系是線性的,可以應用疊加原理,即幾個不同的輸入量同時作用於系統的響應,等於幾個輸入量單獨作用的響應之和。線性模型簡單,應用廣泛。非線性模型中各量之間的關系不是線性的,不滿足疊加原理。在允許的情況下,非線性模型往往可以線性化為線性模型,方法是把非線性模型在工作點鄰域內展成泰勒級數,保留一階項,略去高階項,就可得到近似的線性模型。

閱讀全文

與控制系統的數學模型有什麼用相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1422
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1004
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071