① 高一中的數學集合應該怎樣理解,請舉例子為我講解
集合是由很多單個元素組成,因為元素很多,我們不可能一個一個說明,所以用一個集合符號來代替所有的元素。舉一個例子:高一(19)班有55個學生,那麼高一(19)班就是一個集合,55個學生就是集合中的元素。我們不可能每一次要表達「高一(19)班」這個概念的時候都把55個學生名字一個一個說出來吧,直接用「高一(19)班」就代替了班上的55個同學。這就是集合。記住,數學本身就是工具,所有一切的定義都是為了方便。
② 高一數學集合知識點有哪些
高一數學集合知識點有如下:
一、某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。
二、通常用大寫字母表示集合,用小寫字母表示元素。
三、一個集合中,每個元素的地位都是相同的,元素之間是無序的。
四、集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。
五、集合中元素的數目稱為集合的基數,集合A的基數記作card(A)。當其為有限大時,集合A稱為有限集,反之則為無限集。一般的,把含有有限個元素的集合叫做有限集,含無限個元素的集合叫做無限集。
③ 高一數學集合的含義及表示 怎麼講
在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念,也是不能被其他概念定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。
集合(簡稱集)是數學中一個基本概念,它是集合論的研究對象,集合論的基本理論直到19世紀才被創立。最簡單的說法,即是在最原始的集合論——樸素集合論中的定義,集合就是「一堆東西」。集合里的「東西」,叫作元素。若x是集合A的元素,則記作x∈A。
集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
現代數學還用「公理」來規定集合。最基本公理例如:
外延公理:對於任意的集合S1和S2,S1=S2當且僅當對於任意的對象a,都有若a∈S1,則a∈S2;若a∈S2,則a∈S1。
無序對集合存在公理:對於任意的對象a與b,都存在一個集合S,使得S恰有兩個元素,一個是對象a,一個是對象b。由外延公理,由它們組成的無序對集合是唯一的,記做{a,b}。 由於a,b是任意兩個對象,它們可以相等,也可以不相等。當a=b時,{a,b},可以記做或,並且稱之為單元集合。
空集合存在公理:存在一個集合,它沒有任何元素。
④ 高一中的數學集合應該怎樣理解,請舉例子為我講解,謝謝
確定性即給定一個集合,那麼在這個集合中的元素就是確定了的。比如1~5的所有整數,即是1,2,3,4,5而「身材較高的人」就是不確定的了,怎樣才算較高,沒有一個准確的標准,所以這個不能構成集合;又如「我國的小河流」,「小河流」這一標准不確定,所以不構成集合
無序性就是數字間不要求要有順序。
比如
( {1,2,3}={2,1,3}={3,1,2}...)
望採納
⑤ 高一數學中 集合是什麼
集合的概念某些指定的對象集在一起就是集合。 集合一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集,其中各事物叫做集合的元素或簡稱元。如(1)阿Q正傳中出現的不同漢字(2)全體英文大寫字母。任何集合是它自身的子集.一般的,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集).構成集合的每個對象叫做這個集合的元素(或成員)。 元素與集合的關系元素與集合的關系有「屬於」與「不屬於」兩種。 集合與集合之間的關系某些指定的對象集在一起就成為一個集合 集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。 『說明一下:如果集合 A 的所有元素同時都是集合 B 的元素,則 A 稱作是 B 的子集,寫作 A �6�7 B。若 A 是 B 的子集,且 A 不等於 B,則 A 稱作是 B 的真子集,一般寫作 A �6�3 B。 中學教材課本里將 �6�3 符號下加了一個 ≠ 符號(如右圖), 不要混淆,考試時還是要以課本為准。 所有男人的集合是所有人的集合的真子集。』 集合集合的三種運演算法則並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B} 交集: 以屬於A且屬於B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B} 例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那麼因為A和B中都有1,5,所以A∩B={1,5} 。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。 圖中的陰影部分就是A∩B。 集合有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減1再相乘。48個。 無限集: 定義:集合里含有無限個元素的集合叫做無限集 有限集:令N*是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。 差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:A\B={x│x∈A,x不屬於B}。 注:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A} 空集也被認為是有限集合。 例如,全集U={1,2,3,4,5} 而A={1,2,5} 那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。 在信息技術當中,常常把CuA寫成~A。 集合集合元素的性質1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。 2.獨立性:集合中的元素的個數、集合本身的個數必須為自然數。 3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。 4.無序性:{a,b,c}{c,b,a}是同一個集合。 5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,這就是集合純粹性。 6.完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。 集合集合有以下性質若A包含於B,則A∩B=A,A∪B=B 集合的表示方法集合常用大寫拉丁字母來表示,如:A,B,C…而對於集合中的元素則 集合用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當於集合的名字,沒有任何實際的意義。 將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括弧括起來的,括弧內部是具有某種共同性質的數學元素。 常用的有列舉法和描述法。 1.列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……} 2.描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π} 3.圖示法(Venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。 集合4.自然語言 常用數集的符號: (1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N;不包括0的自然數集合,記作N* (2)非負整數集內排除0的集,也稱正整數集,記作Z+;負整數集內也排除0的集,稱負整數集,記作Z- (3)全體整數的集合通常稱作整數集,記作Z (4)全體有理數的集合通常簡稱有理數集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質}(正負有理數集合分別記作Q+Q-) (5)全體實數的集合通常簡稱實數集,記作R(正實數集合記作R+;負實數) (6)復數集合計作C 集合的運算: 集合交換律 A∩B=B∩A A∪B=B∪A 集合結合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) 集合德.摩根律 集合Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 集合「容斥原理」 在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。例如A={a,b,c},則card(A)=3 card(A∪B)=card(A)+card(B)-card(A∩B) card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C) 1885年德國數學家,集合論創始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。 集合吸收律 A∪(A∩B)=A A∩(A∪B)=A 集合求補律 A∪CuA=U A∩CuA=Φ 設A為集合,把A的全部子集構成的集合叫做A的冪集 德摩根律 A-(BUC)=(A-B)∩(A-C) A-(B∩C)=(A-B)U(A-C) ~(BUC)=~B∩~C ~(B∩C)=~BU~C ~Φ=E ~E=Φ 特殊集合的表示 復數集 C 實數集 R 正實數集 R+ 負實數集 R- 整數集 Z 正整數集 Z+ 負整數集 Z- 有理數集 Q 正有理數集 Q+ 負有理數集 Q- 自然數集 N 不含0自然數集 N* [編輯本段]模糊集合用來表達模糊性概念的集合。 又稱模糊集、模糊子集。普通的集合是指具有某種屬性的對象的全體。這種屬性所表達的概念應該是清晰的,界限分明的。因此每個對象對於集合的隸屬關系也是明確的,非此即彼。但在人們的思維中還有著許多模糊的概念,例如年輕、很大、暖和、傍晚等,這些概念所描述的對象屬性不能簡單地用「是」或「否」來回答,模糊集合就是指具有某個模糊概念所描述的屬性的對象的全體。由於概念本身不是清晰的、界限分明的,因而對象對集合的隸屬關系也不是明確的、非此即彼的。這一概念是美國加利福尼亞大學控制論專家L.A.扎德於 1965 年首先提出的。模糊集合這一概念的出現使得數學的思維和方法可以用於處理模糊性現象,從而構成了模糊集合論(中國通常稱為模糊性數學)的基礎。
⑥ 高一數學集合的含義是什麼
數學集合的含義是什麼?
答:1.集合是一個含意很廣泛 的概念,只有描述性的定義:把具有某種共同屬性的事物看成一個整
體就是一個集合。
2.數學里的集合都是指數的集合:把具有某種共同屬性的數看作一個整體就是一個數的集合。
3.集合有「四性」:即確定性,「相當大的數的全體」,「高個子學生的全體」等都不能構成集合;
互異性,{1,1,1}必須寫成{1};
無序形,{1,2,3}和{3,1,2},{3,2,1}是同一個集合;
任意性,集合的元數可以是實數,復數,也可以是多項式,直線,平面,函數等等。
⑦ 高一數學提前看,看看集合怎麼學
1.集合的概念
一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集);集合通常用大寫的拉丁字母表示,如A、B、C等等。
構成集合的每個對象叫做這個集合的元素(或成員)。集合的元素可以是我們看到的、聽到的、聞到的、觸摸到的、想到的各種各樣的事物或者一些抽象符號。通常用小寫的拉丁字母表示,如a、b、c等等。
2.集合元素的特徵
由集合概念中的兩個關鍵詞「確定的」、「不同的」可以知道集合元素有兩大特徵性質:
⑴確定性特徵:集合中的元素必須是明確的,不允許出現模稜兩可、無法斷定的陳述。
設集合A給定,若有一具體對象X,則 X要麼是A的元素,要麼不是A的元素,二者必居其一,且只居其一。
⑵互異性特徵:集合中的元素必須是互不相同的。設集合A給定,A的元素是指含於其中的互不相同的元素,相同的對象歸於同一集合時只能算集合的一個元素。
(3)無序性特徵:元素之間沒有次序之分
3.集合與元素之間的關系
(1)屬於:集合與元素之間只有「屬於 」或「不屬於 」。例如: a是集合A的元素,記作a∈A ,讀作「a屬於A」;
(2)不屬於:不是集合A的元素,記作a∉A ,讀作「a不屬於A」。
4.集合的分類
集合按照元素個數可以分為有限集和無限集。
(1)把不含任何元素的集合叫做空集,記作∅ 。
(2)含有有限個元素的集合叫做有限集。
(3)含有無窮個元素的集合叫做無限集。
5.集合的表示方法
⑴列舉法是把元素不重復、不計順序的一一列舉出來的方法,非常直觀,一目瞭然。
⑵特徵性質描述法是用確定的條件描述集合內元素特點的集合表示方法。
(1)非負整數集(自然數集):全體非負整數的集合.記作N
(2)正整數集:非負整數集內排除0的集.記作N*或N+
(3)整數集:全體整數的集合.記作Z
(4)有理數集:全體有理數的集合.記作Q
(5)實數集:全體實數的集合.記作R
集合中元素的特性:
(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.任何一個元素要麼屬於該集合,要麼不屬於該集合,二者必具其一。
(2)互異性:集合中的元素一定是不同的.
(3)無序性:集合中的元素沒有固定的順序.