導航:首頁 > 數字科學 > 滲透數學思想屬於什麼教學

滲透數學思想屬於什麼教學

發布時間:2022-06-15 10:28:21

㈠ 如何在小學數學教學中滲透數學思想

小學數學中蘊含著豐富的數學思想方法,因此,在小學數學教學中加強數學思想方法的滲透教學不但重要,而且是現實可行的。
一、轉變思想,重視挖掘數學思想方法
數學知識明顯地寫在教材中,是有「形」的,而數學思想方法卻隱含在數學知識體系裡,是無「形」的,並且不成體系地散見於教材各章節中。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目標,把數學思想方法教學的要求融入備課環節。
二、把握機會,適時滲透數學思想方法
為了更好地在小學數學教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究數學思想方法滲透的手段和方式。小學階段,數學思想方法的滲透一般常用直觀法、問題法、反復法和剖析法。在教學過程中,教師應掌握方法,不失時機地向學生滲透數學思想方法。
三、勤於訓練,自覺提煉數學思想方法
數學思想方法的教學是一個長期的過程,它應通過一定的訓練,鞏固和深化已經掌握的數學知識以及數學思想方法,進而歸納和提煉出新的數學思想方法。在教學中,教師可通過數學思想方法的廣泛滲透,讓學生從主觀上重視數學思想方法的學習,增強自覺提煉數學思想方法的意識。教師對習題的設計也應該從數學思想方法的角度加以考慮,盡量多安排一些能使各種學習水平的學生深入淺出地作出解答的習題。
四、統籌安排,逐步領悟數學思想方法
對學生進行數學思想方法的滲透必定要經歷一個循環往復、螺旋上升的過程,而且常常是幾種數學思想方法交織在一起出現,這就要求教師有一個總體的設計安排,分析什麼時候滲透哪些數學思想方法,如何滲透,滲透到什麼程度,並據此提出不同階段的具體教學要求,確定在某一段時間內重點滲透與明確哪一種數學思想方法。長此以往,逐步使學生領悟數學思想方法的真諦。

㈡ 怎樣在課堂教學中滲透數學思想

作為一名小學教師,每天的課堂教學我們總是在有意或無意的滲透著數學思想方法。美國教育心理家布魯納指出:掌握基本的數學思想方法,能使數學更易於理解和更利於記憶,領會基本數學思想和方法是通向遷移大道的「光明之路」。在人的一生中,最有用的不僅是數學知識,更重要的是數學的思想方法和數學的意識,因此數學的思想方法是數學的靈魂和精髓。掌握科學的數學思想方法對提升學生的思維品質,對數學學科的後繼學習,對其它學科的學習,乃至對學生的終身發展都具有十分重要的意義。在小學數學教學中,教師有計劃、有意識地滲透一些數學思想方法非常重要。下面我就談談在小學數學教學中,我是如何滲透數學思想方法:
一、改變應試教育觀念,創新數學思想方法。
數學思想方法隱含在數學知識體系裡,是無「形」的,而數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有「形」的。作為教師首先要改變應試教育觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目的,把數學思想方法教學的要求融入備課環節。其次要深入鑽研教材,努力挖掘教材中可以進行數學思想方法滲透的各種因素,對於每一章每一節,都要考慮如何結合具體內容進行數學思想方法滲透,滲透哪些數學思想方法,怎麼滲透,滲透到什麼程度,應有一個總體設計,提出不同階段的具體教學要求。在小學數學教學中,教師不能僅僅滿足於學生獲得正確知識的結論,而應該著力於引導學生對知識形成過程的理解。讓學生逐步領會蘊涵其中的數學思想方法。也就是說,對於數學教學重視過程與重視結果同樣重要。教師要站在數學思想方面的高度,對其教學內容,用恰當的語言進行深入淺出的分析,把隱蔽在知識內容背後的思想方法提示出來。例如,長方體和正方體的認識概念教學,可以按下列程序進行:(1)由實物抽象為幾何圖形,建立長方體和正方體的表象;(2)在表象的基礎上,指出長方體和正方體特點,使學生對長方體和正方體有一個更深層次的認識;(3)利用長方體和正方體的各種表象,分析其本質特徵,抽象概括為用文字語言表達的長方體和正方體的概念;(4)使長方體和正方體的有關概念符號化。顯然,這一數學過程,既符合學生由感知到表象,再到概念的認知規律,又能讓學生從中體會到教師是如何應用數學思想方法,對有聯系的材料進行對比的,對空間形式進行抽象概括的,對教學概念進行形式化的。
二、課堂教學中及時滲透數學思想方法。
為了更好地在小學數學教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究思想滲透的手段和方法。在教學過程中,我經常通過以下途徑及時向學生滲透數學思想方法:(1)在知識的形成過程中滲透。如概念的形成過程,結論的推導過程等,這些都是向學生滲透數學思想和方法的極好機會。例如量的計量教學,首要問題是要合理引入計量單位。作為課本不可能花大氣力去闡述這個過程。但是作為教師根據教學的實際情況,適當地展示它的簡單過程和所運用的思想方法,有利於培養學生的創造性思維品質和為追求真理而勇於探索的精神。例如,在「面積與面積單位」一課教學中,當學生無法直接比較兩個圖形面積的大小時,引進「小方塊」,並把它一個一個地鋪在被比較的兩個圖形上,這樣,不僅比較出了兩個圖形的大小,而且,使兩個圖形的面積都得到了「量化」。使形的問題轉化為數的問題。在這一過程中,學生親身體驗到「小方塊」所起的作用。接著又通過「小方塊」大小必須統一的教學過程,使學生深刻地認識到:任何量的量化都必須有一個標准,而且標准要統一。很自然地滲透了「單位」思想。(2)在問題的解決過程中滲透。如:教學「雞兔同籠」 這一課時,在解決問題的過程中,用圖表、課件展示的方法讓學生逐步領會「假設」這種策略的奧妙所在。(3)在復習小結中滲透。在章節小結、復習的數學教學中,我們要注意從縱橫兩個方面,總結復習數學思想與方法,使師生都能體驗到領悟數學思想,運用數學方法,提高訓練效果,減輕師生負擔,走出題海誤區的輕松愉悅之感。如教學 「梯形面積」這一單元之後,我及時幫助學生依靠梯形面積的推導過程回憶平行四邊形的面積、三角形的面積公式的推導方法,使學生能清楚地意識到:「轉化」是解決問題的有效方法。
三、讓學生學會自覺運用數學思想方法。
數學思想方法的教學,不僅是為了指導學生有效地運用數學知識、探尋解題的方向和入口,更是對培養人的思維素質有著特殊不可替代的意義。它在新授中屬於「隱含、滲透」階段,在練習與復習中進入明確、系統的階段,也是數學思想方法的獲得過程和應用過程。這是一個從模糊到清晰的飛躍。而這樣的飛躍,依靠著系統的分析與解題練習來實現。學生做練習,不僅對已經掌握的數學知識以及數學思想方法會起到鞏固和深化的作用,而且還會從中歸納和提煉出新的數學思想方法。數學思想方法的教學過程首先是從模仿開始的。學生按照例題師范的程序與格式

㈢ 在數學教學中怎樣滲透思維方法

一、在備課環節中滲透
教師要把掌握數學知識和滲透數學思想方法同時納入教學目的,把數學思想方法教學的要求融入備課環節。對教材中的每一章節,都要考慮如何結合具體內容進行數學思想方法的滲透,滲透哪些數學思想方法,怎麼滲透,滲透到什麼程度。教學中,教師要站在數學思想方面的高度,對教學內容,用恰當的語言進行深入淺出地分析,把隱蔽在知識內容背後的思想方法提示出來。
二、新課講授中滲透
深入挖掘隱含在教材里的數學思想方法,精心設計課堂教學過程,展示數學思維過程,這樣才有助於學生了解其中數學思想方法的產生、應用和發展的過程。不同的教學內容,可根據其特點,選配不同的數學思想方法進行教學。教學過程中,通過以下途徑及時向學生滲透數學思想方法:在知識的形成過程中滲透。如概念的形成過程,結論的推導過程等,這些都是向學生滲透數學思想和方法的極好機會。在教學中,通過數學思想方法的廣泛應用,讓學生從主觀上重視數學思想方法的學習,進而增強自覺提煉數學思想方法的意識。
三、在學生解題中滲透
數學教學,不僅是學生有效地運用數學知識、探尋解題的方向和入口,對培養人的思維素質有著特殊不可替代的意義。新授課中屬「隱含、滲透」階段,練習中進入明確、系統的階段。學生解題過程里,不但對已掌握的數學知識及數學思想方法會起到鞏固和深化的作用,還從中歸納提煉出新的數學思想方法。思想方法的教學過程首先是從模仿開始,學生按照例題示範程序與格式解答相同類型的習題,實際上是思想方法的運用。

四、在歸納總結中滲透
課堂教學小結、單元復習時,適時對某種數學思想方法進行概括和強化,可使學生從數學思想方法的高度把握知識的本質和內在的規律,逐步體會數學思想方法的精神實質。
在章節小結、復習的數學教學中,注意從縱橫兩個方面,總結復習數學思想與方法。一方面是課中有意地滲透,另一方面是靠學生在反思總結中深刻領悟。在總結延伸某一思想方法的時候,教師要有意識地引導學生自覺地反思自己的思維過程,反思自己是怎樣發現問題、分析解決問題的。逐步體會數學思想方法的精神實質,提高自覺應用意識。

㈣ 試述小學數學教學中如何滲透數學思想

教師為讓教學活動開展得更好,就要在教學活動開設期間給學生融合各種方法,並使用這些方法將數學知識分化為不同的思想和類型,然後將每種類型的主要解題方法融入教學進程中,這樣能降低學生的學習難度,也能對學生的知識學習有更好的幫助。故此,深入研究小學數學教學中的思想滲透方法是十分必要的。
小學數學教師在開展實際教學工作的時候,先要摒棄傳統陳舊的教學方法,使用新的教學方法讓其能適應社會發展趨勢,做到與時俱進。另外,教師為讓學生能對知識有著深刻的認識和理解,就要適度地藉助分類知識解決實際中的諸多問題,並在實際教學活動中滲透數學思想。這些思想的應用一方面能讓數學的教學效率得到提升,另一方面能激發學生的數學學習興趣,使學生可以自主地參與到學習中來,從而在師生共同努力中開啟小學教學新篇章。
一、數學思想的概述
數學思想是從19世紀90年代開始提出的。該思想的應用,要在長期發展中不斷地成熟。但我國對數學思想的研究還有很多不透徹的地方,故此還有很多地方概述不夠明確,但我國在發展中能較好地對數學思想進行分類。其實可以將其分成兩類:數學思想和數學方法。數學思想主要是從數學本質入手開展的認知活動,先要對已知的數學內容進行重新認識,並提出新的看法和觀點。即在小學數學教學期間,教師為更好地指導學生進行數學知識的學習,解決數學中的問題,鞏固各項復習環節就要學會從思想上對數學進行認識,並能認識其思想的本質內容。相比較而言,數學的方法更趨向實踐性,教師在數學思想支配下要開展不同形式的思想活動,藉助於實踐發現了解到數學活動開展期間出現的問題,數學方法包含的內容主要有形式、手段和途徑。
二、教學中滲透數學思想的方法
(一)分類的思想和方法
分類思想主要是將所有的問題進行細致的分類,零碎的個體劃歸到一個整體內,並結合一定的原則,進行分類,最終讓整體劃分為部分。分析不同的部分,實現對整體內容的解決。分類思想在數學教學中意義非凡,也是在小學數學中使用較多的思想,應用分類思想能將復雜的數學知識進行分類應用。
復雜思想分類對方法有著積極影響,面對復雜的數學分類,就要在同一對象屬性的前提下開展不同屬性的內容展示。這樣能讓學生對概念和法則有著清晰的認識,以提升學生對問題的解決能力。如,教學活動期間,學生學習有關三角形的內容,可以直接將三角形劃分為銳角三角形、直角三角形和鈍角三角形,這便於學生對三類三角形本質內容的了解,也能清晰地了解到三角形之間的區別和聯系。分類思想的開設要遵循以下原則:第一是標準的同一性原則,每次進行分類所有的標准要統一,不能在一次分類中提出兩個或者兩個以上的標准,同一個標准可以被看成是同一因素,也可以是兩個或者兩個以上的因素構成,譬如自然數中找到既能是奇數也能是偶數的數,因而此分類標准就含有兩個分類因素。第二是不重復、不遺漏的原則,分類完成以後各個部分之間不能出現重復,也不能出現遺漏,這樣才能在同一標准下,各個部分之間相互排斥但是卻不相交。比如,學習四邊形分類的時候,四邊形能被分為平行四邊形、梯形和任意四邊形,然後可以將平行四邊形進行分類分解為一般的平行四邊形和長方形。
(二)從數學設計角度考慮深入挖掘數學思想
教師在教學活動開設之時,先要做好有關教學設計的工作。教師在教學設計開設之初,需要將數學思想挖掘看成是思想方法的主要出發點,深入了解教材內容,並將其中的方法提煉出來,然後結合這些方法開展實際的數學工作。如,教師在教學的時候先要給學生講解《植樹問題》,應結合教材講述內容,使用不同的數學思想開展教學活動,使學生能掌握案例,並深入探究教材中「兩端都種」「一端種」「兩端都不種」。深入地探究這三類案例,並能在探究中了解到相關知識要點,這樣就能在今後的解題中聯想案例,從而能解決問題。
(三)知識形成過程中感悟思想方法
數學教學中,思想的方法和知識之間有著密不可分的聯系,由於兩者很難獨立存在。在此狀況下,教師就要在教學知識形成期間通過方法滲透,讓學生更好地學習相關數學知識。如,教師讓學生認識10以內的數字,然後使用視頻的方式進行播放,或者是使用動畫的方式讓學生對10以內的數字有形象的認知,並使用歸納這一方法將相關數字內容歸納在一起。基於此,學生不僅能對10以內的數字有清晰的認識和了解,也能對歸納的思想方法有更加深刻的認知。
(四)反思教學中滲透數學思想
數學教學中,教師在給學生傳授基礎知識以後,就要讓學生對知識有深刻的認識和了解。教師為讓學生具有良好的反思意識,就要在整個反思期間,通過滲透數學思想的方法,使學生能對數學的學習過程有深刻的認知。
(五)數形結合思想
數學研究中主要是對現實世界中的空間形式和數量關系進行簡單的了解,空間形式可以被看成是「形」,數量關系可以被看成是「數」。數與形多表示同一事物的兩個不同方面,兩者之間有著相互間的聯系,但是彼此之間也能進行轉換。使用數形結合的思想就要在抽象和具體之間進行優勢性的互補,要求突出它們之間的圖形關系,進而直觀地表達對應的數量關系,做到以形助教,讓問題能更好地解決。另外,圖形的性質或者特點可以轉換為代數的問題,藉助於數助形,獲得問題。
數學是重要的學習科目,也是教學中的重點和難點,教師在教學活動期間為能更好地開展數學教學工作,就要在教學中採用各類措施滲透思想方法,讓數學教學獲得好的效果,學生也能由此掌握更多的數學知識。

㈤ 如何在數學解題教學中滲透數學思想

一、數學思想方法教學與能力的關系

思想方法就是客觀存在反映在人的意識中經過思維活動而產生的結果,它是從大量的思維活動中獲得的產物,經過反復提煉和實踐,一再被證明為正確、可以反復被應用到新的思維活動中,並產生出新的結果。數學思想方法,就是指現實世界的空間形式和數量關系反映到人的意識中,經過思維活動而產生的結果,它是對數學事實與數學理論(概念、定理、公式、法則等)的本質認識。所以,數學思想是對數學知識的本質認識,是對數學規律的理性認識,是從某些具體的數學內容和對數學的認識過程中提煉上升的數學觀點,它在認識活動中被反復運用,帶有普遍的指導意義,是建立數學和用數學解決問題的指導思想。數學方法是指從數學角度提出問題、解決問題(包括數學內部問題和實際問題)的過程中所採用的各種方式、手段、途徑等。數學思想和數學方法是緊密聯系的,一般來說,強調指導思想時稱數學思想,強調操作過程時稱數學方法。

數學思想方法是形成學生的良好的認知結構的紐帶,是由知識轉化為能力的橋梁。中學數學教學大綱中明確指出:數學基礎知識是指數學中的概念、性質、法則、公式、公理、定理以及由其內容所反映出來的數學思想方法。數學思想和方法納入基礎知識范疇,足見數學思想方法的教學問題已引起教育部門的重視,也體現了我國數學教育工作者對於數學課程發展的一個共識。這不僅是加強數學素養培養的一項舉措,也是數學基礎教育現代化進程的必然與要求。這是因為數學的現代化教學,是要把數學基礎教育建立在現代數學的思想基礎上,並使用現代數學的方法和語言。因此,探討數學思想方法教學的
一系列問題,已成為數學現代教育研究中的一項重要課題。

從心理發展規律看,初中學生的思維是以形式思維為主向辨證思維過渡,高中學生的思維則是辨證思維的形成。進行數學思想方法教學,不僅有助於學生從形式思維向辯證思維過渡,而且是形成和發展學生辯證思維的重要途徑。

從認知心理學角度看,數學學習過程是一個數學認知結構的發展變化過程,這個過程是通過同化和順應兩種方式實現的。所謂同化,就是主體把新的數學學習內容納入到自身原有的認知結構中去,把新的數學材料進行加工改造,使之與原教學學習認知結構相適應。所謂順應,是指主體原有的數學認識結構不能有效地同化新的學習材料時,主體調整成改造原來的數學內部結構去適應新的學習材料.在同化中,數學基礎知識不具備思維特點和能動性,不能指導「加工」過程的進行。而心理成份只給主體提供願望和動機,提供主體認知特點,僅憑它也不能實現「加工」過程。數學思想方法不僅提供思維策略(設計思想),而且還提供實施目標的具體手段(解題方法)。實際上數學中的轉化、化歸就是實現新舊知識的同化。與同化一樣,順應也在數學思想方法的指導下進行。積極進行數學思想方法教學,將極大地促進學生的數學認知結構的發展與完善。

從學習遷移看,數學思想方法有利於學生學習遷移,特別是原理和態度的遷移,從而可以極大地提高學習質量和數學能力。布魯納認為
「學習基本原理的目的,就在於促進記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具。」由此可見,數學思想方法作為數學學科的「一般原理」,在教學中是至關重要的,因此,對於中學生,不管他們將來從事什麼工作,唯有深深地銘刻於頭腦中的數學思想方法將隨時隨地發生作用,使他們受益終生。

二、數學思想方法的教學原理

數學思想方法的教學原理是說明數學思想方法的教學規律的。中學數學的課程內容是由具體的數學知識與數學思想方法組成的有機整體,現行數學教材的編排一般是沿知識的縱方向展開的,大量的數學思想方法只是蘊涵在數學知識的體系之中,並沒有明確的揭示和總結。這樣就產生了如何處理數學思想方法教學的問題。進行數學思想方法的教學,必須在實踐中探索規律,以構成數學思想方法教學的指導原則。數學思想方法的構建有三個階段:潛意識階段、明朗和形成階段、深化階段。一般來說,應以貫徹滲透性原則為主線,結合落實反復性、系統性和明確性的原則.它們相互聯系,相輔相成,共同構成數學思想方法教學的指導思想。

㈥ 小學數學教學中怎樣滲透數學思想

小學數學教學中怎樣滲透數學思想
1.滲透數學思想方法的本質

所謂數學思想,是指現實世界的空間形式和數量關系反映到人的意識之中,經過思維活動而產生的結果,它是對數學事實與數學理論的本質認識。所謂數學方法,是指解決數學具體問題時所採用的方式、途徑和手段,也可以說是解決數學問題的策略和手段。數學思想是數學方法的靈魂,是數學方法的理論基礎,數學方法是數學思想的表現形式和得以實現的手段,由於小學數學是最基本的數學知識,內容簡單,所蘊涵的思想和方法很難截然分開,其本質往往是一致的,因此在小學數學教學中可以把數學思想和方法看成一個整體,稱之為數學思想方法。

學習數學的目的「就意味著解題」,解題關鍵在於找到合適的解題思路,數學思想方法就是幫助構建解題思路的指導思想。它對學生以後的學習、生活和工作長期起作用,並使其終生受益。因此,在教學中向學生滲透一些基本的數學思想方法,是數學教學改革的新視角,是培養學生分析問題和解決問題的重要途徑,也是促進學生數學思維能力發展的重要方法。

2.及時滲透數學思想方法

為了更好地在小學數學教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究思想滲透的手段和方法。

在踐行教學中,我結合教材內容,及時向學生滲透數學思想方法:

(1)在新授知識課中滲透。如在《三角形分類》一課中,先給學生提供三角形學具,然後放手讓學生嘗試對三角形進行分類,學生從關注三角形的角與邊的特徵入手,藉助學具看一看、比一比、量一量、分一分、尋找特徵、抽象共性,在比較中將具有相同特徵的三角形歸為一類,在分類中抽象出圖形的共同特徵。這樣的教學,學生經歷了三角形分類的過程,滲透了分類、集合的數學思想。

(2)在知識的形成過程中滲透。如概念的形成過程,結論的推導過程等,這些都是向學生滲透數學思想和方法的極好機會。例如,在「面積與面積單位」一課教學中,當學生無法直接比較兩個圖形面積的大小時,引進「小方塊」,並把它一個一個地鋪在被比較的兩個圖形上,這樣,不僅比較出了兩個圖形的大小,而且,使兩個圖形的面積都得到了「量化」。使形的問題轉化為數的問題。在這一過程中,學生親身體驗到「小方塊」所起的作用。接著又通過「小方塊」大小必須統一的教學過程,使學生深刻地認識到:任何量的量化都必須有一個標准,而且標准要統一。很自然地滲透了「單位」思想。

(3)在問題的解決過程中滲透。如:教學「雞兔同籠」這一課時,在解決問題的過程中,用圖表、課件展示的方法讓學生逐步領會「假設」這種策略的奧妙所在。如教學「梯形面積」這一單元之後,我及時幫助學生依靠梯形面積的推導過程回憶平行四邊形的面積、三角形的面積公式的推導方法,使學生能清楚地意識到:「轉化」是解決問題的有效方法。

3.提煉和運用數學思想方法

滲透數學思想方法的教學,不僅是為了指導學生有效地運用數學知識、探尋解題的方向和入口,更是對培養人的思維素質有著特殊不可替代的意義。在教學中,通過數學思想方法的廣泛應用,讓學生從主觀上重視數學思想方法的學習,進而增強自覺提煉數學思想方法的意識。教師對習題的設計也應該從數學思想方法的角度加以考慮,盡量多安排一些能使各種學習水平的學生深入淺出地作出解答的習題,它既有具體的方法或步驟,又能從一類問題的解法去思考或從思想觀點上去把握,形成解題方法,進而深化為數學思想。例如;在教學完多邊形面積的計算以後,可以由易到難,出幾題運用移動、割補等方法解決的實際問題,這樣做不僅可以讓學生領會到轉化的數學思想方法,對提高學生的學習興趣也大有好處。讓學生在操作中掌握,在掌握後領悟,使數學思想方法在知識能力的形成過程中共同生成。

重視加強對學生進行數學思想方法的滲透不但有利於提高課堂教學效率,而且有利於提高學生的數學文化素養和思維能力。因此,在教學過程中,要有機地結合數學知識的內容,做到持之以恆、循序漸進和反復訓練,才能真正有效地對學生進行數學思想方法的滲透。

㈦ 如何在數學課堂上滲透數學思想

《領悟數學思想方法,讓課堂綻放魅力,讓學生展現風采》——小學數學教學中滲透數學思想方法思考與實踐匯報:兆麟小學農豐小學蘭陵小學今天由我們三人匯報的題目是:《領悟數學思想方法,讓課堂綻放魅力,讓學生展現風采》中國科學院院士、著名數學家張景中曾指出:「小學生學的數學很初等,很簡單。但盡管簡單,裡面卻蘊含了一些深刻的數學思想。」數學知識和數學思想方法作為小學數學學習的兩條線索,一明一暗,相互支撐,其中數學思想方法提示了數學的本質和發展規律,可以說是數學的精髓。下面我們就談談數學思想方法。
一、為什麼要在教學中滲透數學思想方法1、基本數學思想方法對學生的發展具有重要意義一位教育學家曾指出:「作為知識的數學出校門不到兩年可能就忘了,惟有深深銘記在頭腦中的是數學煌精神和數學的思想、研究方法、著眼點等,這些隨時隨地發生作用使學生終身受益。」數學的思想方法是數學的靈魂和精髓,掌握科學的數學思想方法對提升學生思維品質,對數學學科的後繼學習,對其他學得的學習,乃至學生的終身發展有十分重要的意義。在小學數學教學中有意識地滲透一些基本數學思想方法,是增強學生數學觀念,形成良好思維素質的關鍵。不僅能使學生領悟數學的真諦,懂得數學的價值學會數學地思考和解決問題,還可以把知識的學習與能力的培養、智力的發展有機地統一起來。2.滲透基本數學思想方法是落實新課標精神的需求數學課程標准把「四基」:基本知識、基本技能、基本思想、基本活動經驗作為目標體系。基本思想是數學學習的目標之一,其重要性不言而喻。新教材是把一些重要的數學思想方法通過學生日常生活中最簡單的事例呈現出來,並運用操作、實驗等直觀手段解決這些問題。從而加深學生對數學概念、公式、定理、定律的理解,提高學生數學能力和思維品質,這是數學教育實現從傳授知識到培養學生分析問題、解決問題能力的重要途徑,也是小學數學新課程改革的真正內涵之在。
二、課教材滲透了哪些數學思想小學數學中最上位的思想就是演繹和歸納,是數學教學的主線。還有一些常用的數學思想方法:對應思想、——是指對兩個集合元素之間聯系的把握。許多數學方法來源於對應思想。比如學生在計算練習時常常有10?20×2?30?40?50?形式出現,這其實就體現了對應的思想。如數軸上的一個點就對應一個數,任何一個數都能在數軸上找到相對應的點,一一對應,呈現完美。符號化思想、——數學發展到今天,已成為一個符號的世界。英國著名數學家素曾說:「什麼是數學?數學就是符號加邏輯。」符號化思想即指人們有意識地、普遍地運用符號化的語言去表述研究的對象。符號化思想在整個小學都有較多的滲透,例如:阿拉伯數字:1、2、3、5、6、……+、–、、等運算符號;>、<、=、等表示關系的符號;()、[]等括弧;表示數的字母:x、y、z等。字母表示公式:長方形、正方形的面積S=abS=a²字母表示計量單位符號:m\cm\dm\mm\g\km等。集合思想——把一組對象放在一起作為討論的范圍,這就是集合的思想。如:一年級教材在教孩子認數的時候,用一個圈把一些圖畫圈在裡面,這就是孩子最初所接觸到集合雛形,也是第一次對小學生滲透這種集合思想。在以後後的教學中慢慢體現並集、差集、空集等思想。極限思想——我國古代就對極限思想的思考,古代傑出的數學家劉徽的「割圓術」就是利用極奶子思想的典型。極限思想是研究變數在無限變化中的變化趨勢的思想,運用這一思想,人們的思維可以從有限空間向無限空間,從靜態向動態發展,從具體到抽象升華。統計思想——小學數學中的統計思想主要體現在:簡單的數據整理和求平均數,簡單的統計表和統計圖,學生在會整理、製表、作圖的同時要能從數據、圖表中發現數學問題和數學信息,得出相關的結論。、假設思想——是先對題目標中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。比較思想——是數學教學中常見的思想方法之一,也是促進學生思維發展的手段。
在數學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快找到解題途徑。類比思想——是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊行面積公式和三角形面積公式。這種思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
轉化思想——是一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到。
分類思想——體現對數學對象的分類及其分類的標准如自然數的分類,三角形按邊分按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。
數形結合思想——數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的幫助分析數量關系。代換思想——他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
可逆相思——它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題的方法,有時可以代線段圖逆推。如:一輛汽車從甲地開往乙地,第一小時行了1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
化歸思想方法——把有可能解決或示解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。
變中抓不變的思想方法——在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解,如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?
數學模型的思想方法——是對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析等過程,得到簡化和假設,它是生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
這些數學思想方法是數學的本質之所在、是數學的精髓,只有方法的掌握、思想的形成,才能使學生受益終生。下面我們就結合自己對數學思想方法的學習與實踐,與大家一起交流。三、讓課堂彰顯思想的魅力首先說說備課:備課時要研讀教材、明確目標、設計預案,充分挖掘數學思想方法如果課前教師對教材內容的教學適合滲透哪些思想方法一無所知,那麼課堂教學就不可能有的放矢。
因此我們在備課時,不應只見直接寫在教材上的數學基礎知識與技能,而是要進一步鑽研教材,創造性地使用教材,挖掘隱含在教材中的數學思想方法,並在教學目標中明確寫出滲透哪些數學思想方法,並設計數學活動落實在教學預設的各個環節中,實現數學思想方法有機地融合在數學知識的形成過程中。其實,每冊教材都有數學思想方法的滲透,我們每冊選取有代表性的單元。這相對所有教學內容只是冰山一角。為此,我在研讀教材時,常常要多問自己幾個為什麼,將教材的編排思想內化為自己的教學思想,如:怎樣讓學生經歷知識的產生與發展的過程?怎麼樣才能喚起學生進行深層次的數學思考?如何激發學生主動探究新知識的積極性?如何依據教材適時地滲透數學思想方法等等。只有我自己做到胸有成竹,方能給學生滲透相應的數學思想。2上課:創設情境、建立模型、解釋應用,滲透數學思想方法數學是知識與思想方法的有機結合,沒有不包含數學思想方法的數學知識,也沒有游離於數學知識之外的數學思想方法。這就要求教師在課堂教學中,在揭示數學知識的形成過程中滲透數學思想方法,在教給學生數學知識的同時,也獲得數學思想方法上的點化。教師積極地在課堂中滲透數學思想方法,體現了教師在教學中的大智慧,也為學生的學習開辟了一個廣闊的新天地。不同的教學內容,不同的課型,可據其不同特點,恰當地滲透數學思想方法。
以下面三種課型為例。①新授課:探索知識的發生與形成,滲透數學思想方法如在《三角形分類》一課中,教師給學生提供了三角形學具先放手讓學生在小組合作中嘗試對三角形進行分類,學生從關注三角形的角與邊的特徵入手,藉助學具看一看、比一比、量一量、分一分、想一想,尋找特徵、抽象共性,在比較中將具有相同特徵的三角形歸為一類,在分類中抽象出圖形的共同特徵。這樣的教學,學生經歷了三角形分類的過程,滲透了分類、集合的思想,豐富了分類活動的經驗,形成分類的基本策略,發展了歸納能力。在數學教學中,解題是最基本的活動形式。任何一個問題,從提出直到解決,需要具體的數學知識,但的是依靠數學思想方法。因此,在數學問題的探究發現過程中,要精心挖掘數學的思想方法。如我在教學三年級「植樹問題」時,首先呈現:在一條100米長的路的一側,如果兩端都種,每2米種一棵,能種幾棵?面對這一挑戰性的問題,學生紛紛猜測,有的說種50棵,有的說種51棵。到底有幾棵?我們能否從「種2、3棵……」出發,先來找一找其中的規律呢?隨著問題的拋出,學生陷入了沉思。如果把你們的一隻手5指叉開看作5棵樹,每兩棵樹之間就有一個「間隔」(板書),一共有幾個間隔?學生若有所思地回答是4個。如果種6棵、7棵……,棵數與間隔的個數有怎樣的關系呢?於是我啟發學生通過動手擺一擺、畫一畫、議一議,發現了在兩端都種時棵數和間隔數之間的數量關系(棵數=間隔數+1),順利地解決了上述問題。然後又將問題改為「只種一端、兩端不種時分別種幾棵」,學生運用同樣的方法興趣盎然地找到了答案。以上問題解決過程給學生傳達這樣一種策略:當遇到復雜問題時,不妨退到簡單問題,然後從簡單問題的研究中找到規律,最終來解決復雜問題。通過這樣的解題活動,滲透了探索歸納、數學建模的思想方法,使學生感受到思想方法在問題解決中的重要作用。因此,教師對數學問題的設計應從數學思想方法的角度加以考慮,盡量安排一些有助於加深學生對數學思想方法體驗的問題,並注意在解決問題之後引導學生進行交流,深化對解題方法的認識。②練習課:經歷知識的鞏固與應用,滲透數學思想方法數學知識的鞏固,技能的形成,智力的開發,能力的培養等需要適量的練習才能實現。練習課的練習不同於新授課的練習,新授課中的練習主要是為了鞏固剛學過的新知,習題側重於知識方面;而練習課中的練習則是為了在形成技能的基礎上向能力轉化,提高學生運用知識解決實際問題的能力,發展學生的思維能力。因此教師要有數學思想方法教學意識,在練習課的教學中不僅要有具體知識、技能訓練的要求,而且要有明確的數學思想方法的教學要求。例如在《6的乘法口訣》練習課中,學生在完成想一想、算一算的練習中,先讓學生計算,再通過交流自己的演算法,以「7×6+6」為例,藉助圖片用課件演示來理解式子的意義,運用數形結合啟發將式子轉化為8×6來計算,滲透變換的思想,懂得兩個式子形式雖不同,表示的意義以及結果是相同的。又如讓學生算一算每個圖中各有多少個格子,之後教師要啟發學生怎樣將圖形轉化成同第一個圖形那樣的圖形,可以直接用口訣計算?學生通過實際操作,動手剪一剪、拼一拼,轉化成長方形後分別用6×3、4×3來計算,從而感受到轉化思想的魅力。「咱們要教給孩子們什麼?」「數學的學習主要是學習思想和方法以及解題的策略」,因此我們要在練習的過程中不斷地總結和探索,從中尋找共性,呈現給孩子最有價值、最本質的東西——數學思想方法。如我在教學四年級「看誰算得巧」一課時,學生計算「1100÷25」主要採用了以下幾種方法:①豎式計算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5④1100÷25=11×(100÷25)⑤1100÷25=1100÷100×4⑥1100÷25=1000÷25+100÷25。在學生陳述了各自的運算依據後,引導學生比較上述方法的異同,結果發現方法①是通法,方法②——⑥是巧法。方法②——⑥雖各有千秋,方法③、④、⑥運用了數的分拆,方法②屬等值變換,方法⑤類似於估算中的「補償」策略,但殊途同歸,都是抓住數據特點,運用學過的運算定律、性質轉化為容易計算的問題。學生對各種方法的評價與反思,就是去深究方法背後的數學思想,從而獲得對數學知識和方法的本質把握。
新課程所倡導的「演算法多樣化」的教學理念,就是讓學生在經歷演算法多樣化的學習過程中,通過對演算法的歸納與優化,深究背後的數學思想,最終能靈活運用數學思想方法解決問題,讓數學思想方法逐步深入人心,內化為學生的數學素養。③復習課:學會知識的整理與復習,強化數學思想方法復習有別於新知識的教學。它是在學生基本掌握了一定的數學知識體系、具備了一定的解題經驗,學生基本認識了某些數學思想方法的基礎上的復習數學。數學思想方法總是隱含在數學知識中,它與具體的數學知識結合成一個有機整體,但它卻無法像數學知識那樣編為章節來教學,而是滲透於全部的小學數學知識中。不同章節的數學知識往往蘊含著不同的數學思想方法,有時在一章或一單元的教學中,又涉及很多的數學思想方法。因此教師在上復習課前,教師要能總體把握教材中隱含的思想方法,明確前後知識間的聯系,做到「瞻前顧後」,並把數學思想方法的滲透落實到教學計劃中。復習時,除了幫助學生掌握好知識與技能,形成良好的認知結構外,還必須加強數學思想方法的滲透,適時地對某種數學思想方法進行揭示、概括和強化,對它的名稱、內容及其運用等予以點撥,使學生從數學思想方法的高度把握知識的本質和內在的規律,逐步體會數學思想方法的價值。數學思想方法隨著學生對數學知識的深入理解表現出一定的遞進性。在課堂小結、單元復習和知識運用時,教師要引導學生自覺地檢查自己的思維活動,反思自己是怎樣發現和解決問題的,運用了哪些基本的思想方法等,及時對某種數學思想方法進行概括與提煉,使學生從數學思想方法的高度把握知識的本質,提升課堂教學的價值。如我在教學五年級「平面圖形的面積復習」時,讓學生寫出各種平面圖形(長方形、正方形、平行四邊形、三角形、梯形和菱形)的面積計算公式後提問:這些計算公式是如何推導出來的?每位同學選擇1~2種圖形,利用學具演示推導過程,然後在小組內交流。交流之後我又指出:你能將這些知識整理成知識網路嗎?當學生形成知識網路後(如下圖),再次引導學生將這些平面圖形面積計算。如在復習多邊形的面積推導時,教師可引導學生思考:平行四邊形、三角形、梯形的面積計算公式各是怎樣推導的?有什麼共同點?讓學生提煉概括:學習平行四邊形面積計算時,我們應用割補法把它轉化成學過的長方形來推導;學習三角形和梯形的面積計算時,我們用兩個完全相同的圖形來拼合或把一個圖形割補轉化成學過的圖形來推導……經過系列概括提煉,學生得出其中重要的思想方法——轉化思想。學生一旦掌握了數學思想方法,不僅能使學生的知識結構更完善,還特別有助於今後的學習和運用。因為掌握了數學的思想方法,學生面對新的問題時將懂得怎樣去思考,真正實現質的「飛躍」。(3)作業:掌握知識、形成技能、發展智力,應用數學思想方法精心設計作業也是滲透數學思想方法的一條途徑。把作業設計好,設計一些蘊含數學思想方法的題目,採取有效的練習方式,既鞏固了知識技能,又有機地滲透了數學思想方法,一舉兩得。為此教師布置作業要有講究,在學生作業後,要不失時機地恰當地點評,讓學生不僅鞏固所學知識、習得解題技能,更重要的是能悟出其中的數學規律、數學思想方法。再如一位六年級老師布置了下面這道課後思考題。在作業講評中,教師不僅要給出答案,更重要的是啟發學生思考:你是怎樣算的?是怎麼想的?其中運用了什麼思想方法?結合上圖引導學生概括出其中的思想與方法:類比思想、數學建模思想、極限的思想、數形結合的思想。(4)課外:培養興趣、增長見識、培養能力,提升數學思想方法學校開展數學課外活動是課內教學的重要補充。根據學生的學習水平在年段里開設有關數學思想方法內容的講座,如果平時教學中的數學思想方法的點滴滲透是「美味點心」的話,那麼專題講座對學生來說就是「豐盛大餐」了,學生比較系統地了解了常見的數學思想方法以及應用,拓展學生的眼界;數學思想方法的滲透和數學課外實踐活動相結合可以使二者相得益彰,定期開展數學實踐活動可以發展學生的動手實踐能力和創新意識,發展學生應用數學思想方法解決問題的能力;定期開展數學智力競賽,不但激發優生學習數學的積極性,也考察學生掌握數學思想方法的情況;學生編數學小報、出板報等活動,可以增長學生見識,了解較多相關知識。形式多樣的數學課外活動,使數學思想方法潛移默化,引導學生在學與用中提升了對數學思想方法的認識。

㈧ 談談在初中數學教學中怎樣滲透數學思想和數學方法

所謂數學思想,就是人們對數學知識的本質認識和對數學規律的正確理解,它直接支配著數學的實踐活動.所謂數學方法,就是解決數學問題的根本程序,是數學思想的具體反映.數學思想是數學方法的靈魂,數學方法是數學思想的表現形式和得以實現的手段,人們通常稱之為數學思想方法.\x0d關鍵詞:數學 教學方法 初探\x0d《課程標准》把要求在初中數學教學中滲透的數學思想、方法劃分為三個層次,即「了解」、「理解」和「會應用」.其中要求「了解」的方法有分類法、類比法、反證法等;要求「理解」的或「會應用」的方法有待定系數法、消元法、降次法、配方法、換元法、圖象法等.教師在整個教學過程中,不僅應該使學生能夠領悟到這些數學思想方法的應用,而且要激發學生學習數學思想方法的好奇心和求知慾,促其獨立思考,不斷追求新知,發現、提出、分析並創造性地解決問題.在教學中,要認真把握好「了解」、「理解」、「會應用」這三個層次的不同要求,要注意不能隨意將「了解」的層次提高到「理解」的層次、把「理解」的層次提高到「會應用」的層次,不然的話,學生初次接觸就會感到數學思想、方法抽象難懂、高深莫測,從而挫傷他們的信心.\x0d關於初中數學思想和方法的內涵與外延,目前尚無確切的定義.其實,在初中數學中,許多數學思想和方法是一致的,兩者之間很難分割.它們既相輔相成又相互蘊含,只是方法較具體,是實施有關思想的技術手段,而思想則是屬於數學概念和思維方式一類的東西,比較抽象.因此,在初中數學教學中,加強學生對數學方法的理解和應用,以達到對數學思想的了解,是使數學思想與方法得到交融的有效方法.比如轉化思想,可以說是貫穿於整個初中階段的數學學習,具體表現為從未知到已知的轉化、一般到特殊的轉化、局部與整體的轉化.課本中引入了許多數學方法,比如換元法、消元降次法、圖象法、待定系數法、配方法等.在教學中,要通過對具體數學方法的學習,使學生逐步領悟內含於方法的數學思想;同時,數學思想的指導又深化了數學方法的運用.期刊文章分類查詢,盡在期刊圖書館這樣處置,使「方法」與「思想」相互結合,將創新思維和創新精神寓於教學之中,教學才能卓有成效.\x0d一、滲透「方法」,了解「思想」.由於初中學生數學知識比較貧乏,抽象思維能力也較為薄弱,把數學思想、方法作為一門獨立的課程還缺乏應有的基礎,因而只能以數學知識為載體,把數學思想和方法的教學滲透到數學知識的教學中去.教師要把握好滲透的契機,重視數學概念、公式、定理、法則的提出過程,知識的形成、發展過程,解決問題和規律的探索過程,使學生在這些過程中展開思維,從而發展他們的科學精神和創新意識,形成、獲取新知識,並得到運用新知識解決問題的能力.如果忽視或壓縮了這些過程,一味灌輸知識的結論,就必然失去滲透數學思想、方法的一次次良機.如初中代數課本第一冊《有理數》這一章,與原來教材相比,它少了一節——「有理數大小的比較」,而它的要求則貫穿在整章之中.在數軸教學之後,就引出了「在數軸上表示的兩個數,右邊的數總比左邊的數大」、「正數都大於0,負數都小於0,正數大於一切負數」.而兩個負數比大小的全過程單獨地放在絕對值教學之後解決.教師在教學中應把握住這個逐級滲透的原則,既使這一章節的知識重點突出、難點分散,又向學生滲透了形數結合的思想,學生易於接受.\x0d在滲透數學思想方法的過程中,教師要精心設計、有機結合,要有意識地潛移默化地啟發學生領悟蘊含於數學知識之中的種種數學思想方法,切忌生搬硬套、全盤托出、脫離實際等錯誤做法.比如,教學二次不等式解集時結合二次函數圖象來理解和記憶,總結歸納出解集在「兩根之間」、「兩根之外」,利用形數結合方法,從而比較順利地完成新舊知識的過渡.\x0d二、訓練「方法」,理解「思想」.數學思想的內容是相當豐富的,方法也有難有易,因此,必須分層次地進行滲透和教學.這就需要教師全面熟悉初中三個年級的教材,努力挖掘出教材中有利於進行數學思想、方法滲透的各種因素,對這些數學知識從數學思想方法的角度作認真分析,按照初中三個年級不同的年齡特徵、知識掌握的程度、認知能力、理解能力和可接受性由淺入深、由易到難分層次地貫徹到教學中去.如在教學同底數冪的乘法時,引導學生先研究底數、指數為具體數的同底數冪的運算方法和運算結果,從而歸納出一般方法,在得出用a表示底數,用m、n表示指數的一般法則以後,再要求學生應用一般法則來指導具體的運算.在整個教學過程中,教師既分層次地滲透了歸納和演繹的數學方法又體現了由特殊到一般再由一般到特殊的數學思想,對學生養成良好的思維習慣起到了重要作用.\x0d三、掌握「方法」,運用「思想」.數學知識要經過聽講、復習、做習題等環節才能掌握和鞏固.數學思想、方法的形成同樣有一個循序漸進的過程,只有經過反復訓練才能使學生真正領會.另外,要讓學生形成自覺運用數學思想方法的意識,必須讓學生建立起自我的「數學思想方法系統」,這更需要一個反復訓練、不斷完善、不斷總結的過程.\x0d四、提煉「方法」,完善「思想」.教學中要適時恰當地對數學方法給予提煉和概括,讓學生有明確的印象.由於數學思想、方法分散在各個不同的章節,且同一問題又可以用不同的數學思想、方法來解決,因此,教師的概括、分析是十分重要的.教師還要有意識地培養學生自我提煉、概括數學思想方法的能力,這樣才能把數學思想、方法的教學落在實處.

㈨ 如何在教學中滲透數學思想

如何在教學中滲透數學思想
數學思想方法是解決數學問題所採用的方法。它是數學概念的建立、數學規律的歸納、數學知識的掌握和數學問題解決的基礎。在人的數學研究中,最有用的不僅僅是數學知識,更重要的是數學思想方法。小學數學中常用的數學思想方法有數形結合思想方法、對應思想方法、符號化思想方法、化歸思想方法等。下面我就如何向學生滲透這些數學思想方法分別舉例說明。
1數形結合的數學思想方法。
數和形是數學研究的兩個主要對象,兩者既有區別,又有聯系,互相促進。所謂數形結合的思想方法就是通過具體事實的形象思維過渡到抽象思維的方法。數形的結合是雙向的,一方面,抽象的數學概念、復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化;另一方面,復雜的形體可以用簡單的數量關系表示。用圖解法分析問題就是運用這種方法。我從二年級開始就教學生畫線段圖分析應用題的數量關系。例如《現代小學數學》第三冊的例題:「南庄小學秋季種樹53棵,比春季多種8棵。春季種樹多少棵?」先讓學生找到關健句,弄清誰與誰比,誰多誰少,畫出線段圖:

這樣做學生比較容易找到數量關系,列出正確版式,同時有克服見「多」就「加」,見「少」就「減」的思維定勢。
2對應的思想方法。
對應是人們對兩上集合元素之間的聯系的一種思想方法。為此在教學中,我充分發揮教材優勢,結合教學內容逐步滲透「對應」的數學思想方法。例如《現代小學數學》第一冊的「多和少」,課本先出示散亂排列的等量的茶杯和茶杯蓋圖,接著重新排列整理,使每一個茶杯蓋與每一個茶杯對應,直觀看到「茶杯與茶杯蓋相比,一個對一個,一個也不多,一個也不少」,我們就說茶杯與茶杯蓋同樣多。使學生初步接觸一一對應的思想,初步感知兩個集合的各元素之間能一一對應,它們的數量就是「同樣多」。
3符號化數學思想方法。
數學的一個突出特點是符號加邏輯。而符號化思想是數學信息的載體,能大大簡化運算或推理過程,加快思維的速度,提高學習效率。因此在教學中,要盡量把實際問題用數學符號來表達,還要充分把握每個數學符號所蘊含的豐富內涵和實際意義。例如《現代小學數學》中關於「1」的認識,先讓學生從1架飛機、1棵樹、1個女孩等具體事物中,概括出數字元號「1」,從具體的量到抽象的數。然後再從抽象的數學符號「1」到具體量,讓學生列舉表示「1」的具體事物,1把椅、1頂帽子、1件衣服………。
又如,教學「小於和大於」一課,從左右相等的積木的左端拿一個積森到右端。

這時右邊的積木塊數增多,「=」右邊開口張大;左邊積木數減少,「=」左邊的開口縮小,邊說邊用左手的食指、中指擺成一個小於號,使學生認識小於號。再用同樣的方法認識「大於號」。直觀形象地引導學生掌握表示大小關第的符號,從中滲透符號化數學思想方法。
4「化歸」的數學思想方法。
化歸思想能增長學生智慧與創造能力,是數學中最普遍使用的一種思想方法。即先挖掘內在聯系,把問題A轉化為熟悉的問題B,再通過問題的解決方法去獲得問題A的解。這樣做能把問題化難為易、化生為熟、化繁為簡、化整為零、化曲為直,可以促使學生提高解決問題的速度。
例如第四冊《思維訓練》例1,計算一個乒乓球重多少克?
本題直接求解較難。我從數學思想方法的角度去引導學生將奩、右各種球一一對應進行比較:
得出:左右兩圖的足球、羽毛球的個數相等,乒乓球個數不等,右圖的乒乓球個數比左圖的多2個,引起右邊重了6克,從而把問題化歸為「兩個乒乓球重6克,一個乒乓球重多少克?」這樣一個非常簡單的算術問題,學生很容易就解決了。
實踐證明,在教學中,如果我們注意從數學思想方法的角度去啟發、引導學生思考,就會使學生對新知識不但能快速學會,而且能加深理解、應用,從而提高解決問題的能力,發展學生的思維能力。

㈩ 如何在初中數學教學中給學生滲透數學思想

所謂數學思想,就是對數學知識和方法的本質認識,是對數學規律的理性認識。所謂數學方法,就是解決數學問題的根本程序,是數學思想的具體反映。數學思想是數學的靈魂,數學方法是數學的行為。運用數學方法解決問題的過程就是感性認識不斷積累的過程,當這種量的積累達到一定程序時就產生了質的飛躍,從而上升為數學思想。若把數學知識看作一幅構思巧妙的藍圖而建築起來的一座宏偉大廈,那麼數學方法相當於建築施工的手段,而這張藍圖就相當於數學思想。
一、了解《大綱》要求,把握教學方法
1.明確基本要求,滲透「層次」教學。《數學大綱》對初中數學中滲透的數學思想、方法劃分為三個層次,即「了解」、「理解」和「會應用」。在教學中,要求學生「了解」數學思想有:數形結合的思想、分類的思想、化歸的思想、類比的思想和函數的思想等。這里需要說明的是,有些數學思想在教學大綱中並沒有明確提出來,比如:化歸思想是滲透在學習新知識和運用新知識解決問題的過程中的,方程(組)的解法中,就貫穿了由「一般化」向「特殊化」轉化的思想方法。教師在教學過程中要激發學生學習數學的好奇心和求知慾,通過獨立思考,不斷追求新知,發現、提出、分析並創造性地解決問題。在教學中,要認真把握好「了解」、「理解」、「會應用」這三個層次。不能隨意將「了解」的層次提高到「理解」的層次,把「理解」的層次提高到「會應用」的層次,否則,學生初次接觸就會感到數學思想、方法抽象難懂,高深莫測,從而導致他們失去信心。
2.從「方法」了解「思想」,用「思想」指導「方法」。在初中數學中,許多數學思想和方法是一致的,兩者之間很難分割。它們既相輔相成,又相互蘊含。因此,在初中數學教學中,加強學生對數學方法的理解和應用,以達到對數學思想的了解,是使數學思想與方法得到交融的有效方法。比如化歸思想,可以說是貫穿於整個初中階段的數學,具體表現為從未知到已知的轉化、一般到特殊的轉化、局部與整體的轉化,課本引入了許多數學方法,在教學中,通過對具體數學方法的學習,使學生逐步領略這些數學思想;同時,數學思想的指導,又深化了數學方法的運用。這樣處置,使「方法」與「思想」珠聯璧合,將創新思維和創新精神寓於教學之中,教學才能卓有成效。
二、滲透數學思想和方法的原則
1.循序漸進,螺旋上升的原則。
學生對學習數學、數學思想和方法的領會、掌握具有一個「從特殊到一般,從具體到抽象,從感性到理性,從低級到高級」的認識過程。學生對某一思想和方法首先是產生感性認識,經過多次反復練習,然後逐漸概括上升為理性認識,最後在對數學知識的掌握中,對形成的數學思想和方法進行驗證和發展,進一步通過用數學知識解決問題從而加深理性認識。
2.堅持鑽研教材,層次滲透的原則。《數學大綱》對初中數學中滲透的數學思想和方法劃分為三個層次,即「了解「」理解」和「會應用」。要認真把握好「了解」「理解「」會應用」這三個層次。滲透層次數學教學思想和方法常常蘊含於教材之中,在熟悉教材、鑽研教材的基礎上去領悟隱含於教材字里行間的數學思想和方法。如初一「用字母表示數的變元思想」方程思想,從數到式的過渡,是由特殊到一般,由具體到抽象的飛躍。
三、在展現數學知識的形成與應用過程中,提煉數學思想方法
數學知識發生的過程也是其思想方法產生的過程。在此過程中,向學生提供豐富的、典型的、正確的直觀背景材料,採取「問題情境—建立模型—解釋、應用與拓展」的模式,通過對相關問題情境的研究為有效切入點,對知識發生過程的展示,使學生的思維和經驗全部投入到接受問題、分析問題和感悟思想方法的挑戰之中,並在此過程中領會如數感、符號感、空間觀念、統計觀念、應用意識和推理能力等數學思想方法。
四、有計劃、有目的、有組織地上好思想方法訓練課
小結課、復習課是系統知識,深化知識,使知識內化的最佳課型,也是滲透數學思想方法的最佳時機,通過對所學知識系統整理,挖掘提煉解題指導思想,歸納總結上升到思想方法的高度,掌握本質,揭示規律。初中數學中有許多體現「分類討論」思想的知識和技能。如:(1)實數的分類;(2)按角的大小和邊的關系對三角形進行分類;(3)求任意實數的絕對值分大於零、等於零、小於零三種情況討論;(4)把兩個三角形的形狀、大小關系揭示得較為清楚的方法,是把兩個三角形分為相似與不相似兩大類;……所有這些,充分體現了分類討論的思想方法,有利於學生認識物質世界事物之間的聯系與區別。
數學思想和方法是數學問題的本質反映,追求的是「授人以漁」。在課堂教學中滲透數學思想和方法,更新數學教學觀念,不僅能使學生理解問題的本質,而且可以幫助學生通過數學思想方法的遷移去認識教材以外的數學問題的本質特徵,豐富學生的思維世界,使學生成為有創造能力、可持續發展的新時代人才。

閱讀全文

與滲透數學思想屬於什麼教學相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1422
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1004
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071