導航:首頁 > 數字科學 > 數學有哪些問題

數學有哪些問題

發布時間:2022-01-31 07:29:16

『壹』 數學上有哪些存在的問題

高考導數壓軸題有很多,可以看看。

『貳』 哪些有數學問題

您可以前往書店或文具店購買相關數學書,或直接在網上查找數學問題
現在有世界三大數學猜想,即費馬猜想、四色猜想和哥德巴赫猜想。

『叄』 生活中存在哪些數學問題

現實生活中存在大量的數學問題,老師可以結合教學內容的特點將其引入課堂。如:我從生活中全家的休息日入手設計了這樣一個生活情境:「5月份,圓圓的爸爸隔三天休息一天,媽媽每隔一天休息一天,圓圓周六、周日休息。三人要一走去看望外婆,選擇哪些日子比較合適?」學生對這樣的數學問題倍感親切,因而興趣大增,紛紛主動尋求答案。這時教師可以提議與學生一起玩塗色游戲,把爸爸、媽媽和圓圓的休息日塗上不同的顏色。在塗色的過程中,學生發現一些特殊的日子塗上了兩種顏色,甚至有些日子塗上了三種顏色。強烈的好奇心和求知慾促使學生去思考和探索。通過觀察,學生很快找出原因所在,原來這些特殊的日子是他們其中兩個人或三個人的共同休息日。由共同的休息日就能輕而易舉的引出「公倍數」這一數學問題。看似深奧的道理,就這樣春風化雨般的慢慢融入了學生的心中,更重要的是使學生感受到數學來自生活實際。
望採納,謝謝啦。

『肆』 小學數學教學中常出現哪些問題

一、學生學習積極性的問題
現在的學生在課堂內外主動學習的能動性差,課堂上老師怎麼說,他就怎麼做,一旦離開了教室,知識就拋之腦後。這樣的學習不僅效率低,而且師生雙方都容易產生教學疲勞。或許有的教室懂得通過一些笑話、情境來提高學生的學習興趣,但這也不是長久之計,久而久之學生也會習慣,甚至專注於此而忘記學習本身。這樣的問題屢見不鮮,也是大多數老師所困惑的地方。
二、教師教學理念上的問題
許多老一輩教師,教了幾十年書,用的同一套方法,也許曾出過優秀的學生,但在如今,卻很有可能是行不通的。他們的教學手段相對陳舊,教學方式也很封閉,甚至仍有教師使用「填鴨式」教學,這與課改初衷相悖,也不適用於現代全面的素質教學。又或許有的教師是給出題目讓學生自己求答案,自己動腦解決問題,但從本質上來說,這並沒有改變一個思路上的桎梏,學生依然是按著老師的路子來走,這樣的教學是走不出發散性、創新性思維的。
三、學習過程中「會學不會做」的問題
老師講的時候明白,一旦換一種形式就不會做了,這樣的問題是普遍存在的。相信很多教師都面臨過這樣的煩心事,明明自己在課堂上講的十分清楚,卻偏偏有一些學生在課後練習的時候面對題目無從下筆。這樣的問題有學生反映過,也有老師專門思考過,但真正碰到的時候,往往就讓人感到棘手。究竟該如何讓學生既能聽懂,又能舉一反三,學會做題呢?
四、「優差生」分級造成的問題
有的班上同學成績好,有的成績差。分數的差異造成了學生之間分成兩派——「優等生」和「差等生」。這也是許多教師所默認的,認為「優等生」就該聚在一起討論學習,而「差等生」則隨便教教就算了,千萬不要影響了「優等生」。
這樣的分化是扭曲、錯誤的。新課改的教學實踐中,教師以及學生是一個整體,相互之間都不存在著優和差的隔閡,課堂上師生平等,教學上民主同思,才是能使教師與學生相互受益的良好氛圍。

『伍』 生活中有哪些有趣的數學問題

還是比較多的。
1烙餅問題:媽媽烙一張餅用兩分鍾,烙正、反面各用一分鍾,鍋里最多同時放兩張餅,那麼烙三張餅最少用幾分鍾?
2.襪子問題,抽屜里有5雙不同顏色的襪子,沒開燈,要拿出一雙同色的襪子,從中最多需要摸出多少只?
3.雞蛋問題:小張賣雞蛋,一籃雞蛋,第一個人來買走一半,
再送他一個。第二個人又買走一半,小張又送他一個雞蛋。第三個人又買一半的雞蛋,小張再送他一個。第四個人來買一半,小張再送他一個,雞蛋正好買完!小張總共有幾個雞蛋?
4桌子問題,一張方桌,砍掉一個角還有幾個角?
5.切豆腐問題: 一塊豆腐切三刀,最多能切幾塊
6切西瓜問題:三刀切7瓣,吃完剩下8塊皮,怎麼切?
7.竹竿問題:5米長的竹竿能不能通過一米高的門?
8,紙盒問題:邊長一米的方盒子能不能放下1.5米的木棍?
9.時鍾問題:12小時,時鍾和分針重復多少次?
10.折紙問題:一張1毫米厚的紙,對折1000次,厚度有多高?
……

『陸』 小學數學解決問題有哪些

手腦並用是提高創新意識的有效方法。學生的實際動手能力是衡量人才的重要重要指標,是從小學會學習、學會生活的重要內容。在教學中,可以引導學生利用實際操作這項活動來幫助學生掌握知識,具有創造性、開拓性。符合國家關於活動課開設的目的和意義。有利於數學教學的輔助過程,有利於創新能力的培養。在教學活動中,教師要注重提供各種機會讓學生參與活動,使學生在參與過程中掌握方法,促進思維的發展。教學中,經常設置一些懸念性的問題,鼓勵學生探索,喚起學生創新意識,改變教師的主體。學生的創新潛能得到挖掘,逐步形成創新能力。
優化教學模式,深化創新意識培養:傳統意義上教學的幾個重要的環節一般是:導入新課—新授—鞏固練習—布置作業。經過多年的改進,形式雖然有變化,但實質卻沒有什麼改動。其實,課堂不必套用這個模式,對小學來說,一本正經的像對成人那樣傳授知識,未免太呆板了些。活動教學、游戲教學、發現教學、探究教學、數學建模教學、競賽教學,根據不同的教學內容,都是可以採取的。比如:導入這一環節,完全可以用昀新的教學詞彙—創設情境來表示和演繹,情境是教師和學生共同面對的,它必然會起到導入的作用,但更重要的是面對著一個問題,藉以引起學生的興趣,激發學生的求知慾望,培養尋求解決問題的不同方法的意識。再比如:新授這一環節,完全可以改成探索與討論,而鞏固環節可以換成實踐與反思等等,這些改變並不是換換詞語那樣簡單,更重要的是教學觀念的改變與教學方式的更新,通過這些改變增強學生的主動性,從而更好的提高學生創新意識。
3
小學數學方法二
動手操作的策略:例如:教學四年級下冊第五單元《三角形》中《三角形邊的關系》時,我讓學生自己探索任意三根小棒能否圍成三角形,先猜想,再讓學生動手操作試圍,驗證自己的猜想。實驗結果有所不同,這樣使學生在具體的操作過程中產生思維沖突,從而提出數學問題「為什麼有的能圍成,有的圍不成呢?」,有效地激發了學生進一步探究的慾望,在進一步的探索交流中得出結論,即較短兩條邊的和等於或小於第三邊時不能圍成三角形,只有較短兩邊的和大於第三邊時才能圍成三角形。
再如:教學《三角形的內角和》一課時,根據學生已有的知識經驗和生活經驗,課前有一部分學生就能說出三角形內角和是180°這一知識點。但是如何讓學生明白為什麼三角形的內角和是180°,而不是僅僅知道這個結論而已。教學中我引導學生通過量一量、算一算、剪一剪、拼一拼、折一折等一系列操作活動,找到了幾種驗證三角形內角和是180°的方法,學生通過動手操作,自主探究得出結論後,體驗到了成功的喜悅。還有我在教《梯形的面積》時,引導學生探究「怎樣計算梯形的面積?」這一問題時,我給學生提供了硬紙片的梯形學具,把實際操作策略的選擇權留給學生,學生將這個問題轉化為一個已知的問題進行推導研究。學生在自主探索實現操作策略的多樣化:有的學生將它剪為兩個三角形;有的通過割、補將它轉化為長方形;或者把兩個完全一樣的梯形拼成一個平行四邊形。這種開放性的操作策略,不僅有可能獲得問題解決,而且還能培養學生的創造性思維。

『柒』 數學問題有哪些分類

植樹問題 高斯問題 找規律 路程問題 流水問題 百分比問題 進制問題 抽屜問題 統計學 立體 幾何代數 解析幾何 數獨 進制

『捌』 數學有哪些未解難題

美國麻州的克雷(Clay)數學研究所於2000年5月24日在巴黎法蘭西學院宣布了一件被媒體炒得火熱的大事:對七個「千僖年數學難題」的每一個懸賞一百萬美元。以下是這七個難題的簡單介紹。
「千僖難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題

在一個周六的晚上,你參加了一個盛大的晚會。由於感到局促不安,你想知道這一大廳中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鍾,你就能向那裡掃視,並且發現你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因子分解為3607乘上3803,那麼你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克(StephenCook)於1971年陳述的。

「千僖難題」之二: 霍奇(Hodge)猜想

二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導至一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。

「千僖難題」之三: 龐加萊(Poincare)猜想

如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。

「千僖難題」之四: 黎曼(Riemann)假設

有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。

「千僖難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口

量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。盡管如此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。

「千僖難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性

起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。

「千僖難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想

數學家總是被諸如x^2+y^2=z^2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇(Yu.V.Matiyasevich)指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方法是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。特別是,這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解),相反,如果z(1)不等於0,那麼只存在有限多個這樣的點。

試試吧,說不定你就是下一個天才。

閱讀全文

與數學有哪些問題相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:701
乙酸乙酯化學式怎麼算 瀏覽:1369
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1007
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1366
中考初中地理如何補 瀏覽:1256
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:668
數學奧數卡怎麼辦 瀏覽:1347
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1445
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:818
武大的分析化學怎麼樣 瀏覽:1209
ige電化學發光偏高怎麼辦 瀏覽:1299
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1385
化學理學哪些專業好 瀏覽:1449
數學中的棱的意思是什麼 瀏覽:1015