① 高中數學巜平面解析幾何》有哪些內容
高中平面幾何是高考的重要內容之一,包括直線方程,直線與直線的位置關系,圓的標准方程,直線與圓的位置關系,圓與圓的位置關系,橢圓的標准方程極其幾何性質,雙曲線的標准方程及其幾何性質,拋物線的標准方程及其幾何性質,在高考中所佔分值較大,17分一i上,希望我的回答對您有幫助
② 幫忙總結高中數學所需初中平面幾何的定理、公式、知識點(簡單,常用,不很常見)
基本概念
公理1:如果一條直線上的兩點在一個平面內,那麼這條直線上的所有的點都在這個平面內。
公理2:如果兩個平面有一個公共點,那麼它們有且只有一條通過這個點的公共直線。
公理3: 過不在同一條直線上的三個點,有且只有一個平面。
推論1: 經過一條直線和這條直線外一點,有且只有一個平面。
推論2:經過兩條相交直線,有且只有一個平面。
推論3:經過兩條平行直線,有且只有一個平面。
公理4 :平行於同一條直線的兩條直線互相平行。
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行並且方向相同,那麼這兩個角相等。
空間兩直線的位置關系:空間兩條直線只有三種位置關系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面: 平行、 相交
(2)異面:
異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。
兩異面直線所成的角:范圍為 ( 0°,90° ) esp.空間向量法
兩異面直線間距離: 公垂線段(有且只有一條) esp.空間向量法
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;(2)沒有公共點—— 平行或異面
直線和平面的位置關系: 直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行
①直線在平面內——有無數個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
esp.空間向量法(找平面的法向量)
規定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角
由此得直線和平面所成角的取值范圍為 [0°,90°]
最小角定理: 斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角
三垂線定理及逆定理: 如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那麼它也與這條斜線垂直
esp.直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面 內的任意一條直線都垂直,我們就說直線a和平面 互相垂直.直線a叫做平面 的垂線,平面 叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直於這個平面。
直線與平面垂直的性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那麼我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那麼這條直線和這個平面平行。
直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。
兩個平面的位置關系:
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關系:
兩個平面平行-----沒有公共點; 兩個平面相交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那麼交線平行。
b、相交
二面角
(1) 半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2) 二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為 [0°,180°]
(3) 二面角的棱:這一條直線叫做二面角的棱。
(4) 二面角的面:這兩個半平面叫做二面角的面。
(5) 二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6) 直二面角:平面角是直角的二面角叫做直二面角。
esp. 兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為 ⊥
兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直
兩個平面垂直的性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於交線的直線垂直於另一個平面。
Attention:
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)
多面體
稜柱
稜柱的定義:有兩個面互相平行,其餘各面都是四邊形,並且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做稜柱。
稜柱的性質
(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行於底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形
棱錐
棱錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質:
(1) 側棱交於一點。側面都是三角形
(2) 平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的棱錐的高與遠棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3) 多個特殊的直角三角形
esp: a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
Attention:
1、 注意建立空間直角坐標系
2、 空間向量也可在無坐標系的情況下應用
多面體歐拉公式:V(角)+F(面)-E(棱)=2
正多面體只有五種:正四、六、八、十二、二十面體。
球
attention:
1、 球與球面積的區別
2、 經度(面面角)與緯度(線面角)
3、 球的表面積及體積公式
4、 球內兩平行平面間距離的多解性
③ 高中數學中哪些知識點屬於平面幾何部分
對於初中的定理要精通。
一·三角形全等以及題型應用,
二·三角形相似以及題型應用,
三·多邊形的性質,
四·圓的內接三角形以及內接多邊形的性質,
五·圓的切割線定理,
六·明白三角形的重心、內心、外心、旁心、垂心等定義及應用,
④ 高中數學聯賽平面幾何定理和知識
塞瓦定理,梅涅勞斯定理,托密勒定理,西姆松定理,布須萊德爾公式
⑤ 初中數學幾何知識點
1.過兩點有且只有一條直線
2.兩點之間線段最短
3.同角或等角的補角相等
4.同角或等角的餘角相等
5.過一點有且只有一條直線和已知直線垂直
⑥ 高中數學幾何公理,定理。全部
13.平行四邊形的判定與性質:
平行四邊形的定義:兩組對邊分別平行的四邊形是平行四邊形。
平行四邊形的性質:
(1)平行四邊形的對邊相等;
(2)平行四邊形的對角相等;
(3)平行四邊形的對角線互相平分;
(4)平行線之間的距離處處相等。
平行四邊形的判定:
(1)一組對邊平行且相等的四邊形是平行四邊形;
(2)對角線互相平分的四邊形是平行四邊形;
(3)兩組對角分別相等的四邊形是平行四邊形;
(4)兩組對邊分別相等的四邊形是平行四邊形
⑦ 初中數學必學的幾何模型有哪些
幾何圖形有:正方形、長方形、三角形、四邊形、平行四邊形、菱形、梯形、圓、扇形、弓形、圓環、立方體、長方體、圓柱、圓台、稜柱、稜台、圓錐、棱錐。
1、正方形
四條邊都相等、四個角都是直角的四邊形是正方形。正方形的兩組對邊分別平行,四條邊都相等;四個角都是90°;對角線互相垂直、平分且相等,每條對角線都平分一組對角。
2、三角形
常見的三角形按邊分有普通三角形(三條邊都不相等),等腰三角(腰與底不等的等腰三角形、腰與底相等的等腰三角形即等邊三角形);按角分有直角三角形、銳角三角形、鈍角三角形等,其中銳角三角形和鈍角三角形統稱斜三角形。
3、圓
圓是一種幾何圖形。根據定義,通常用圓規來畫圓。 同圓內圓的直徑、半徑長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。
對稱軸是直徑所在的直線。 同時,圓又是「正無限多邊形」,而「無限」只是一個概念。當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。所以,世界上沒有真正的圓,圓實際上只是概念性的圖形。
4、立方體
立方體,也稱正方體,是由6個正方形面組成的正多面體,故又稱正六面體。它有12條邊和8個頂點。其中正方體是特殊的長方體。
5、稜柱
稜柱是幾何學中的一種常見的三維多面體,指兩個平行的平面被三個或以上的平面所垂直截得的封閉幾何體。
若用於截平行平面的平面數為n,那麼該稜柱便稱為n-稜柱。如三稜柱就是由兩個平行的平面被三個平面所垂直截得的封閉幾何體。
⑧ 平面幾何知識點初中
平面幾何知識點匯總(一)
知識點一 相交線和平行線
1.定理與性質
對頂角的性質:對頂角相等。
2.垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
3.平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
4.平行線的性質:
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
5.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內錯角相等,兩直線平行。
判定3:同旁內角相等,兩直線平行。
知識點二 三角形
一、三角形相關概念
1.三角形的概念 由不在同一直線上的三條線段首尾順次連結所組成的圖形叫做三角形
要點:①三條線段;②不在同一直線上;③首尾順次相接.
2.三角形中的三種重要線段
(1)三角形的角平分線:三角形一個角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.
(2)三角形的中線:在一個三角形中,連結一個頂點和它的對邊中點的線段叫做三角形的中線.
(3)三角形的高線:從三角形一個頂點向它的對邊作垂線,頂點和垂足間的限度叫做三角形的高線,簡稱三角形的高.
二、三角形三邊關系定理
①三角形兩邊之和大於第三邊,故同時滿足△ABC三邊長a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形兩邊之差小於第三邊,故同時滿足△ABC三邊長a、b、c的不等式有:a>b-c,b>a-c,c>b-a.
注意:判定這三條線段能否構成一個三角形,只需看兩條較短的線段的長度之和是否大於第三條線段即可
三、三角形的穩定性
三角形的三邊確定了,那麼它的形狀、大小都確定了,三角形的這個性質就叫做三角形的穩定性.例如起重機的支架採用三角形結構就是這個道理.
四、三角形的內角
結論1:三角形的內角和為180°.表示: 在△ABC中,∠A+∠B+∠C=180°
結論2:在直角三角形中,兩個銳角互余.
注意:①在三角形中,已知兩個內角可以求出第三個內角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三個內角和的比或它們之間的關系,求各內角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度數.
五、三角形的外角
1.意義:三角形一邊與另一邊的延長線組成的角叫做三角形的外角.
2.性質:
①三角形的一個外角等於與它不相鄰的兩個內角的和.
②三角形的一個外角大於與它不相鄰的任何一個內角.
③三角形的一個外角與與之相鄰的內角互補
六、多邊形
①多邊形的對角線條對角線;②n邊形的內角和為(n-2)×180°;③多邊形的外角和為360°
知識點三 全等三角形
一、全等三角形
1、「全等」的理解 全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;
即能夠完全重合的兩個圖形叫全等形。同樣我們把能夠完全重合的兩個三角形叫做全等三角形。
2、全等三角形的性質
(1)全等三角形對應邊相等;(2)全等三角形對應角相等;
3、全等三角形的判定方法
(1)三邊對應相等的兩個三角形全等。(SSS)
(2)兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)
(3)兩角和其中一角的對邊對應相等的兩個三角形全等。(AAS)
(4)兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)
(5)斜邊和一條直角邊對應相等的兩個直角三角形全等。(HL)
4、角平分線的性質及判定
性質:角平分線上的點到這個角的兩邊的距離相等
判定:到一個角的兩邊距離相等的點在這個角平分線上
二、軸對稱圖形
(一)基本定義
1.軸對稱圖形
如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就叫做對稱軸.折疊後重合的點是對應點,叫做對稱點.
2.線段的垂直平分線
經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線
3.軸對稱變換
由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換.
4.等腰三角形
有兩條邊相等的三角形,叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
5.等邊三角形
三條邊都相等的三角形叫做等邊三角形.
(二)性質
1.如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連線段的垂直平分線.或者說軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線.
2.線段垂直平分錢的性質
線段垂直平分線上的點與這條線段兩個端點的距離相等.
3.(1)點P(x,y)關於x軸對稱的點的坐標為P′(x,-y).
(2)點P(x,y)關於y軸對稱的點的坐標為P″(-x,y).
4.等腰三角形的性質
(1)等腰三角形的兩個底角相等(簡稱「等邊對等角」).
(2)等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.
(3)等腰三角形是軸對稱圖形,底邊上的中線(頂角平分線、底邊上的高)所在直線就是它的對稱軸.
(4)等腰三角形兩腰上的高、中線分別相等,兩底角的平分線也相等.
(5)等腰三角形一腰上的高與底邊的夾角是頂角的一半。
(6)等腰三角形頂角的外角平分線平行於這個三角形的底邊.
5.等邊三角形的性質
(1)等邊三角形的三個內角都相等,並且每一個角都等於60°.
(2)等邊三角形是軸對稱圖形,共有三條對稱軸.
(3)等邊三角形每邊上的中線、高和該邊所對內角的平分線互相重合.
(三)有關判定
1.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.
2.如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(簡寫成「等角對等邊」).
3.三個角都相等的三角形是等邊三角形.
4.有一個角是60°的等腰三角形是等邊三角形.
知識點四 勾股定理
1、勾股定理定義:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼
a2+b2=c2. 即直角三角形兩直角邊的平方和等於斜邊的平方
勾:直角三角形較短的直角邊
股:直角三角形較長的直角邊
弦:斜邊
勾股定理的逆定理:如果三角形的三邊長a,b,c有下面關系:a2+b2=c2,那麼這個三角形是直角三角形。
2. 勾股數:滿足a2+b2=c2的三個正整數叫做勾股數(注意:若a,b,c、為勾股數,那麼ka,kb,kc同樣也是勾股數組。)
*附:常見勾股數:3,4,5; 6,8,10; 9,12,15; 5,12,13
3. 判斷直角三角形:如果三角形的三邊長a、b、c滿足a2+b2=c2 ,那麼這個三角形是直角三角形。(經典直角三角形:勾三、股四、弦五)
⑨ 初中數學的幾何有哪些內容
幾何主要有以下幾點:1,識別各種平面圖形和立體圖形,這你應該非常熟悉。2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。