1. 在數學中,每個字母分別代表什麼意思
周長c,環繞有限面積的區域邊緣的長度積分,叫做周長,也就是圖形一周的長度。多邊形的周長的長度也相等於圖形所有邊的和,圓的周長=πd=2πr (d為直徑,r為半徑,π),扇形的周長 = 2R+nπR÷180˚ (n=圓心角角度) = 2R+kR (k=弧度)。
面積s。當物體占據的空間是二維空間時,所佔空間的大小叫做該物體的面積,面積可以是平面的也可以是曲面的。平方米,平方分米,平方厘米,是公認的面積單位,用字母可以表示為(m²,dm²,cm²)。
面積是表示平面中二維圖形或形狀或平面層的程度的數量。表面積是三維物體的二維表面上的模擬物。面積可以理解為具有給定厚度的材料的量,面積是形成形狀的模型所必需的。
(1)數學的代表意思是什麼意思是什麼意思是什麼擴展閱讀:
面積平分線
對三角形面積進行平分的線條無窮無盡。 其中三個是三角形的中位數(將兩邊的中點連接到相反的頂點),並且它們在三角形的重心處並發;
事實上,他們是唯一通過重心的面積平分線。 通過三角形將三角形面積和周邊分成兩半的任何線條都可以穿過三角形的入口(其圓周的中心)。 對於任何給定的三角形,它們中有一個,兩個或三個。
任何通過平行四邊形中點的線將該面積平分。圓或其他橢圓的所有面積平分線穿過中心,任何通過中心的和弦將面積平分。 在圓的情況下,它們是圓的直徑。
參考資料來源:網路-周長
參考資料來源:網路-面積
2. !!在數學中表示什麼意思
「*」在數學中是乘號的意思。
有時計算機里沒有「x」這個符號,就用「*」來代替乘號,所以在在數學中看到「*",就是乘號的意思。
"*"在你的問題這里是定義的一種運算符號,根據你的表述可能出現兩種情況:
(1)P*Q=(P+Q)/2就表示規定"*"的運算就是求P,Q這兩個數的平均數;
(2)P*Q=(P/2)+Q就表示規定的"*"運算是P的一半與Q的和。
(2)數學的代表意思是什麼意思是什麼意思是什麼擴展閱讀:
以「·」表示乘法的用法相當流行,現今歐洲大陸派(德、法等國)規定以「·」作乘號。其他國家則以「×」 作乘號,「·」為小數點。而我國則規定以「×」或「·」作乘號都可,一般於字母或括弧前的乘號可略去。
由於這個符號的輸入不太方便,故此在日常溝通時一般用英文字母 「x」代之。在HTML和XHTML上,則可以輸入×、×或×這實體參引。
3. 數學的所有字母含義是什麼意思
【數字】a,b,c,d,……一般表示已知量,t,u,v,w,x,y,z一般表示未知量;
i,j,k,m,n常用來表示正整數。
【特殊常數】π為圓周率,e為自然指數函數或自然對數函數底。
【數值關系】>大於,≥大於或等於,<小於,≤小於或等於,=等於,≡恆等於,≠不等於,≈約等於。
【數列】{a(n)}表示數列,S(n)表示數列的前n項的和,d表示公差,q表示公比。
【排列組合】!階乘(n!=1*2*3*……*n),P(n,m)排列【=n!/(n-m)!],C(n,m)組合[n!/[(n-m)!m!]】
【集合】a元素,A集合,a∈A
<===>
a是A的一個元素,Φ空集,
兩個集合的並集(∪),交集(∩),∈屬於,∉不屬於。
各種特殊集合(實數、整數、正數,負數,有理數……不一一列舉)。
【幾何】∥平行,⊥垂直,⌒弧,~相似,≌全等。
【函數】sin,cos,tan,cot,sec,csc,arcsin,arcos,arctan,arccot,
lg,log,ln,
【角(弧度)】α,β,γ,θ,φ,ψ,
【運動學】直線運動:路程s,時間t,速度v,加速度a.多數情況下:
圓周運動:轉角θ,時間t,角速度ω(數學上稱圓頻率),周期T=2π/ω。
【物理:電,磁,力,光,熱,……】從略
【化學元素】從略。
根號(
),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。
4. 數學中都有哪些符號都代表什麼意思
∈是集合中的符號,表示屬於關系,A∈B,表示集合A中的元素都在集合B的裡面。tan是三角函數的符號,代表正切。
5. 數學中R,Z,N,Q都代表什麼意思
R:實數集合(包括有理數和無理數);Z:整數集合{…,-1,0,1,…};N表示非負整數集;Q表示有理數集。
其他表示:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Q+:正有理數集合
Q-:負有理數集合
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
(5)數學的代表意思是什麼意思是什麼意思是什麼擴展閱讀:
集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義。
即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。現代的集合一般被定義為:由一個或多個確定的元素所構成的整體 。
6. 數學定義是什麼意思
數學定義:是人類為了展示和運用通過已經理解和掌握的在實踐中通過觀察、記錄和總結找出的用指定符號代表自然界各種元素,再經過運算得到結果後來代表自然規律的一種方法.2、作用:理解和掌握這些自然規律最大的作用是預測未來.3、特點:必須通過已經知道的情況才能計算出未知的情況.4、特性:對已經知道的情況必須用指定的符號來表示.5、局限性:只能通過特殊的已知情況計算出特殊的未知情況.6、必然性:通過現有的已知情況永遠無法計算出全部的未知情況.7、原因:宇宙是無限大也是無限小的.無限就意味著什麼都不存在,神馬都是浮雲,數學也是,它只是人類自以為是的東西,只對於人類有用.8、舉例:圓是360度,怎麼來的?居然是根據.嗨,這么多年了才意識到這居然就是數學.9、結論:數學知識和歷史一樣都只是生物的活動在自然界留下的印記!
7. 數學的[]代表什麼意思
中括弧[ ]表示區間,或表示取整
表示區間時,包括區間的端部數值,如[1,2],表示1至2之間所有數,包括1和2
表示取整時,指不大於該數的最大整數,如[5.5],不大於5.5的最大整數是5,所以[5.5]=5
8. 數學單位m、cm、dm2、cm2、m2、dm是什麼意思``
數學單位m、cm、dm²、cm²、m²、dm分別是米、厘米、平方分米、平方厘米、平方米、分米。
長度單位是指丈量空間距離上的基本單元,是人類為了規范長度而制定的基本單位。其國際單位是「米」(符號「m」),常用單位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)、米(m)、微米(μm)、納米(nm)等等。長度單位在各個領域都有重要的作用。
面積單位指測量物體表面大小的單位。從小到大的順序主要有:mm²(平方毫米)、cm²(平方厘米)、dm²(平方分米)、m²(平方米)、hm²(公頃)、km²(平方千米)。在國際單位制(SI)中,標准單位面積為平方米(平方米),面積為一米長的正方形面積。
(8)數學的代表意思是什麼意思是什麼意思是什麼擴展閱讀:
一、長度單位換算
1分米 = 0.0001千米(km) = 0.1米(m) =10厘米(cm) = 100毫米(mm)。
1厘米 = 10毫米 = 0.1分米 = 0.01米 = 0.00001千米。
二、常用面積單位
平方千米、平方米、平方分米、平方厘米、平方毫米。
邊長是1毫米的正方形,面積是1平方毫米
邊長是1厘米的正方形,面積是1平方厘米
邊長是1分米的正方形,面積是1平方分米
邊長是1米的正方形,面積是1平方米
邊長是1千米的正方形,面積是1平方千米
9. 數學的含義是什麼
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
許多諸如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。因此,我們可以學習群、環、域和其他的抽象系統。
把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。
代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究。這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性。組合數學研究列舉滿足給定結構的數對象的方法。
應用數學及美學
一些數學只和生成它的領域有關,且用來解答此領域的更多問題。但一般被一領域生成的數學在其他許多領域內也十分有用,且可以成為一般的數學概念。即使是「最純的」數學通常亦有實際的用途,此一非比尋常的事實,被1963年諾貝爾物理獎得主維格納稱為「數學在自然科學中不可想像的有效性」。
如同大多數的研究領域,科學知識的爆發導致了數學的專業化。主要的分歧為純數學和應用數學。在應用數學內,又被分成兩大領域,並且變成了它們自身的學科——統計學和計算機科學。
許多數學家談論數學的優美,其內在的美學及美。「簡單」和「一般化」即為美的一種。另外亦包括巧妙的證明,如歐幾里得對存在無限多素數的證明;又或者是加快計算的數值方法,如快速傅里葉變換。
高德菲·哈羅德·哈代在《一個數學家的自白》一書中表明他相信單單是美學上的意義,就已經足夠作為純數學研究的正當理由。
以上內容參考網路-數學