① 數學小論文怎麼寫
一、培養數學學習興趣在小學數學教學中的重要性
數學是其他自然科學的基礎和保證,因此,學好數學對於學生以後其他學科的學習具有非常重要的現實意義.小學數學主要是促進學生在幼年時期接受數學教育,進而為將來的數學學習奠定基石,因此,培養小學生對於數學的學習興趣顯得非常重要.處於7~12歲年齡段的小學生是各項認知技能都在快速發展的階段和人群.在這一年齡階段,其學習數學知識的能力會隨著其興趣而得到不同的發展.如果學生因為缺乏學習興趣,產生厭學心理,就會對其今後的發展造成不可修復的傷害.教育和教學就是培養人和塑造人的一門科學,所以說,好的教育教學是會使得人的全面發展得到增強的.
二、在小學數學教學中培養學生學習興趣的方法
1.必須要實行的原則
在小學數學教學中培養學生的數學興趣是一個重要的教學問題,它必須與學生的知識結構一致和協調,符合學生的身心發展和全面發展,那麼,我們就必須必須遵循和執行一定的原則:
(1)適應性原則
適應性原則要求在小學數學教育的日常活動中,學習興趣是關鍵,那麼,我們就需要以此為原則來不用該年齡階段的知識去引導學生的努力方向.比如說,現在小學階段,那些小學奧數比賽已經非常流行了.這些所謂的奧數競賽,不符合小學生的學習階段和知識結構,很多題目大大超出他們的知識范圍.但這在校園里卻是一種很普遍的風尚,這種錯誤的風尚打擊了一大部分學生,使他們發出「數學難」的呼聲.這樣的學習榜樣當然值得肯定,但不適宜在推廣而後實施,也不利於培養學生學習數學的積極性和興趣.
(2)發展性原則
發展性原則是為了培養學生學習數學的興趣來結合社會的生活和學生的身心特點雙重因素.那麼,啟發學生思考的問題要符合學生知識結構,既不能太簡單也不能太難,主要是要聯系理論知識與現實生活,促進學生的全面發展.此外,讓學生在學習過程中既感到有挑戰性,又感覺到好玩和有成效.這樣,學生在數學課堂上的學習中不但能學到一定的知識,又有了繼續學習的慾望和興趣,為以後的學習和生活打下了良好的基礎,是實現促進學生全面發展的教育目的的.
2.所採取的方法
以根本原則為基礎,以具體措施為方法來有針對性地達到教學目標.例如:我們在小學數學的教學過程中可以採取趣味性的教學方式,激發學生的學習興趣.從小學數學的教學學習環境來說分成兩個部分,一是課堂教學,二是課外思考和課外作業.在課堂教學中,應該:
(1)每名學生都積極參與
老師在授課的過程中,要以所教知識與學生的現有認知水平為基礎,設計師生共同參與的學習模式,讓所有學生參與其中,提高其學習的主動性和效率.
(2)不同的成功體驗
讓每一名學生都有自己對成功的體驗,老師通過教學情境的創設來區別對待,並根據學生不同學習程度和學習能力因材施教,這樣所有程度的學生都能獲得成功的喜悅.數學這一學科具有系統性和連續性,所以說,循序漸進、激勵優生和表揚後進生都是可行之策,每一名學生都會體驗到自己的成就感來獲得喜悅之情,更能激發學生學習的積極性和主動性.
(3)積極表揚和鼓勵
小學生具有年齡小和爭強好勝的特點以及榮譽感,所以,在教學的活動中,教師要發現學生的閃光點和優點來加以表揚.特別是,在學生取得進步時,教師要及時給予表揚和鼓勵,這樣就會使得學生們不斷保持學習興趣.
(4)趣味性課堂活動
教師可以組織一些趣味活動.首先是重視直觀的教學方法,例如在教授小學一年級「加減法」的時候,可以讓同學們自製一些小工具,這樣課堂上玩耍的過程中就學會了知識,同時也使學生學習變得直觀化和簡單化.其次,我們教師在日常的教學中,盡量將一些大家都熟悉的生活場景引入到課堂來,通過生動有趣的故事,在中間穿插一些數學知識,並通過模型、實物等教具,配合多媒體等教育設施,形象而又直觀地引導學生去掌握新知識.在課堂外,應該:給學生創造自由的發展空間.因為小學數學學科本身以理解為主,只要在課堂上真正理解消化了,我們可以適當地減少家庭作業.畢竟在如此小的年紀搞題海戰術實在不是一件痛快的事.為了保持學生在課堂中的熱情和興趣,盡量不要給學生的課外生活布下陰影.課外作業以質量取勝.適量的人性的家庭作業能夠使學生對數學這一重要學科保持持久的正面的重視.所以我們在給小學生布置數學課外作業時,必須對題量和題型做細致的考察.歸根到底,作業的意義就是為了發現問題並解決問題,而不是作為懲罰學生的硬性指標.
② 數學論文
數學(shuxue)建模論文範文--利用數學(shuxue)建模解數學應用題
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。
強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的
高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好
數學應用問題進行剖析,希望得到同仁的幫助和指正。
一、數學應用題的特點
我們常把來源於客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,
從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各
個方面的實際。如與課本知識密切聯系的源於實際生活的應用題;與模向學科知識網路交匯點有聯系的應用題;與現
代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要採用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示後再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合
能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第四、數學應用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難於進行題型模式訓練,用「題海
戰術」無法解決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具
有廣闊的發展空間和潛力。
二、數學應用題如何建模
建立數學模型是解數學應用題的關鍵,如何建立數學模型可分為以下幾個層次:
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,註解圖為:
將題材設條件翻譯
成數學表示形式
應用題 審題 題設條件代入數學模型 求解
選定可直接運用的
數學模型
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然後確定解題所需要
的具體數學模型或數學模型中所需數學量需進一步求出,然後才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然後才能建立數學模型。如研究十字路口車流量問題,假設車
流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數
學建模能力的強弱,直接關繫到數學應用題的解題質量,同時也體現一個學生的綜合能力。
3.1提高分析、理解、閱讀能力。
閱讀理解能力是數學建模的前提,數學應用題一般都創設一個新的背景,也針對問題本身使用一些專門術語,並
給出即時定義。如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了「減薄率」這一專門術語,並給出了即時定
義,能否深刻理解,反映了自身綜合素質,這種理解能力直接影響數學建模質量。
3.2強化將文字語言敘述轉譯成數學符號語言的能力。
將數學應用題中所有表示數量關系的文字、圖象語言翻譯成數學符號語言即數、式子、方程、不等式、函數等,這種譯釋能力是數學建成模的基礎性工作。
例如:一種產品原來的成本為a元,在今後幾年內,計劃使成本平均每一年比上一年降低p%,經過五年後的成本為多少?
將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5
3.3增強選擇數學模型的能力。
選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現數學能力的強弱。建立數學模型主要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函
數建模為例,以下實際問題所選擇的數學模型列表:
函數建模類型 實際問題
一次函數 成本、利潤、銷售收入等
二次函數 優化問題、用料最省問題、造價最低、利潤最大等
冪函數、指數函數、對數函數 細胞分裂、生物繁殖等
三角函數 測量、交流量、力學問題等
3.4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前
功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只
重視推理過程,不重視計算過程的做法是不可取的。
利用數學建模解數學應用題對於多角度、多層次、多側面思考問題,培養學生發散思維能力是很有益的,是提高
學生素質,進行素質教育的一條有效途徑。同時數學建模的應用也是科學實踐,有利於實踐能力的培養,是實施素質
教育所必須的,需要引起教育工作者的足夠重視。
加強高中數學建模教學培養學生的創新能力
摘要:通過對高中數學新教材的教學,結合新教材的編寫特點和高中研究性學習的開展,對如何加強高中數學建模
教學,培養學生的創新能力方面進行探索。
關鍵詞:創新能力;數學建模;研究性學習。
《全日制普通高級中學數學教學大綱(試驗修訂版)》對學生提出新的教學要求,要求學生:
(1)學會提出問題和明確探究方向;
(2)體驗數學活動的過程;
(3)培養創新精神和應用能力。
其中,創新意識與實踐能力是新大綱中最突出的特點之一,數學學習不僅要在數學基礎知識,基本技能和思維能力,運算能力,空間想像能力等方面得到訓練和提高,而且在應用數學分析和解決實際問題的能力方面同樣需要得到訓
練和提高,而培養學生的分析和解決實際問題的能力僅僅靠課堂教學是不夠的,必須要有實踐、培養學生的創新意識
和實踐能力是數學教學的一個重要目的和一條基本原則,要使學生學會提出問題並明確探究方向,能夠運用已有的知
識進行交流,並將實際問題抽象為數學問題,就必須建立數學模型,從而形成比較完整的數學知識結構。
數學模型是數學知識與數學應用的橋梁,研究和學習數學模型,能幫助學生探索數學的應用,產生對數學學習的
興趣,培養學生的創新意識和實踐能力,加強數學建模教學與學習對學生的智力開發具有深遠的意義,現就如何加強高中數學建模教學談幾點體會。
一.要重視各章前問題的教學,使學生明白建立數學模型的實際意義。
教材的每一章都由一個有關的實際問題引入,可直接告訴學生,學了本章的教學內容及方法後,這個實際問題就
能用數學模型得到解決,這樣,學生就會產生創新意識,對新數學模型的渴求,實踐意識,學完要在實踐中試一試。
如新教材「三角函數」章前提出:有一塊以O點為圓心的半圓形空地,要在這塊空地上劃出一個內接矩形ABCD辟
為綠冊,使其冊邊AD落在半圓的直徑上,另兩點BC落在半圓的圓周上,已知半圓的半徑長為a,如何選擇關於點O對
稱的點A、D的位置,可以使矩形面積最大?
這是培養創新意識及實踐能力的好時機要注意引導,對所考察的實際問題進行抽象分析,建立相應的數學模型,
並通過新舊兩種思路方法,提出新知識,激發學生的知欲,如不可挫傷學生的積極性,失去「亮點」。
這樣通過章前問題教學,學生明白了數學就是學習,研究和應用數學模型,同時培養學生追求新方法的意識及
參與實踐的意識。因此,要重視章前問題的教學,還可據市場經濟的建設與發展的需要及學生實踐活動中發現的問
題,補充一些實例,強化這方面的教學,使學生在日常生活及學習中重視數學,培養學生數學建模意識。
2.通過幾何、三角形測量問題和列方程解應用題的教學滲透數學建模的思想與思維過程。
學習幾何、三角的測量問題,使學生多方面全方位地感受數學建模思想,讓學生認識更多現在數學模型,鞏固
數學建模思維過程、教學中對學生展示建模的如下過程:
現實原型問題
數學模型
數學抽象
簡化原則
演算推理
現實原型問題的解
數學模型的解
反映性原則
返回解釋
列方程解應用題體現了在數學建模思維過程,要據所掌握的信息和背景材料,對問題加以變形,使其簡單化,以
利於解答的思想。且解題過程中重要的步驟是據題意更出方程,從而使學生明白,數學建模過程的重點及難點就是據
實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯想現成的數學模型或變換問題構造新的數學模型
來解決問題。如利息(復利)的數列模型、利潤計算的方程模型決策問題的函數模型以及不等式模型等。
3.結合各章研究性課題的學習,培養學生建立數學模型的能力,拓展數學建模形式的多樣性式與活潑性。
高中新大綱要求每學期至少安排一個研究性課題,就是為了培養學生的數學建模能力,如「數列」章中的「分期
付款問題」、「平面向是『章中』向量在物理中的應用」等,同時,還可設計類似利潤調查、洽談、采購、銷售等問
題。設計了如下研究性問題。
例1根據下表給出的數據資料,確定該國人口增長規律,預測該國2000年的人口數。
時間(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990
人中數(百萬) 39 50 63 76 92 106 123 132 145
分析:這是一個確定人口增長模型的問題,為使問題簡化,應作如下假設:(1)該國的政治、經濟、社會環境穩
定;(2)該國的人口增長數由人口的生育,死亡引起;(3)人口數量化是連續的。基於上述假設,我們認為人口數
量是時間函數。建模思路是根據給出的數據資料繪出散點圖,然後尋找一條直線或曲線,使它們盡可能與這些散點吻
合,該直線或曲線就被認為近似地描述了該國人口增長規律,從而進一步作出預測。
通過上題的研究,既復習鞏固了函數知識更培養了學生的數學建模能力和實踐能力及創新意識。在日常教學中注
意訓練學生用數學模型來解決現實生活問題;培養學生做生活的有心人及生活中「數」意識和觀察實踐能力,如記住
一些常用及常見的數據,如:人行車、自行車的速度,自己的身高、體重等。利用學校條件,組織學生到操場進行實
習活動,活動一結束,就回課堂把實際問題化成相應的數學模型來解決。如:推鉛球的角度與距離關系;全班同學手
拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。
四、培養學生的其他能力,完善數學建模思想。
由於數學模型這一思想方法幾乎貫穿於整個中小學數學學習過程之中,小學解算術運用題中學建立函數表達式及
解析幾何里的軌跡方程等都孕育著數學模型的思想方法,熟練掌握和運用這種方法,是培養學生運用數學分析問題、
解決問題能力的關鍵,我認為這就要求培養學生以下幾點能力,才能更好的完善數學建模思想:
(1)理解實際問題的能力;
(2)洞察能力,即關於抓住系統要點的能力;
(3)抽象分析問題的能力;
(4)「翻譯」能力,即把經過一生抽象、簡化的實際問題用數學的語文符號表達出來,形成數學模型的能力和對
應用數學方法進行推演或計算得到注結果能自然語言表達出來的能力;
(5)運用數學知識的能力;
(6)通過實際加以檢驗的能力。
只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
例2:解方程組
x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本題若用常規解法求相當繁難,仔細觀察題設條件,挖掘隱含信息,聯想各種知識,即可構造各種等價數學模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不難得到兩兩之積的和(XY+YZ+ZX)=1/3,再由(3)又可將三根之積
(XYZ=1/27),由韋達定理,可構造一個一元三次方程模型。(4)x,y,z 恰好是其三個根
t3-t2+1/3t-1/27=0 (4)
函數模型:
由(1)(2)知若以xz(x+y+z)為一次項系數,(x2+y2+z2)為常數項,則以3=(12+12+12)為二次項系數的二次函f(x)
=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+( t-z)2為完全平方函數3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再
由(1)得x=y=z=1/3,也適合(3)
平面解析模型
方程(1)(2)有實數解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點後者有公共點的充要條件是圓心(O、O)到直
線x+y的距離不大於半徑。
總之,只要教師在教學中通過自學出現的實際的問題,根據當地及學生的實際,使數學知識與生活、生產實際聯系起來,就
能增強學生應用數學模型解決實際問題的意識,從而提高學生的創新意識與實踐能力。
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學
應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模
解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得
到同仁的幫助和指正。
一、數學應用題的特點
我們常把來源於客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決
的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實
際。如與課本知識密切聯系的源於實際生活的應用題;與模向學科知識網路交匯點有聯系的應用題;與現代科技發展、社會市場
經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要採用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示後再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的
知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第四、數學應用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難於進行題型模式訓練,用「題海戰術」無法解
決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具有廣闊的發展空間和潛力。
二、數學應用題如何建模
建立數學模型是解數學應用題的關鍵,如何建立數學模型可分為以下幾個層次:
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,註解圖為:
將題材設條件翻譯
成數學表示形式
應用題 審題 題設條件代入數學模型 求解
選定可直接運用的
數學模型
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然後確定解題所需要的具體數學模
型或數學模型中所需數學量需進一步求出,然後才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然後才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有
突發事件等才能建模。
三、建立數學模型應具備的能力
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱
,直接關繫到數學應用題的解題質量,同時也體現一個學生的綜合能力。
3.1提高分析、理解、閱讀能力。
閱讀理解能力是數學建模的前提,數學應用題一般都創設一個新的背景,也針對問題本身使用一些專門術語,並給出即時定義。如
1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了「減薄率」這一專門術語,並給出了即時定義,能否深刻理解,反映了自身
綜合素質,這種理解能力直接影響數學建模質量。
3.2強化將文字語言敘述轉譯成數學符號語言的能力。
將數學應用題中所有表示數量關系的文字、圖象語言翻譯成數學符號語言即數、式子、方程、不等式、函數等,這種譯釋能力是數
學建成模的基礎性工作。
例如:一種產品原來的成本為a元,在今後幾年內,計劃使成本平均每一年比上一年降低p%,經過五年後的成本為多少?
將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5
3.3增強選擇數學模型的能力。
選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現數學能力的強弱。建立數學模型主
要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函數建模為例,以下實際問題所選
擇的數學模型列表:
函數建模類型 實際問題
一次函數 成本、利潤、銷售收入等
二次函數 優化問題、用料最省問題、造價最低、利潤最大等
冪函數、指數函數、對數函數 細胞分裂、生物繁殖等
三角函數 測量、交流量、力學問題等
3.4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強
數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程
的做法是不可取的。
利用數學建模解數學應用題對於多角度、多層次、多側面思考問題,培養學生發散思維能力是很有益的,是提高學生素質,進行素
質教育的一條有效途徑。同時數學建模的應用也是科學實踐,有利於實踐能力的培養,是實施素質教育所必須的,需要引起教育工
作者的足夠重視
③ 數學小論文 500字左右
數學小論文一
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
數學小論文二
各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.
數學小論文三
數學是什麼
什麼是數學?有人說:「數學,不就是數的學問嗎?」
這樣的說法可不對。因為數學不光研究「數」,也研究「形」,大家都很熟悉的三角形、正方形,也都是數學研究的對象。
歷史上,關於什麼是數學的說法更是五花八門。有人說,數學就是關聯;也有人說,數學就是邏輯,「邏輯是數學的青年時代,數學是邏輯的壯年時代。」
那麼,究竟什麼是數學呢?
偉大的革命導師恩格斯,站在辯證唯物主義的理論高度,通過深刻分析數學的起源和本質,精闢地作出了一系列科學的論斷。恩格斯指出:「數學是數量的科學」,「純數學的對象是現實世界的空間形式和數量關系」。根據恩格斯的觀點,較確切的說法就是:數學——研究現實世界的數量關系和空間形式的科學。
數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學。
純粹數學也叫基礎數學,專門研究數學本身的內部規律。中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學。純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式。例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系。
應用數學則是一個龐大的系統,有人說,它是我們的全部知識中,凡是能用數學語言來表示的那一部分。應用數學著限於說明自然現象,解決實際問題,是純粹數學與科學技術之間的橋梁。大家常說現在是信息社會,專門研究信息的「資訊理論」,就是應用數學中一門重要的分支學科, 數學有3個最顯著的特徵。
高度的抽象性是數學的顯著特徵之一。數學理論都算有非常抽象的形式,這種抽象是經過一系列的階段形成的,所以大大超過了自然科學中的一般抽象,而且不僅概念是抽象的,連數學方法本身也是抽象的。例如,物理學家可以通過實驗來證明自己的理論,而數學家則不能用實驗的方法來證明定理,非得用邏輯推理和計算不可。現在,連數學中過去被認為是比較「直觀」的幾何學,也在朝著抽象的方向發展。根據公理化思想,幾何圖形不再是必須知道的內容,它是圓的也好,方的也好,都無關緊要,甚至用桌子、椅子和啤酒杯去代替點、線、面也未嘗不可,只要它們滿足結合關系、順序關系、合同關系,具備有相容性、獨立性和完備性,就能夠構成一門幾何學。
體系的嚴謹性是數學的另一個顯著特徵。數學思維的正確性表現在邏輯的嚴謹性上。早在2000多年前,數學家就從幾個最基本的結論出發,運用邏輯推理的方法,將豐富的幾何學知識整理成一門嚴密系統的理論,它像一根精美的邏輯鏈條,每一個環節都銜接得絲絲入扣。所以,數學一直被譽為是「精確科學的典範」。
廣泛的應用性也是數學的一個顯著特徵。宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。20世紀里,隨著應用數學分支的大量涌現,數學已經滲透到幾乎所有的科學部門。不僅物理學、化學等學科仍在廣泛地享用數學的成果,連過去很少使用數學的生物學、語言學、歷史學等等,也與數學結合形成了內容豐富的生物數學、數理經濟學、數學心理學、數理語言學、數學歷史學等邊緣學科。
各門科學的「數學化」,是現代科學發展的一大趨勢。
④ 數學建模論文摘要怎麼寫
數學建模論文摘要
要
怎麼寫
摘要:對於學費制定標准問題,有很多學者認為是難以量化的,因此學術界對此問題缺乏深入系統的研究。因此應對此問題進行深入探討和相關的分析研究。根據能力支付原則和利益獲得原則,初步構建一個涵蓋五個主要經濟因素———各方面的承受能力、高等教育個人收益率、高等教育供需狀況、生均培養成本以及地區差異的學費標准制定的量化模型,並在此基礎上具體提出各專業、各地區的學費制定標準的兩個公式模型。
誠信論文網定位於高端的核心論文發表服務,關注我國核心期刊的發展動向,洞悉各個核心期刊的論文刊登方向和排期,與300餘家核心期刊建立戰略合作夥伴關系。合作領域廣泛,涉及教育\體育\經濟\管理\醫葯\衛生\科技\計算機\文學\藝術\機械\建築\社科\法律等領域
⑤ 數學論文怎麼寫
近幾年來,旨在教會學生會學習、提高學生自學能力的學法指導的研究和實踐已是基礎教育改革的一個熱門課題。這一課題的提出和研究,不僅對當前提高基礎教育質量、實施素質教育具有現實意義,而且對培養未來社會發展所需要的人才、促進科教興國具有歷史意義。
隨著社會、經濟、科技的高速發展,數學的應用越來越廣,地位越來越高,作用越來越大。不僅如此,數學教育的實踐和歷史還表明,數學作為一種文化,對人的全面素質的提高具有巨大的影響。因此,提高基礎教育中的數學教學質量,就顯得尤為重要。可目前由於受「應試教育」的影響,數學教學中違背教育規律的現象和做法時有發生,為此更新數學教學思想、完善數學教學方法就顯得更加迫切。在數學教學中,開展學法指導,正是改革數學教學的一個突破口。
一
對數學教學如何實施數學學習方法的指導,人們進行了許多有益的探索和實驗。首先是通過觀察、調查,歸納總結了中學生數學學習中存在的問題,如「學習懶散,不肯動腦;不訂計劃,慣性運轉;忽視預習,坐等上課;不會聽課,事倍功半;死記硬背,機械模仿;不懂不問,一知半解;不重基礎,好高騖遠;趕做作業,不會自學;不重總結,輕視復習」〔1〕等等。針對這些問題,提出了相應的數學學法指導的途徑和方法,如數學全程滲透式(將學法指導滲透於制訂計劃、課前預習、課堂學習、課後復習、獨立作業、學習總結、課外學習等各個學習環節之中)〔2〕;建立數學學習常規(課堂常規———情境美,參與高,求卓越,求效率;課後常規———認真讀書,整理筆記,深思熟慮,勇於質疑;作業常規———先復習,後作業,字跡清楚,表述規范,計算正確,填好《作業檢測表》,重做錯題)〔3〕等等。誠然,這對於端正學習態度、養成學習習慣、提高學業成績、優化學習品質,采勸對症下葯」的策略,開展對學習常規的指導,無疑會收到較好的效果。但是,數學學習方法的指導,決不能忽視數學所特有的學習方法的指導。可以說,這才是數學學法指導之內核和要害。也就是說,數學學法指導應該著重指導學生學會理解數學知識、學會解決數學問題、學會數學地思維、學會數學交流、學會用數學解決實際問題等。有鑒於此,筆者主要從「數學」、「數學學習」出發,來闡釋數學學習方法,論述數學學法指導。
二
從數學的角度出發,就是要考察數學的特點。關於數學的特點,雖仍有爭議,但傳統或者說比較科學的提法仍是3條:高度的抽象性、邏輯的嚴謹性和應用的廣泛性。
1.數學研究的對象本來是現實的,但由於數學僅從空間形式與數量關系方面來反映客觀現實,所以數學是逐級抽象的產物。比如三角形形狀的實物模型隨處可見,多種多樣,名目繁多,但數學中的「三角形」卻是一種抽象的思維形式(概念),撇開了人們常見的各種三角形形狀實物的諸多性質(如天然屬性、物理性質等)。因此,學習數學首當其沖的是要學習抽象。而抽象又離不開概括,也離不開比較和分類,可以說比較、分類、概括是抽象的基礎和前提。比如,要從已經過抽象得出的物體運動速度v=v0+at、產品的成本m=m0+at、金屬加熱引起的長度變化l=l0+at中再次抽象出一次函數f(x)=ax+b,顯然要經過比較(它們的異同)和概括(它們的共同特徵)。根據數學高度抽象性的特點,數學學法指導要強調比較、分類、概括、抽象等思維方法的指導。
2.數學結論的可靠性有其嚴格的要求,觀察和實驗不能作為論證的依據和方法,而是要經過邏輯推理(表現為證明或計算),方能得以承認。比如,「三角形內角和為180°」這個結論,通過測量的方法是不能確立的,唯有在歐氏幾何體系中經過數學證明才能肯定其正確性(確定性)。在數學中,只有通過邏輯證明和符合邏輯的計算而得到的結論,才是可靠的。事實上,任何數學研究都離不開證明和計算,證明和計算是極其主要的數學活動,而通常所說的「數學思想方法往往是數學中證明和計算的方法。探求數學問題的解法也就是尋找相應的證明或計算的具體方法。從這一點上來說,證明或計算是任何一種數學思想方法的組成部分,又是任何一種數學思想方法的目標和表述形式」〔4〕。又由於證明和計算主要依靠的是歸納與演繹、分析與綜合,所以根據數學邏輯的嚴謹性特點,數學學法指導要重視歸納法、演繹法、分析法、綜合法的指導。
3.由於任何客觀對象都有其空間形式和數量關系,因而從理論上說以空間形式與數量關系為研究對象的數學可以應用於客觀世界的一切領域,即可謂宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁,無處不用數學。應用數學解決問題,不但首先要提出問題,並用明確的語言加以表述,而且要建立數學模型,還要對數學模型進行數學推導和論證,對數學結果進行檢驗和評價。也就是說,數學之應用,它不僅表現為一種工具,一種語言,而且是一種方法,是一種思維模式。根據數學應用的廣泛性特點,數學學法指導還要指導學生建立和操作數學模型,以及進行檢驗和評價。
三
從數學學習的角度出發,就是要通過對數學學習過程的考察,引申出數學學法指導的內容和策略。關於數學學習的過程,比較新穎的觀點是:「在原有行為結構與認知結構的基礎上,或是將環境對象納入其間(同化),或是因環境作用而引起原有結構的改變(順應),於是形成新的行為結構與認知結構,如此不斷往復,直到達成相對的適應性平衡」〔5〕。通過對這一認識的分析和理解,就數學學法指導而言,可概括出以下3點:
1.行為結構既是學習新知的目的和結果,又是學習新知的基礎,因而在數學教學中亦需注重外部行為結構形成的指導。由於這種外部行為主要包括外部實物操作和外部符號(主要是語言)活動,所以在數學學法指導中,一要重視學具的操作(可要求學生盡可能多地製作學具,操作學具);二要重視學生的言語表達(給學生盡可能多地提供言語交流的機會,可以是教師與學生間的交流,也可以是學生與學生之間的交流)。
2.認知結構同樣既是學習新知的目的和結果,也是學習新知的基礎,故而數學教學要加強數學認知結構形成的指導。所謂數學認知結構,是指學生頭腦中的知識結構按自己的理解深度、廣度,結合自己的感覺、知覺、記憶、思維等認知特點,組合成的一個具有內部規律的整體結構。因此,對於學生形成數學認知結構的指導,關鍵在於不斷地提高所呈現的數學知識和經驗的結構化程度。在數學學法指導中,須注意如下幾點:①加強數學知識間聯系的教學。無論是新知識的引入和理解,還是鞏固和應用,尤其是知識的復習和整理,都要從知識間的聯系出發。②重視數學思想的挖掘和滲透。由於數學思想是對數學的本質的認識,因而數學思想是數學知識結構建立的基礎。常見的數學思想有:符號思想、對應思想、數形結合思想、歸納思想、公理化思想、模型化思想等等。③注重數學方法的明晰教學。數學方法作為解決問題的手段,是建立數學知識結構的橋梁。常見的數學方法有:化歸法、構造法、參數法、變換法、換元法、配方法、反證法、數學歸納法等。
3.在原有行為結構與認知結構的基礎上,無論是通過同化,還是通過順應來獲得新知,必須是在一種學習機制的作用下方能實現。而這種學習機制主要就是對學習新知過程的監控和調節,即所謂的元學習。實質上,能否會學,關鍵就在於這種學習是否建立起來。於是,元學習的指導又成為數學方法指導的重要內容。為此,在數學學法指導中,需要注意:①要傳授程序性知識和情境性知識。程序性知識即是對數學活動方式的概括,如遇到一個數學證明題該先干什麼,後干什麼,再干什麼,就是所謂的程序性知識。情境性知識即是對具體數學理論或技能的應用背景和條件的概括,如掌握換元法的具體步驟,獲得換元技能,懂得在什麼條件下應用換元法更有效,就是一種情境性知識。②盡可能讓學生了解影響數學學習(數學認知)的各種因素。比如,學習材料的呈現方式是文字的、字母的,還是圖形的;學習任務是計算、證明,還是解決問題,等等。這些學習材料和學習任務方面的因素,都對數學學習產生影響。③要充分揭示數學思維的過程。比如,揭示知識的形成過程、思路的產生過程、嘗試探索過程和偏差糾正過程。④幫助學生進行自我診斷,明確其自身數學學習的特徵。比如:有的學生擅長代數,而認知幾何較差;有的學生記憶力較強而理解力較弱;還有的學生口頭表達不如書面表達等。⑤指導學生對學習活動進行評價。如評價問題理解的正確性、學習計劃的可行性、解題程序的簡捷性、解題方法的有效性等諸多方面。⑥幫助學生形成自我監控的意識。如監控認知方向意識、認知過程意識和調節認知策略意識等等。
四
根據數學內容的性質,數學教學一般可分為概念教學、命題(主要有定理、公式、法則、性質)教學、例題教學、習題教學、總結與復習等5類。相應地,數學學法指導的實施亦需分別落實到這5類教學之中。這里僅就例題教學中如何實施數學學法指導談談自己的認識。
1.根據學生的學情安排例題。如前所述,學習新知必須建立在已有的基礎之上,從內容上講,這個基礎既包括知識基礎,又包括認知水平和認知能力,還包括學習興趣、認知意識,乃至學習態度等有關學習動力系統方面的准備。因此,無論是選配例題,還是安排例題,都要考慮到學生的學習情況,尤其是要考慮激發學生認知興趣和認知需求的原則(稱之為動機原則)。在例題選配和安排中,可採取增、刪、調的策略,力求既突出重點,又符合學生的學情。所謂增,即根據學生的認知缺陷增補鋪墊性例題,或者為突破某個難點增加過渡性例題。所謂刪,即根據學生情況,刪去比較簡單的例題或要求過高的難題。所謂調,即根據學生的實際水平,將後面的例題調至前面先教,或者將前面的例題調到後面後教。
2.根據學習目標和任務精選例題。例題的作用是多方面的,最基本的莫過於理解知識,應用知識,鞏固知識;莫過於訓練數學技能,培養數學能力,發展數學觀念。為發揮例題的這些基本作用,就要根據學習目標和任務選配例題。具體的策略是:增、刪、並。這里的增,即為突出某個知識點、某項數學技能、某種數學能力等重點內容而增補強化性例題,或者根據聯系社會發展的需要,增加補充性例題。這里的刪,即指刪去那些作用不大或者過時的例題。所謂並,即為突出某項內容把單元內前後的幾個例題合並為一個例題,或者為突出知識間的聯系打破單元界限而把不同內容的例題綜合在一起。
3.根據解題的心理過程設計例題教學程序。按照波利亞的解題理論,一般把解題過程分為弄清問題、擬定計劃、實現計劃、回顧等4個階段。這是針對解題過程本身而言的。但就解題教學來說,還應當增加一個步驟,也是首要環節,即要使學生「進入問題情境」,讓學生產生一種認知的需要。對於「進入問題情境」環節,要求教師用簡短的語言,在承上啟下中,提出學習目標,明確學習任務,激起認知沖突。而對其餘4個環節,教師的行為可按波利亞的「怎樣解題表」中的要求去構思。一般教師和學生都能夠注意做到做好前3個環節,卻容易忽視「回顧」環節。
嚴格說來,回顧環節對解題能力的提高,對例題教學目的的實現起著不可替代的作用。對回顧環節來講,除波利亞提出的幾條以外,更為主要的是對解題方法的概括和反思,並使其能遷移到其它問題的解決之中。
4.根據數學方法指導的目的和內容適度調整例題。通常,人們根據問題的條件(A)、解決的過程(B)及問題的結論(C)的情況把數學題劃分為標准題和非標准題兩大類:如果條件和結論都明確,學生也熟知解題過程(即A、B、C三要素全已知),這種題為標准題(記為ABC);A、B、C三要素中缺少一個或兩個要素的題則為非標准題。如果分別用X、Y、Z表示對應於A、B、C的未知成分,則非標准題的題型(計6種)可表示為:ABZ,AYC,XBC,AYZ,XBZ,XYC。數學教材中的例題大多數是ABC型和ABZ型,有部分的AYC型和極少數的AYZ型。由於數學學法指導的一項重要任務是教學生會抽象、概括、歸納、演繹,會數學地思考和交流,會分析問題和解決問題,因而例題教學要特別注重教材中缺少的幾種類型題的教學。其中最為重要的是「開放性題」(ABZ型和AYZ型例題中,Z不唯一)和「數學問題解決」中所指出的「數學應用題」(AYC型及AYZ型中所涉及的主題是數學以外的內容)。對於「開放性題」,由於它的結論不唯一,對培養學生數學思維有著至關重要的作用。對於「數學應用題」,則由於它的解決要用數學模型法,因而對培養學生運用分析問題和解決問題的方法是十分重要的。從數學學法指導的角度來說,適度調整例題很有必要。調整的策略有二:一是改,即將已有的題型變換為別的題型;二是增,即增加與知識點有關的「開放性題」和「數學應用題」。
5.注重對例題的全方位反思。例題的作用是多方面的,除上文提到的幾點外,例題教學還具有傳授新知識,積累數學經驗,完善數學認知結構
⑥ 論文摘要包括哪些內容
論文摘要包括:目的、方法、結果和結論四部分。
1、目的
簡明指出此項工作的目的,研究的范圍。
2、方法
簡要說明研究課題的基本做法,包括對象(分組及每組例數、對照例數或動物只數等)、材料和方法(包括所用葯品劑量,重復次數等)。統計方法特殊者需註明。
3、結果
簡要列出主要結果(需註明單位)、數據、統計學意義(P值)等,並說明其價值和局限性。
4、結論
簡要說明從該項研究結果取得的正確觀點、理論意義或實用價值、推廣前景。中、英文摘要前需標明中、英文文題,作者姓名(至多3名)及作者單位(郵政編碼)。英文摘要應隔行打字,以便修改。
寫作要求:
1、摘要中應排除本學科領域已成為常識的內容;切忌把應在引言中出現的內容寫入摘要;一般也不要對論文內容作詮釋和評論(尤其是自我評價)。
2、不得簡單重復題名中已有的信息。
3、結構嚴謹,表達簡明,語義確切。摘要先寫什麼,後寫什麼,要按邏輯順序來安排。句子之間要上下連貫,互相呼應。摘要慎用長句,句型應力求簡單。每句話要表意明白,無空泛、籠統、含混之詞,但摘要畢竟是一篇完整的短文,電報式的寫法亦不足取。摘要不分段。
以上內容參考:網路-論文摘要
⑦ 數學建模論文摘要該怎麼寫
學術堂來告訴你數學建模論文摘要該怎麼寫:
首先明確摘要要求:
您正在撰寫的論文可能有特定的指導方針和要求,無論是發表在期刊上,還是在課堂上提交,還是工作項目的一部分。在開始寫作之前,請參考你收到的要求或指南,以確定需要記住的重要問題。
其次摘要要自成體系
摘要僅僅是一個摘要嗎?大多數情況下,摘要應該完全獨立於你的論文。不要抄襲和粘貼正文中的內容,也就是不要直接引用自己的原文中的話,避免簡單地從你寫作的其他地方轉述你自己的句子。用全新的詞彙和短語寫出你的摘要,做到精簡與凝練的同時,保持它的趣味性和創新性。
接著尋找核心關鍵詞
完成論文之後,試著用5-7個重要的詞或短語作為摘要研究的關鍵。如果你的論文在期刊上發表了的話,人們能夠在網上資料庫中搜索摘要的核心內容,容易且快速找到你的論文。而且,這樣一些關鍵性的詞語,能夠吸引人們的注意力。
然後避免無關內容
需要注意的是,摘要不能脫離正文,更不能與論文內容相矛盾。不要引用你在論文中沒有提到的觀點或研究,不要引用你在論文中不使用的材料,否則非常容易引起誤導。
最後進行基本修改
摘要是一篇文章,和其他文章一樣,應該在完成之前進行修改。檢查它的語法和拼寫錯誤,並確保它的格式正確。論文摘要不要列舉例證,不講研究過程,不用圖表,不給化學結構式,也不要作自我評價。
⑧ 數學小論文怎麼寫急啊
數學小論文
今天,在我們數學俱樂部里,老師給我們研究了一道有趣的題目,其實也是一道有些復雜的找規律題目,題目是這樣的「有一列數:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。這列數字中前240個數字的和是多少?」我一拿到題目,心裡猛然想到,這題目必須得按照規律來做!!!
想法一:開始我便先試著先3個一組來求和,6,5,10,9,12,15,14……。這樣一看,這些數字各有特徵,關鍵就是找不出合適的規律。於是,我又找4個一組來求和,8,10,12,16,20……。仔細一看,好像也沒什麼規律,我只好再試著找5個一組來求和,9,14,19,24……,這樣一來就非常明顯的看出它們是等數列,我非常高興,再把240÷5=48(組),5個一組,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那麼就可以求出末項的和,9+47×5=244,把首項加末項的和乘項數除以2,(9+244)×48÷2=6072。這樣就完成了!
想法二:我又發現每組開頭第一個數字恰好分別是1,2,3,4……48,那麼另一種方法就產生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。這樣想也合乎情理,也是一個理得清楚而且又實用的方法!
想法三:我又發現有N組時,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N組數的和,比如(1+2+3+4+……+48)×5+4×48=6072。這個規律也是要通過不斷來細心觀察與研究得來的,這個規律雖然有些抽象,但如果是自己弄明白了,那還要比其他兩種方法更容易些。
我做的只是其中的三種解法,其實方法還有很多,但是要靠自己來找其中的規律,解其中的奧秘!
⑨ 數學小論文怎麼寫從哪些方面寫
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。