1. 怎麼學好高中物理力學
高中物理怎麼樣?有哪些好的學習方法?
現在還有很多的小夥伴,都說對於高中物理這是難度比較大的學科,這就讓物理成了很多的高中生成了心裡的一種痛處,其實吧學習高中物理也是很簡單的,只要你掌握好思路,培養好自己的學習習慣,讓自己喜歡上這個學科,其實這還是比較簡單的.
高中物理試卷
讀好每一本教材,看好每一個單元,學會每一個小題,對於高中物理每一個練習都有關鍵的洞察力以及他的解決辦法,可能他們所用的知識都是一樣的,只要你記住一個定理就可以做很多類似的題.
2. 高中物理怎麼學好(尤其是力學)!
來回用公式!!!
物理定理、定律、公式表
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
註:
(1)平均速度是矢量;
(2)物體速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s--t圖、v--t圖/速度與速率、瞬時速度〔見第一冊P24〕。
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:
(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
(3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:
(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
(2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
註:
(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;
(2)運動時間由下落高度h(y)決定與水平拋出速度無關;
(3)θ與β的關系為tgβ=2tgα;
(4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
註:
(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;
(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。
3)萬有引力
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
注:
(1)天體運動所需的向心力由萬有引力提供,F向=F萬;
(2)應用萬有引力定律可估算天體的質量密度等;
(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同;
(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);
(5)地球衛星的最大環繞速度和最小發射速度均為7.9km/s。
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:
(1)勁度系數k由彈簧自身決定;
(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
(3)fm略大於μFN,一般視為fm≈μFN;
(4)其它相關內容:靜摩擦力(大小、方向)〔見第一冊P8〕;
(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);
(6)安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
註:
(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F´{負號表示方向相反,F、F´各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子〔見第一冊P67〕
注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕
5.機械波、橫波、縱波〔見第二冊P2〕
6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9.波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}
註:
(1)物體的固有頻率與振幅、驅動力頻率無關,取決於振動系統本身;
(2)加強區是波峰與波峰或波谷與波谷相遇處,減弱區則是波峰與波谷相遇處;
(3)波只是傳播了振動,介質本身不隨波發生遷移,是傳遞能量的一種方式;
(4)干涉與衍射是波特有的;
(5)振動圖象與波動圖象;
(6)其它相關內容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕。
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N•s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p』´也可以是m1v1+m2v2=m1v1´+m2v2´
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
註:
(1)正碰又叫對心碰撞,速度方向在它們「中心」的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)系統動量守恆的條件:合外力為零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恆,原子核衰變時動量守恆;
(5)爆炸過程視為動量守恆,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量轉化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);
(3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少
(4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度系數和形變數有關。
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力(1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),
W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
注:
(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;
(2)溫度是分子平均動能的標志;
3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;
(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;
(5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大ΔU>0;吸收熱量,Q>0
(6)物體的內能是指物體所有的分子動能和分子勢能的總和,對於理想氣體分子間作用力為零,分子勢能為零;
(7)r0為分子處於平衡狀態時,分子間的距離;
(8)其它相關內容:能的轉化和定恆定律〔見第二冊P41〕/能源的開發與利用、環保〔見第二冊P47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。
九、氣體的性質
1.氣體的狀態參量:
溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,標准大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
注:
(1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;
(2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。
十、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N•m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器〔見第二冊P111〕
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:
(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
(3)常見電場的電場線分布要求熟記〔見圖[第二冊P98];
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=106μF=1012PF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽〔見第二冊P101〕/示波管、示波器及其應用〔見第二冊P114〕等勢面〔見第二冊P105〕。
十一、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω•m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
10.歐姆表測電阻
(1)電路組成 (2)測量原理
兩表筆短接後,調節Ro使電表指針滿偏,得
Ig=E/(r+Rg+Ro)
接入被測電阻Rx後通過電表的電流為
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由於Ix與Rx對應,因此可指示被測電阻大小
(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。
(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。
11.伏安法測電阻
電流表內接法:
電壓表示數:U=UR+UA
電流表外接法:
電流表示數:I=IR+IV
Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
選用電路條件Rx>>RA [或Rx>(RARV)1/2]
選用電路條件Rx<<RV [或Rx<(RARV)1/2]
12.滑動變阻器在電路中的限流接法與分壓接法
限流接法
電壓調節范圍小,電路簡單,功耗小
便於調節電壓的選擇條件Rp>Rx
電壓調節范圍大,電路復雜,功耗較大
便於調節電壓的選擇條件Rp<Rx
注1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;
(3)串聯總電阻大於任何一個分電阻,並聯總電阻小於任何一個分電阻;
(4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;
(5)當外電路電阻等於電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r);
(6)其它相關內容:電阻率與溫度的關系半導體及其應用超導及其應用〔見第二冊P127〕。
十二、磁場
1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A•m
2.安培力F=BIL;(註:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}
3.洛侖茲力f=qVB(注V⊥B);質譜儀〔見第二冊P155〕 {f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}
4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):
(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0
(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);(c)解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。
註:
(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;
(2)磁感線的特點及其常見磁場的磁感線分布要掌握〔見圖及第二冊P144〕;(3)其它相關內容:地磁場/磁電式電表原理〔見第二冊P150〕/迴旋加速器〔見第二冊P156〕/磁性材料
十三、電磁感應
1.[感應電動勢的大小計算公式]
1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}
2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}
3)Em=nBSω(交流發電機最大的感應電動勢) {Em:感應電動勢峰值}
4)E=BL2ω/2(導體一端固定以ω旋轉切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}
3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}
*4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感系數(H)(線圈L有鐵芯比無鐵芯時要大),ΔI:變化電流,∆t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}
註:(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點〔見第二冊P173〕;(2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。(4)其它相關內容:自感〔見第二冊P178〕/日光燈〔見第二冊P180〕。
十四、交變電流(正弦式交變電流)
1.電壓瞬時值e=Emsinωt 電流瞬時值i=Imsinωt;(ω=2πf)
2.電動勢峰值Em=nBSω=2BLv 電流峰值(純電阻電路中)Im=Em/R總
3.正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想變壓器原副線圈中的電壓與電流及功率關系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在遠距離輸電中,採用高壓輸送電能可以減少電能在輸電線上的損失損´=(P/U)2R;(P損´:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻)〔見第二冊P198〕;
6.公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數;B:磁感強度(T);
S:線圈的面積(m2);U輸出)電壓(V);I:電流強度(A);P:功率(W)。
3. 【高分】物理學習方法
(一)培養良好的物理興趣,這個就不多說了。
(二)獨立做題。要獨立地(指不依賴他人),保質保量地做一些題。題目要有一定的數量,不能太少,更要有一定的質量,就是說要有一定的難度。任何人學習數理化不經過這一關是學不好的。獨立解題,可能有時慢一些,有時要走彎路,有時甚至解不出來,但這些都是正常的,是任何一個初學者走向成功的必由之路。
(三)物理過程。要對物理過程一清二楚,物理過程弄不清必然存在解題的隱患。題目不論難易都要盡量畫圖,有的畫草圖就可以了,有的要畫精確圖,要動用圓規、三角板、量角器等,以顯示幾何關系。 畫圖能夠變抽象思維為形象思維,更精確地掌握物理過程。有了圖就能作狀態分析和動態分析,狀態分析是固定的、死的、間斷的,而動態分析是活的、連續的。
(四)上課。上課要認真聽講,不跑神或盡量少跑神。不要自以為是,要虛心向老師學習。不要以為老師講得簡單而放棄聽講,如果真出現這種情況可以當成是復習、鞏固。盡量與老師保持一致、同步,不能自搞一套,否則就等於是完全自學了。入門以後,有了一定的基礎,則允許有自己一定的活動空間,也就是說允許有一些自己的東西,學得越多,自己的東西越多。
(五)筆記本(糾錯本)。上課以聽講為主,還要有一個筆記本,有些東西要記下來。知識結構,好的解題方法,好的例題,聽不太懂的地方等等都要記下來。課後還要整理筆記,一方面是為了「消化好」,另一方面還要對筆記作好補充。筆記本不只是記上課老師講的,還要作一些讀書摘記,自己在作業中發現的好題、好的解法也要記在筆記本上,就是同學們常說的「好題本」。辛辛苦苦建立起來的筆記本要進行編號,以後要經學看,要能做到愛不釋手,終生保存。
(六)學習資料。學習資料要保存好,作好分類工作,還要作好記號。學習資料的分類包括練習題、試卷、實驗報告等等。作記號是指,比方說對練習題吧,一般題不作記號,好題、有價值的題、易錯的題,分別作不同的記號,以備今後閱讀,作記號可以節省不少時間。
(七)時間。時間是寶貴的,沒有了時間就什麼也來不及做了,所以要注意充分利用時間,而利用時間是一門非常高超的藝術。比方說,可以利用「回憶」的學習方法以節省時間,睡覺前、等車時、走在路上等這些時間,我們可以把當天講的課一節一節地回憶,這樣重復地再學一次,能達到強化的目的。物理題有的比較難,有的題可能是在散步時想到它的解法的。學習物理的人腦子里會經常有幾道做不出來的題貯存著,念念不忘,不知何時會有所突破,找到問題的答案。
(八)向別人學習。要虛心向別人學習,向同學們學習,向周圍的人學習,看人家是怎樣學習的,經常與他們進行「學術上」的交流,互教互學,共同提高,千萬不能自以為是。也不能保守,有了好方法要告訴別人,這樣別人有了好方法也會告訴你。在學習方面要有幾個好朋友。
(九)知識結構。要重視知識結構,要系統地掌握好知識結構,這樣才能把零散的知識系統起來。大到整個物理的知識結構,小到力學的知識結構,甚至具體到章,如靜力學的知識結構等等。
(十)數學。物理的計算要依靠數學,對學物理來說數學太重要了。沒有數學這個計算工具物理學是步難行的。大學里物理系的數學課與物理課是並重的。要學好數學,利用好數學這個強有力的工具。
(十一)體育活動。健康的身體是學習好的保證,旺盛的精力是學習高效率的保證。要經常參加體育活動,要會一種、二種鍛煉身體的方法,要終生參加體育活動,不能間斷,僅由興趣出發三天打魚兩天曬網地搞體育活動,對身體不會有太大好處。要自覺地有意識地去鍛煉身體。要保證充足的睡眠,不能以減少睡覺的時間去增加學習的時間,這種辦法不可取。不能以透支健康為代價去換取一點好成績,不能動不動就講所謂「沖刺」、「拼搏」,學習也要講究規律性,也就是說總是努力,不搞突擊。
具體做法:
一、課前認真預習
預習是在課前,獨立地閱讀教材,自己去獲取新知識的一個重要環節。
課前預習未講授的新課,首先把新課的內容都要仔細地閱讀一遍,通過閱讀、分析、思考,了解教材的知識體系,重點、難點、范圍和要求。對於物理概念和規律則要抓住其核心,以及與其它物理概念和規律的區別與聯系,把教材中自己不懂的疑難問題記錄下來。對已學過的知識,如果忘了,課前預習時可及時補上,這樣,上課時就不會感到困難重重了。然後再縱觀新課的內容,找出各知識點間的聯系,掌握知識的脈絡,繪出知識結構簡圖。同時還要閱讀有關典型的例題並嘗試解答,把解答書後習題作為閱讀效果的檢查,並從中總結出解題的一般思路和步驟。有能力的同學還可以適當閱讀相關內容的課外書籍。
二、主動提高效率的聽課
帶著預習的問題聽課,可以提高聽課的效率,能使聽課的重點更加突出。課堂上,當老師講到自己預習時的不懂之處時,就非常主動、格外注意聽,力求當堂弄懂。同時可以對比老師的講解以檢查自己對教材理解的深度和廣度,學習教師對疑難問題的分析過程和思維方法,也可以作進一步的質疑、析疑、提出自己的見解。這樣聽完課,不僅能掌握知識的重點,突破難點,抓住關鍵,而且能更好地掌握老師分析問題、解決問題的思路和方法,進一步提高自己的學習能力。
三、定期整理學習筆記
在學習過程中,通過對所學知識的回顧、對照預習筆記、聽課筆記、作業、達標檢測、教科書和參考書等材料加以補充、歸納,使所學的知識達到系統、完整和高度概括的水平。學習筆記要簡明、易看、一目瞭然,符合自己的特點。做到定期按知識本身的體系加以歸類,整理出總結性的學習筆記,以求知識系統化。把這些思考的成果及時保存下來,以後再復習時,就能迅速地回到自己曾經達到的高度。在學習時如果輕信自己的記憶力,不做筆記,則往往會在該使用時卻想不起來了,很可惜的!
四、及時做作業
作業是學好物理知識必不可少的環節,是掌握知識熟練技能的基本方法。在平時的預習中,用書上的習題檢查自己的預習效果,課後作業時多進行一題多解及分析最優解法練習。在章節復習中精選課外習題自我測驗,及時反饋信息。因此,認真做好作業,可以加深對所學知識的理解,發現自己知識中的薄弱環節而去有意識地加強它,逐步培養自己的分析、解決問題的能力,逐步樹立解決實際問題的信心。
要做好作業,首先要仔細審題,弄清題中敘述的物理過程,明確題中所給的條件和要求解決的問題;根據題中陳述的物理現象和過程對照所學物理知識選擇解題所要用到的物理概念和規律;經過冷靜的思考或分析推理,建立數學關系式;藉助數學工具進行計算,求解時要將各物理量的單位統一到國際單位制中;最後還必須對答案進行驗證討論,以檢查所用的規律是否正確,在運算中出現的各物理的單位是否一致,答案是否正確、符合實際,物理意義是否明確,運算進程是否嚴密,是否還有別的解法,通過驗證答案、回顧解題過程,才能牢固地掌握知識,熟悉各種解題的思路和方法,提高解題能力。
五、復習總結提高
對學過的知識,做過的練習,如果不及時復習,不會歸納總結,就容易出現知識之間的割裂而形成孤立地、呆板地學習物理知識的傾向。其結果必然是物理內容一大片,定律、公式一大堆,但對具體過程分析不清,對公式中的物理量間的關系理解不深,不會縱觀全局,前後聯貫,靈活運用物理概念和物理規律去解決具體問題。因此,課後要及時的復習、總結。課後的復習除了每節課後的整理筆記、完成作業外,還要進行章節的單元復習。要經常通過對比、鑒別,弄清事物的本質、內在聯系以及變化發展過程,並及時歸納總結以形成系統的知識。通過分析對比,歸納總結,便可以使知識前後貫通,縱橫聯系,並從物理量間的因果聯系和發展變化中加深對物理概念和規律的理解。這樣既能不斷鞏固加深所學知識,又能提高歸納總結的能力。
4. 有什麼辦法能讓人學物理時比較好學也比較容易懂
你要具體的嗎 我來給你講講,詳細的嗎?分成高中物理的幾大部分力,電,光,熱等等吧:
針對高考要求,物理復習內容包括知識和能力兩個方面,重點是能力,即運用物理概念、規律分析解決問題的能力。所以,物理復習的核心是全面、深入、准確地理解物理概念、規律、方法。
1、全面復習
應該了解知識和能力是不可分割的,一般說,高考試題對知識和能力的考查是結合起來進行的。一道試題既考查了知識,同時又考查了能力,而且常常是考查了幾種能力。我們不應該把某些知識與某種能力簡單地對應起來。顯然,一個知識貧乏的人不可能有很強的能力,所以,考生應該全面復習知識,不要遺漏。
全面復習不是機械地、簡單地瀏覽全部知識。由物理現象、物理概念、規律等組成的物理理論好比一棵大樹,各部分內容是緊密聯系形成的一有機的整體,有主幹、支幹、樹葉等。在逐章逐節復習全部知識時,要注意深入理解和體會各知識點間的內在聯系,建立知識結構,使自己具備豐富的、系統的物理知識,逐步體會各知識點的地位、作用、分清主次,理解理論的實質,這是提高能力的基礎。
高考試題知識覆蓋面廣,考生應對全部考試內容認真復習,該記憶的應該記憶,不要猜題、壓題,不要認為不是重點內容就不會考,也不要認為有的知識生疏、冷僻就不會考,應該扎扎實實地全面復習。
2、全面、深入、准確地理解物理概念、物理規律
(1)要在更廣泛的知識和更普遍的背景材料上把握物理概念、物理規律。
理解和掌握物理概念、物理規律就需要對概念、規律的提出、建立有一定的了解,對概念、規律內容的各種表達形式(文字的和數字的)有清楚的認識,能理解它們的確切含義,理解它們的成立條件和適用范圍,理解它們在物理理論大廈中的位置,會應用它們分析解決問題。在復習前考生對此已經有一定的認識、理解,但是應該知道,基本物理概念、物理規律揭露了客觀事物的本質,是人類經過長期曲折的歷史過程的結晶,具有深刻的、豐富的意義,對它們的實質和意義的理解是分層次的,在高中一、二年級學習時的理解是低層次的,在復習過程中要努力提高一個層次。
例如對力的概念的理解包括對具體的力(重力、彈力、摩擦力、電場力、安培力、洛侖茲力等)的概念的理解,也包括對一般、抽象的力的概念的理解,還包括力作用於物體產生不同的效果的理解等。我們需要從不同的角度來理解力的概念,我們在繁雜的力學問題中,在帶電粒子在電場和磁場運動問題中,遇到各種各樣的力,通過這些問題不斷加深對不同性質的力的理解,也不斷加深對抽象的普遍的力的概念的理解。如:
物體沿斜面下滑支持力不做功(斜面不動),這是常見的情況,但不能得出支持力總不做功的錯誤結論。支持力的特點是方向垂直斜面,如斜面可動,支持力可以做正功,也可以做負功;
靜摩擦力可以使物體加速,也可以使物體減速,可以做正功、做負功、不做功,但一對靜摩擦力總不做功(做功代數和為零);
滑動摩擦力可以使物體減速,也可以使物體加速,可以做正功、做負功,但一對滑動摩擦力總做負功,系統克服一對滑動磨擦力做的功等於系統內能的增加量;
洛侖茲力的方向總跟速度垂直,總不做功,它只改變速度方向不改變速度大小,這是洛侖茲力的最大特點,其它的力都不具有這一特點;
力產生加速度,反之如果發現物體有加速度就判定一定是力產生的等等。
類似的問題很多,我們應該不斷總結、歸納。
例如,電場強度的定義是 。應該清楚有兩種電場;靜止電荷產生的電場和隨時間變化的磁場產生的電場。定義 對這兩種電場都適用,它是電場強度的普遍定義。這兩種電場的性質不同,靜止電荷產生的靜電場,其電場線起於正電荷終止於負電荷,不可能閉合。變化磁場產生的渦旋電場,其電場線沒有起點、終點,是閉合的。電動勢的本質是非靜電力移動電荷做的功,電感線圈中的自感電動勢、變壓器副線圈中的感應電動勢都是渦旋電場力產生的。
應該注意,對基本物理概念、物理規律的深刻理解不可能一次完成,它需要一個反復加深認識的過程。遇到新的現象、新的問題、新的領域,我們都需要重新認識、體會有關概念、規律的准確含義。這樣我們就不斷在越來越廣泛的知識和背景上來把握概念、規律,從而對它們的理解就更全面、深入和准確。
(2)概念與規律緊密聯系。
應該知道,物理概念、物理規律揭露物理現象的本質,物理規律建立了有關物理量間的聯系,它們之間是緊密聯系的。如果把它們隔離開來,脫離物理規律、死背概念定義或脫離概念、形式上對待規律內容,是不可能很好理解和掌握物理概念、規律的。我們應該主要通過規律來理解概念,通過概念來掌握規律。例如:
功的概念除抓住功的定義式 外,應該著重從動能定理、功能關系、熱力學第一定律、普遍的能量守恆與轉化定律等角度來理解,即從能量變化、轉化的角度來理解。在電學中、光學中,我們越來越著重從能量轉化來理解功,如光電效應中電子脫離金屬的逸出功是從能量轉化來理解的;
動量概念應聯系動量定理、特別是動量守恆定律來理解;
電阻概念應聯系歐姆定律、焦耳定律等來理解。電阻的定義是 ,按歐姆定律 , ,我們來體會電阻的阻礙作用。串聯電阻、並聯電阻的等效電阻也由U與I的比來理解。從焦耳定律 來體會電阻是消耗電能轉化為內能的元件;
法拉第電磁感應定律 的掌握不能離開磁通量概念和感應電動勢概念等等。
(3)比較易混的物理概念、規律。
比較容易混淆的物理概念、規律的異同、區別和聯系有利於准確理解概念、規律的准確含義。例如:
動量和動能都是描述物體運動狀態的,都與物體的質量、速度有關。但動量是矢量,與動量有關的規律是動量定理和動量守恆定律,動能是標量,與動能有關的規律是動能定理、機械能守恆定律、功能關系等。動量的大小與動能間存在關系:或 ;
做功與傳熱都是改變物體內能的兩種方式,在使物體內能變化上功與熱量是等效的,功、熱量、能量的單位也相同。但傳熱發生在存在溫度差的兩物體之間,是物理間內能傳遞的一種方式。做功與兩物體間的溫度差無關,是物體間其他形式能與內能轉化的一種方式;
電場強度 、 、 的區別、聯系;
電功率 、 、 的區別、聯系;
電流 、 、 、 、 的區別、聯系;
導線切割磁場線公式 與法拉第電磁感應定律 的區別、聯系: 是適用於各種電磁感應現象的普遍規律, 是它的一個特例。但 求出的是整個閉合迴路在△t時間內的平均感應電動勢 求出的是該段導線某一時刻的感應電動勢。 與 的成立條件和適用范圍各不相同等等。
(4)靈活應用物理概念、規律。
只有通過實踐、通過應用才能檢查出我們對物理概念、規律是否真正理解,哪些內容理解了,哪些內容還沒有理解。
解題是物理概念、規律的一種應用。我們根據概念、規律對題意進行具體分析、確定研究對象,分析對象所處的物理狀態和發生的物理過程,弄清楚題目的物理情景、現象產生的原因、條件,然後確定具體的物理量,建立解題方程、關系,求出最後答案,必要時進行討論。
根據物理規律的內容、特點,我們得出應用規律的一些基本步驟,但我們不應該死套基本步驟,而應該理解基本步驟來源於物理規律本身,對具體問題要具體分析並靈活應用。那種把物理題形式分成許多"類型",對某一"類型"的題套用"解題步驟"的做法,不能很好培養自己獨立地、靈活地分析解決問題的能力。例如:
牛頓定律 是對質點的某一時刻說的,根據定律和有關力、質量、加速度的概念應該理解,應用牛頓定律首先要明確研究對象是哪一物體或一組物體,它們要能看成一個質點。研究的質點明確了,質量m才能定下來,加速度a和受力 才能夠分析明確。質點的受力分析和加速度分析除了根據力是物體間相互作用、重力、彈力、摩擦力、電場力、安培力、洛侖茲力公式和加速度定義、運動學公式外,在許多問題中還需要把力和加速度結合起來分析,應靈活運用;
動力學有5個重要規律:牛頓定律;動量定理;動能定理;動量守恆定律;機械能守恆定律。這些規律在研究對象、內容、適用條件、受力分析等方面各有特點。對一個具體的力學問題研究應該選用哪個或哪幾個規律求解要根據規律特點和題意的具體分析確定。大致說來,如求某一時刻(位置)物體受力或加速度可考慮用牛頓定律,如果問題只涉及力、時間而與位移無明顯關系可考慮用動量定理,如果問題只涉及力、位移而與時間無明顯關系可考慮用動能定理,如果能判定系統符合動量守恆或機械能守恆條件可考慮用守恆定律。在理解概念、規律的基礎上,只有不斷通過解題實踐提高分析解決問題的能力,不斷總結解題經驗教訓,才能靈活運用規律解決問題。
3、注意物理狀態、物理過程的分析。
對一道物理題在弄清題意確定應用的物理規律和研究對象後,就要對對象進行物理狀態、物理過程的分析,對問題形成鮮明的物理圖象。這樣才容易排除一些錯誤觀念的干擾,找准解決問題的出發點。尤其是對一些較難的、靈活性較大、情景較新的問題,分析清楚物理過程才容易找到解題的關鍵條件或問題中的隱蔽條件。
4、正確對待解題
高考是通過物理試題的求解成績來區分考生能力的高低、優劣,理解和掌握物理理論當然應該表現為求解各種物理題方面,所以,解一定數量的較多類型的問題是必要的,這有利於加深對物理概念、規律的理解,提高解題的能力。但是,我們在解一道物理題時心裡要清楚,解這道題不是目的而是一種手段,其目的是檢查我們對概念、規律掌握的程度,培養和提高獨立地、靈活地分析解決問題的能力。因為物理習題是不可窮盡的,現在流傳的高中物理習題已經在萬題以上,每年的高考試題又出現不少新題,對一個物理概念、物理規律的考查可以從許多角度、各種不同的方式進行,只有緊緊抓住解題的根本才能在高考中取得好成績。
(1)精解少量典型題、瀏覽較多的習題。
對一些典型的有代表性的習題,要深入地重點求解,真正把問題弄懂。怎樣選擇有代表性的典型習題呢?首先要選擇高考試題,高考試題概念性強,對概念、規律的考查深入、靈活,有的題立意新、情景新、設問角度新,有的題綜合性強,有的題含義深刻,非常值得我們深入鑽研。其次要選擇應用概念、規律重要內容、要領性強、比較靈活的習題,也選擇在解題方法、技巧上有一定代表性的習題。怎樣才是真正弄懂這些精選的習題呢?這只有通過自己獨立的反復思考才能達到,在解題過程中應該清楚地體會到應用了概念、規律的那些方面的內容來分析問題、建立關系,解這道題有幾條思路,應該選擇哪條思路解題,解題的關鍵在哪裡,怎樣求解解題方程,解得的結論有什麼物理意義,解這道題對概念、規律有什麼新的體會、認識,如果題目條件發生變化或已知和待求的倒過來問題是否能解等等。
對其他的一些問題也要經過一定的選擇,對這些題如果想一下就很清楚怎樣求解,就不一定花太多時間去做。有的題想一下不知道怎樣做就要認真對待,解出後要回頭想想當初卡在什麼地方解不出來,怎樣突破的。利用這種方法能在較短的時間內接觸較多的習題。
只要我們抓住解題的根本。我們會發現真正具有代表性的典型題並不很多,許多題都是大同小異的。盲目地追求解題的數量沒有多大效果,流傳的有的題概念上模糊或錯誤,這種題解了後會起不良作用,要注意避免。
(2)以物理概念、規律、方法為核心不斷總結經驗教訓,提高解題能力。
物理習題數量多、靈活性大,物理概念、規律、方法是解題的依據、出發點、靈魂,只有抓住這個根本,不斷歸納總結才能提高解題能力。
對習題的分類應從基本概念、規律上看。如從牛頓定律看把動力學問題分為:已知力求運動和已知運動求力兩種基本類型是很有用的,還可細分為:在恆力作用下的運動,在萬有引力作用下的天體運動,在彈性恢復力作用下的簡諧運動等。但從形式上把問題分為:斜面問題、豎直問題、水平問題等沒有什麼用處。
在解題過程中出現錯誤是常有的事,當代著名的哲學家波普爾認為:"我們能夠從我們的錯誤中學習。""我們的一切知識都只能通過糾正我們的錯誤而增長。"所以,我們應該抓住錯誤不放。發現錯誤是我們進步、提高的起點,許多錯誤是由於我們沒有真正理解概念、規律造成的,找到錯誤的根源就使我們對概念、規律的理解提高一步,這是根本上的提高,極為有用。常常有這種情況:一個概念性錯誤會在多道題目中一犯再犯,這說明這個概念較難、又很重要,我們還沒有找到錯誤的根源。應該引起我們的特別重視,可與同學討論或問老師受到啟發,但一定要通過自己獨立的反復思考才能真正解決問題。
有的較難的題我們一時解不出來,後來解出來了,但過了一段時間再看這道題又不會解了,這說明這道題沒有真正搞懂。我們經過反復思考找出症結所在,對提高解題能力很有好處。
通過一定量習題的求解,我們會發現在理解概念、規律方面的許多問題,也會發現解題方法、技巧方面的許多問題,還會積累不少的解題技巧、經驗,這些都要求我們及時地歸納總結。例如:
力學問題中研究對象的選定;
力學規律的選用;
怎樣利用圖象分析解決問題;
怎樣確定電勢的高低;
如何識別電路結構(串、並聯關系);
怎樣畫草圖找出解題思路;
如何利用光路可逆性等等。
還可對一些較大的問題進行總結,如:如何求物理量?這在力、熱、電、光、原子各部分中都會遇到,要總結出求物理量的兩條基本途徑:一條是根據定義,另一條是根據與該物理量有關的規律。正是後一條途徑給我們求解物理量開辟了廣闊的思路,提供了多種選擇。這個問題很值得總結。
好了,我想我的方法是涉及物理電,光,熱,力,原子等各個方面的具體方法,希望對你各方面有所幫助,祝你成功!學好物理!!!!!!!
5. 大學物理動力學問題(簡單)
假設物體在某一時刻相對於斜面的速度為V,此時斜面的速度為u,那麼物體相對於地面的水平速度為(u-vcos)θ)
如果系統水平方向的動量守恆,則:
Mu+m(u-vcosθ)=0
解為u=mvcosθ/(M+M)
兩邊的時間t積分:
∫udt=m/(m+m)∫vcosθdt
∫ UDT-----是斜面相對於地面的位移X
∫vcosθDT——物體相對於斜面的水平位移,即H/tanθ
因此,斜面的位移x=MH/(M+M)tanθ,
其實,直接用動力學基本方程(牛頓第二定律)分析也是可以的。
6. 我高三了,物理電磁學,電學,光學都不好,我要怎麼才能學好
最近各區縣的期中考試已相繼結束,同學們已經開始了電磁學內容的一輪復習。電磁學內容的考查在高考中的佔比要比動力學內容大,而且絕大部分同學感覺電磁學內容比動力學內容要難得多,高一高二時就學的不好,現在又如何有效復習好它呢?今天彭老師就來和大家聊聊這個話題。
一、基本的動力學儲備知識。
1、最基本的動力學儲備知識、規律和方法。
勻變速直線運動的規律,重力彈力摩擦力大小和方向的確定,力的合成與分解及其動態矢量三角形、正交分解法,共點力的平衡條件,牛頓第二定律的基本應用,連接體問題的受力分析方法:整體法和隔離法,曲線運動的條件及其處理方法:運動的合成與分解,平拋運動的規律,圓周運動的描述物理量及其關系式,豎直面內的繩模型和桿模型,功的大小計算、正負功判定,平均功率和瞬時功率的計算,重力勢能、動能和彈性勢能大小的計算,動能定理的熟練應用,機械能守恆定律的條件和應用,常見的幾個功能關系,動量和沖量的概念及其計算,動量定理的應用,動量守恆定律的條件和熟練應用等。
2、嫻熟的動力學三大解題思路。
①動力學的觀點:運動學規律+牛頓運動定律;②功能觀點:動能定理+機械能守恆定律或能量守恆定律;③動量觀點:動量定理+動量守恆定律。
以上所說的這些內容,如果掌握的還不到位,請你在課後再下點功夫。
二、五大章電磁學內容具體指導
1、靜電場:這一章的重點內容是:靜電場兩方面的性質——力的性質和能的性質,還有帶電粒子在靜電場(非勻強和勻強兩種情況)中的運動。學好這一章的關鍵,是對描述靜電場力和能的性質幾個抽象物理量的理解:場強、電場力、電場力做功、電勢能、電場力做功和電勢能變化的關系、電勢、電勢差、場強與電勢差的關系。要准確理解這幾個抽象的物理量,最有效的方法就是類比,將靜電場和熟悉的重力場去類比。這幾個概念分別對應於重力場中的:重力場強度(即重力加速度)、重力、重力做功、重力勢能、重力做功與重力勢能變化的關系、高度、高度差、重力加速度與高度差的關系。如果這幾個物理量理解上沒問題了,那麼在解決帶電粒子在靜電場中運動的問題時,就按照我們之前的力學思維處理就好了。只要你的力學基礎扎實沒問題,那麼靜電場的這部分也沒問題的。
2、恆定電流:這一章主要講了三方面的內容:基本概念、基本規律和電學實驗。基本概念這一塊兒主要有:電流強度、電動勢、電阻、電功、電功率、電熱等。這幾個概念重點是把握好電流強度和電動勢,特別是電動勢,它是本章比較重要也是最不好理解的一個物理量,此外還有電阻率的微觀推導。基本規律有部分電路歐姆定律、閉合電路歐姆定律、串並聯電路的特點、電阻定律、焦耳定律等。重難點是閉合電路歐姆定律,還有電阻熱功率的微觀解釋。實驗這一塊兒,是恆定電流這一章的重點,它的重要性要遠遠高於前兩部分內容。電學實驗的重點是:描繪小燈泡的伏安特性曲線、測金屬導體的電阻率、電表的改裝、測電源的電動勢和內阻、多用電表的使用這幾個實驗。其中,伏安法測電阻中的內外接和滑動變阻器的限流分壓接法是最基本的實驗基礎知識,必須熟練掌握。關於電學實驗的掌握應從下面幾方面著手:實驗原理、器材、步驟、數據處理、誤差分析、注意事項、儀表選擇和讀數、電路圖的連接、實驗的設計與創新。其中,圖像法處理實驗數據、誤差分析、實驗的設計與創新是難點,儀表的讀數和電路圖的連接是大多數同學易錯的。
3、磁場:在學習這一章時,我們同樣可以採用類比的方法,將磁場和靜電場的某些知識去做對比。磁場和靜電場都是場,既有相同的地方,也有不同的地方,通過比較,就會對之前靜電場知識的理解更深入一步,同時也會更好地學習磁場的內容。比如,將磁感應強度和電場強度類比、將磁感線和電場線類比、將磁場力(安培力和洛倫茲力)和電場力來類比。這一章的內容中,磁場對電流的作用——安培力不是太重要,相應的問題也較簡單。重點是帶電粒子在有界勻強磁場、組合場、復合場中的運動,同時它們也是本章的難點。要想學好它們,不光要有扎實的物理知識,還要有熟練的幾何知識。只要你能將帶電粒子的運動軌跡准確地畫出來,那這個問題就解決了大半,因此,請將你的圓規和尺子放在手邊,盡量把圖畫准確,尤其是空間想像能力不好的同學。圖畫准確了,一些關鍵性的幾何關系就很容易發現。剩下的就是之前的動力學解題套路和方法了。一些中上等程度的同學,如果你在解決這類綜合問題時,苦於帶電粒子復雜的運動軌跡的找尋,請你參看彭老師所寫的《動量定理在磁場洛倫茲力綜合題中的妙用》文章,那會讓你山重水復疑無路,柳暗花明又一村。
4、電磁感應:上一章磁場是電生磁,本章電磁感應是磁生電,同時它也是前面三章內容的綜合,所以,它的難度也較前面幾章要大一些。只有在前面幾章內容學好的前提下才能學好本章內容。本章的重點內容有:磁生電的條件、感應電流方向的兩種判定方法——右手定則和楞次定律、法拉第電磁感應定律、動生電動勢和感生電動勢本質、電磁感應中的圖像問題、單雙導體棒模型、導線框問題,難點是楞次定律和法拉第電磁定律的綜合應用、動生電動勢和感生電動勢本質、圖像問題、單雙導體棒問題、導線框問題。楞次定律的准確理解在於定律中「阻礙」的理解:誰阻礙誰?阻礙什麼?怎樣阻礙?阻礙的結果怎樣?它的幾個重要推論:增反減同、增縮減擴、來拒去留,在解題時很是簡捷,應充分理解和熟練應用。法拉第電磁感應定律是用來計算感應電動勢大小的工具,在具體計算時應區分是動生電動勢還是感生電動勢,它們應用的公式不同。圖像問題、單雙導體棒問題、導線框問題是電磁感應知識的具體應用。動生電動勢和感生電動勢本質在近幾年考得較多,應引起足夠的重視來。解決關於電磁感應的問題時,注意在用楞次定律或者右手定則判定感應電流方向、法拉第電磁感應定律確定感應電動勢大小的基礎上,有機結合動力學中的三大解題思路和方法,幾方面通力合作,才能搞定這些綜合問題。
5、交變電流:本章是上一章電磁感應內容的應用,類似於我們力學中萬有引力與航天是圓周運動內容在天體中的應用一樣。所以,只要你上一章電磁感應內容沒問題,那麼這一章就肯定沒問題。這一章的重點內容有:交表電流的產生、四值(最大值、瞬時值、平均值、有效值)的計算、理想變壓器、遠距離輸電、交變電流對電阻電容電感的影響。這一章是高考的非重點,一般以選擇題的形式考查。
好了,彭老師今天就和大家聊這么多關於高中物理電磁學內容的學習方法和建議,希望對同學們接下來的一輪復習有幫助,也祝願同學們的電磁學成績從此逆襲,晴空一鶴排雲上,加油!
7. 怎麼樣學好物理
學習高中物理的基本方法
物理學是人類對於自然界無生命物質的屬性、結構、運動和轉變的知識所作的規律性總結。人類對物理學的研究可分為兩個階段:經典物理學的研究和量子物理學的研究。經典物理學的研究特點是通過人們感官的感知或通過人為的裝置對物質結構、運動形式的直接觀察,得出規律性或特殊性的結論。量子物理學的研究特點是通過精密准確的、按照人為安排的高科技儀器的實踐檢測,而間接認識到組成物質內部結構的基本粒子運動和轉變的規律性或特殊性的結論。所以說物理學是一門實驗科學。因此,我們必須遵從物理現象、知識、規律的發現、研究的方法,採取相應的方法去學習物理。即:從課內外的活動性學習來講,必須做到以下幾點:
①.樂於觀察,善於觀察,記錄觀察、分析觀察、追求解決觀察中發現的問題;積極培養自己的觀察能力。如對彩虹的觀察,通常人們只注意欣賞他的美麗,而真正的觀察必須帶有一定的目的——為了研究它的彩色形成原因和虹與霓的彩色排列順序與什麼有關、或為了研究它為什麼會形成半圓弧形狀、或為了研究彩虹的半徑大小的決定因素、或為了研究彩虹與大氣氣候的關系、…… ;還要抓住與目的相關的主要現象進行觀察,實事求是地記錄觀察結果;在分析過程要抓住主要因素,忽略次要因素,以已有的知識和規律對現象進行分析,找出所觀察現象的原因或規律;若用已有的知識不能解決所觀察的現象,則必須通過重復實驗,觀察總結出新的規律性的東西和原因。
②.重視實驗、積極實驗、認真實驗、尊重實驗事實、科學處理實驗數據;積極培養自己的實驗能力、科學的思想方法和科學精神。如我們將在高一物理學習中遇到的《驗證牛頓第二定律》實驗,他將使我們學會怎樣去校驗一個物理定律是否正確,學到做物理實驗的基本方法,做實驗不僅要動手,而且要動腦去設計、去理解、去科學記錄數據和處理數據、還要學會分析概括出實驗結論;只有積極動手做好這個實驗才能加深對牛頓第二定律的理解,只有認真了才能得到符合事實的結果,只有真正尊重實驗事實數據才能發現本實驗存在誤差、才能理解和找到產生誤差的原因、或者發現實驗過程中出現的操作失誤,只有學會科學的思想方法才能設計實驗並通過科學處理數據直觀地得出實驗結論;通過實驗我們才能掌握相關儀器的使用和進一步明白它的原理,通過實驗我們可以達到理論聯系實際的目的,可以體驗科學家進行科研實驗的科學思想和精神。
高中物理與初中物理的最大差異是:對物理量和物理規律的研究定量化、抽象化、表述的嚴謹科學化、實驗的精確化、解題過程的論文式規范化、物理情景動態化。物理學是一門定量科學。所以,要學好高中物理還必須做到以下幾點:
①.要重視理解。所謂理解就是要弄懂物理概念和規律的確切含義,以及物理規律的適用條件,能用適當的形式(如文字、公式、圖像或數表)進行表達。並能解釋和說明有關自然科學現象和問題。失去了理解能力就失去了其它能力的基礎。下面就理解的方法作幾點闡述。
——Ⅰ.怎樣理解物理概念或物理量的定義?一般物理概念的定義可分為比值定義法、乘積定義法、文學語言定義法。一般情況下,描述物質屬性的物理量採用比值定義法。理解這種方式定義的物理量與比值法的區別在於:它不是反映基本屬性,它反映的是這些物理量的決定因素;並且都有自己的成立條件和適用范圍;每個物理量符號都有確切的含義;應用於解決實際問題時因情況的不同有不同的解法。如W=FScosα可理解為:功跟作用在物體上的力成正比,跟物體的位移成正比,跟力和位移之間的夾角的餘弦成正比;或理解為:功的大小等於作用在物體上的力跟物體在力的方向上的位移的乘積;該公式在F為恆力或平均力的條件下才成立;當對物體做功的力為變力時,取平均力或分成若干階段求解後再求代數和;若力的大小恆定,方向始終與速度方向在同一直線上,則該力做功不是與位移相關,而是與路程相關;若對物體做功的恆力是場力,則做功與路徑無關,取決於始末位置的沿場力方向的距離;若求合力的功方法有好幾種——先求合力後求功、或先求每個力的功再求所有功的代數和、或先求各階段的功再求所有階段功的代數和;或先建立直角坐標系然後分解力,再求各方向的合力做的功,最後求各向功的代數和。有的物理概念或物理量其意義是廣義的、具有一定性質、特徵、條件、關系的,無法用一個數學表達式加以表達,必須用文學語言加以概述——文學語言定義法。如:力、運動、振動、曲線運動、力臂、萬有引力、靜電感應、靜電平衡、電磁感應、光電效應、干涉、衍射、裂變、聚變、鏈式反應、……,理解這些概念的定義,應抓住能反映物理現象的性質、特徵、條件、關系的關鍵字詞,區分容易混的概念或錯誤的經驗印象,把它與物理事實對應起來,形成一定的物理模型或形象。這樣,我們就可以熟練地從相近的物理表述中辨析出正確的說法。如周期、頻率、放射性元素的半衰期、交流電的有效值、……等物理量的定義也是如此;要具體計算它的值,就必須依據不同的物理情況進行分析、列式求解。
——Ⅱ.怎樣理解物理規律?物理學通常用文學語言表述、公式表述、圖像表述或數表表述的方法來描述物理規律。如簡諧運動的規律可從動力學的角度用文學語言表述為:「如果一個質點在平衡位置附近來回往復運動,始終受到一個指向平衡位置的回復力作用,且回復力的大小與質點離開平衡位置的位移成正比,則這個振動就是簡諧運動」。用數學語言表述為:「F= - kx」。用圖像表述為右圖(1)所示。 光從這三方面來理解物理規律還不夠,還要從實際物理過程中的每一個物理量的變化規律和物理圖景的想像圖示來理解。如簡諧運動的位移、回復力、加速度、速度、動能、勢能、機械能、時間、對稱性、v-t圖像、x-t圖像、振幅、周期、頻率、幾種常見模型以及跟非簡諧振動的比較。還要理論聯系實際地去理解。如哪些振動可以近似看作簡諧運動?簡諧運動有哪些實際應用?研究簡諧運動有什麼價值?除此外,有的物理規律用於解決實際問題時常有很多不同的方法。如牛頓第二定律,可據矢量性進行分解應用,也可以按隔離法或整體法應用牛頓第二定律解題,還可利用牛頓第二定律的瞬時性分析解決變加速運動中的加速度問題、超重問題、連接體問題、圓周運動問題、天體問題、振動問題、撞擊問題……。不同的物理規律有不同適用條件,且不能只記表達規律的公式而不顧條件。
——Ⅲ.怎樣理解物理信息資料?物理課本中的閱讀資料、物理練習題、物理課文、科普雜志、中學生學習讀物等都是我們中學生為學好物理應該閱讀的。但閱讀這些物理信息資料與閱讀其它文章不同,若是物理學史、或科學家傳記,必須讀懂時代背景與科學發現的艱辛,科學家的科學精神、科學思想與科學方法;讀懂科學發現的成果及其社會價值;在理解其精髓的同時內化成自己的思想、世界觀、和追求真理的動力。若是物理科學的信息資料、或習題,應依據所提供的信息資料正確想像物理情景和過程,建立起正確的物理模型,分析已知信息跟要求解的問題之間的聯系,或理出資料所描述的物理量之間的關系,用數學語言加以表述;再利用已有的規律與新理出的規律聯系起來解決問題。切忌用已有的經驗或既成模式代替理解的思維過程,以避免產生錯誤的結論。
②.學會自學。不學會自學就不能培養思維能力,不通過自學很難形成對物理概念規律的深刻理解和實現對知識的正確運用。自學的過程要做到:按上述理解的要求理清概念,羅列出概念的內涵和外延、與已有的相似概念進行比較區分;列出所學物理規律的內容描述和適用條件;通過試應用規律解題,體會運用規律時應注意的問題;寫出相關演示實驗或應用設備的原理;應用數學工具和邏輯推理去推導或證明相關的推論。
③學會推理和表述。從高考的能力要求和社會工作的能力要求來看,推理是分析解決問題的關鍵。在學習物理的過程中要雜實地進行解題訓練,對作業不匆忙應付。要追求解題過程嚴密的想像、推理和熟練的邏輯思維,力爭對推理得出的結論進行正確的判定和盡可能准確簡練的表述。一切無法表述的現象都是不會達到推理最高層次的表現。
④學會分析綜合與評價 所謂分析綜合,就是力求能獨立地對所遇到的物理問題進行具體分析;弄情所給物理問題中的物理狀態、物理過程、物理情境,找出其主要作用的因素及有關條件;能夠把一個復雜的問題分解成若干個簡單的問題找出它們之間的聯系;能夠靈活的運用多方面的物理知識綜合解決所給的問題。用我們通常的一句俗話來說就是生題熟做,熟題生做。遇到很熟悉的問題要把它當作陌生問題來具體分析解決,防止套題;遇到陌生的復雜問題要把它分解為若干很熟悉的問題來解決,防止出現茫然而無從著手。所謂評價,就是通過物理學習產生對物理知識的理解、內化,並納入已有的知識范疇,轉化為自己對事物判別的價值觀;同時能對自己的學習成果作出價值判斷,通過類比區分相近知識,學會對別人或自己的解題過程的做出正誤評判,並對復雜物理問題的不同解法的依據、思路、方法技巧作出優劣評定。只要我們的學習存在以上所說的高級心理過程,我們學到的知識就能產生作為。
⑤積極培養自己靈活運用數學工具解決物理問題的能力。
⑥做好物理作業 一個小實驗、或一個研究性學習課題、或一道習題,都是一個小科研課題,一個課題的解決過程及其表述,就相當於寫一篇小論文。它要求根據可靠、邏輯嚴密、推理條理清晰、物理語言和數學語言的運用准確簡潔、過程的書寫規范、結論明晰。平常的學習中,我們如果能按這樣的要求去嚴格地完成作業,則我們所學到的物理知識將是完整的、嚴密的、靈活的、能熟練運用的、已納入自己的知識和能力范疇的可以產生思想的一部分;我們的能力就會大大提高,我們就再也沒有物理太難學的感覺了。
物理學蘊含著極其豐富的科學思想和科學方法。物理思想有:對稱思想、類比思想、守恆思想、量子思想、相對思想、系統思想、統計漲落思想、互動轉變思想、……等。物理方法有:模型法、整體與隔離法、等效法、臨界法、分解與合成法、假設法、圖象法、極限法、……等。我們必須通過物理學習獲得物理思想和物理方法。這就要求做到:①.認真預習。做好預習筆記,列好不能解決和有自己想法、質疑的問題;嘗試自學運用知識的能力。②認真聽課。聽課是學習物理的最關鍵環節,一定要注意老師強調的重點。這往往是高考的重點,也是最能體現物理思想方法的地方。帶著預習問題來學。記性不如爛筆頭,做好聽課筆記,特別要記下哪些重要的特殊理解點、重要物理思想方法。積極思考和參與課堂活動、發表自己的見解、學會流利簡練地進行口頭表述。③.課後要積極地去提煉學習所得、實踐相關的物理思想和方法,並總結成自己的東西。
8. 物理怎麼才能學好
首先你要徹底理解每節你所學的知識點即先把課本搞熟(上面的例子及題)一定要重視課本!!不要一味的做題。
在做題時注意與圖形結合在腦中造像要明白整個物理過程做出圖
圖形結合能起到事半功倍的效果。
要整理做錯的題而不是做過的題,當然那些屬於十分低級的,而非知識掌握不牢所造成錯題也是不用整理的。還有整理完並不算完了要再後寫上自己的所得所感、以後的注意點,在一個就是一定要定期查看錯題集、不能讓它浪費了。當別人考試前抱著一大本書時
你就不用了
用心看你的錯題集再查查漏補補缺就行了
到高三後更能體現出錯題集的價值
所以一定要做好錯題集!
要建立自己的知識體系
分清重點與非重點高效復習。說道學習物理的訣竅
我的就是造像。當然了,這是我的總結,具有特殊性
但希望對你有所幫助,以後要靠自己總結出適合自己的學習方法,(努力是不可少的!)
……
另外,學習物理非常注重過程,一個認知、理解、運用的過程。
1.認知:利用身邊的事物或現象甚至是老師敘述的一些例子來幫助自己去充分認識它,對它產生興趣。
2.理解:用理解的方式去記憶公式、定理、試驗等等。可以用形象思維等等巧妙的方法去理解和記憶。例如,什麼是真空,可以這樣去理解:真空就是真的空了,什麼都沒有了。
3.運用:一類是來應付考試,另一類則是來解釋身邊得一些物理現象。
所以,在學習時,首先,不要有懼怕的心理,因為你前一段沒學好的經歷可能會暗示你什麼,這可能會導致你惡性循環。努力告訴自己「我能行!!!」其實心理暗示很有用哦!不過,為了給自己增加底氣,最好還是做好預習工作,做到心裡有數。
其次,上課要緊跟老師的思路,適當地記些筆記,記一些書本上沒有明確闡明的甚至是遺漏的以及自己容易出錯的知識點。課下抽時間多練一練,別以任何理由來推託,從而放棄了練習的最佳時期,最後只能導致悲劇的發生。
最後一點也是最重要的一點,就是一定要做好及時總結。例如,上次考試的卷子發下來了,雖然認真訂正過了,但還要想想為什麼會錯?正確答案是怎麼算出來的?如果下次再考到還會錯嗎?等等。
我想,通過這些學習方法,一定能學好物理的。
9. 物理高中怎麼才能學好
高中物理學三種東西——概念,實驗定律,模型
1,概念。這是非常細碎的東西,但是簡單容易理解。比如,我們學到靜電場,書上告訴你電場強度定義式 ,這個公式不需要問為什麼,因為我們這樣定義電場強度。再比如電流,我們定義電流為單位時間通過截面的電荷量,那麼公式 也不需要問為什麼。如果你某個概念沒有掌握,直接翻書就行。
2,定律。定律也叫實驗定律。他們都是科學家通過做實驗得出的規律,他們不能通過其他物理或者數學規律經過數學推導得來。高中物理中所有的實驗定律,其背後的實驗都必須掌握。
自由落體定律——著名的伽利略斜面實驗一
牛頓第一定律——著名的伽利略斜面實驗二 伽利略這兩個斜面實驗里包含了三個思想實驗,是高考重要考點
Yuanqi Li:伽利略在高中物理中的三次思想實驗
牛頓第二定律——這個實驗書上有,實驗探究了力,質量,加速度的關系
牛頓第三定律——實驗很簡單
胡克定律——彈簧彈力和伸長量的實驗研究
萬有引力定律——牛頓的思考與卡文迪許扭秤(牛頓的思考過程非常精彩,必修二課本里有)
機械能守恆定律——著名的伽利略斜面實驗二(和牛頓第一定律一樣)
庫侖定律——庫倫扭秤實驗
Yuanqi Li:兩個扭秤——卡文迪許扭秤與庫倫扭秤
歐姆定律,焦耳定律——實驗初中的時候就講過
電阻定律——初中做了定性實驗,高中引入電阻率概念後有了定量規律
法拉第電磁感應定律——電生磁磁生電實驗都是重要物理學史考點
楞次定律——也是實驗
斯涅爾定律(就是初中光學就學過的,光折射反射定律)——初中做過實驗
其實在獲得這些實驗定律以後,還會從這些定律中經過數學推導獲得一些定理。這些定理是可以推導得到的,建議最好掌握定理推導。如果某條定理沒有出現在書上,那麼不建議記憶該定理。
舉個書上定理推導的精彩例子——圓周運動向心加速度。書上只用了矢量相加減的數學規律,還有圓的相關數學規律,就推出了精彩的定理。
以上兩點——概念和定律,只需要看書就可以完全掌握。而且,這之後,所有的高中物理題目,使用的公式僅限於以上的公式——定義式,和書上的定律,定理。基礎不好的同學,一定要先確保把1,2兩點學會,再學第三點。
如果有同學對物理學史感興趣,可以看我b站發的物理學史系列講解視頻,可以當成輕松的科普和高考相結合: https://www.bilibili.com/video/av85280905/
3,模型
模型的學習一般就是來源於老師的課堂筆記或者一些題目訓練。物理模型的意義一句話總結,叫:「補全你的方程組」
學物理的時候,在學會了概念和實驗定律,推導完相關定理以後,老師們一般就開始講各種各樣的模型。做題的時候,我們也在訓練各種各樣的模型。
比如,學萬有引力一章,學完萬有引力定律和卡文迪許扭秤實驗後,就開始學各種模型(或者叫題型)諸如變軌問題,雙星模型,星體密度計算等等。
如果你學完以後,背了一堆結論,或者是瘋狂刷題,做一道算一道,那這些物理模型對你就沒有意義。
舉個例子,雙星問題。
兩星相距 ,列兩個牛頓第二定律方程(萬有引力等於向心力)。 ,
發現方程里有四個未知數——兩星的半徑 ,兩星的周期 ,但是只有兩個方程。
這時候,學過這個模型的同學就知道, , (維持雙星系統穩定,必須有這兩個關系)。從而補全了方程組。
到此,缺少的那個方程補上了。
因為整個高中階段,涉及的概念,定律,實驗並不多。學習物理模型占據了主要的時間。通過這個例子,同學們感受一下,學模型究竟是學什麼。
再舉個例子,星體密度問題。
學過這個模型的同學,學會的不應該是某個星體密度公式,而應該是如何列方程解出星體密度——列出牛頓第二定律——星體表面某個物體,萬有引力等於重力。然後,重力等於質量乘以該星體重力加速度,萬有引力表達式中的距離等於星體半徑,星體質量可以用密度和球體積公式表達。
(也許有同學注意到了,我在前面一直強調「方程」兩個字。列方程,是學習高中物理必須養成的習慣,也是從初中物理到高中物理的一個重要轉變。初中學物理的時候,是一個計算式解出一個量,逐步解出答案。但是這種方法在很多問題上會遇到困難。比如小學就學過的雞兔同籠,要是列式計算,必須用巧妙辦法才可以做,但是列方程解方程就很簡單。另外,把方程規范地列出來,也便於改卷的時候給過程分)
當你學會了概念,掌握了基本定律,積累了模型,就可以做高考題了。下面我舉例說明,怎樣從基礎到達高考題。以力學中小木塊問題為例:
小木塊的運動,我們總是可以分成幾個過程,以及幾個狀態——初始狀態,中間狀態,結束狀態。
整個運動過程分解為:初始狀態--過程1--中間狀態1--過程2--中間狀態2-過程3--結束狀態。如果一道題足夠復雜,它可以有很多個中間狀態,也就會在狀態間夾雜很多過程。但是畢竟高考題復雜程度有限,一般的高考題都是只有一個中間狀態。也就是典型的:初始狀態--過程1--中間狀態--過程2--結束狀態。我們稱之為——三狀態,兩過程。
完成一道力學題,就需要搞清楚,在三個狀態時,木塊的速度,位置。在兩個過程中,木塊的受力,以及根據受力計算出加速度。
我們有木塊的初始位置和初始速度,根據過程1的受力,計算出過程1的加速度,從而用運動學方法列出關於中間狀態的速度,位置的方程。再根據過程2的受力,計算出過程2的加速度,從而用運動學方法列出關於結束狀態的速度,位置的方程。進而解出答案。
以上是做題流程的講解。
下面,我們從最基礎的知識點開始,解決力學木塊問題。(一切從書上最基本的知識點出發,是我處理高考問題的一貫宗旨)
目錄:
運動學
動力學木塊問題
曲線運動
萬有引力
功和機械能
動量
靜電場
恆定電流
磁場
電磁感應
首先,你需要掌握運動學相關知識。
掌握加速度定義式 以後,變形可以得到: ,然後使用圖像法可以推出位移公式 ,進而推出所有運動學規律:速度-位移公式,平均速度公式,時間中點瞬時速度公式,等等,這些推導書上都有,請務必掌握。
其次,你需要掌握靜力學相關知識,知道彈力,摩擦力的性質(也就是掌握它們的概念),會做受力分析,懂得整體法和隔離法。請先做一下下圖中的受力分析,分析出所有的力,討論所有情況,尤其是所有摩擦面對每個物體的摩擦力。若你不會做,或者對任何一個例子的分析沒有把握,請盡快向老師,同學請教。
註:④中的兩個木塊質量,以及他們接觸面的摩擦系數,取值都和③一樣
註:⑥為自鎖現象,2013年新課標全國卷計算大題第一題考了該點,當F和水平面夾角與摩擦系數滿足一定關系的時候,無論用多大的力,都無法推動木塊
註:11,12為圓形軌道,11軌道光滑,12軌道有恆定阻力f
拋體運動的運動分解,矢量分解,功和機械能,靜電場電場強度定義,也是需要的儲備知識。
若以上幾點儲備知識,任何一條不會或者不熟,請盡快查閱課本,或者問一下同學。
儲備知識學會以後,請盡量忘掉平時看的那些二級結論,從最基本的物理規律,求解下面這些題目中,小木塊的運動。你會發現,其實只要搞清楚上面這些小木塊疊放時候,各種情況的受力分析,那麼求解下面這幾個看似很像「綜合題」的例題的時候,只要正確分析受力,然後套上運動學公式即可得出答案,無論它怎麼變換形式,都逃不出你的掌心。
前三題,木塊或者組合木塊受拉力F,在光滑地面拉動距離為l,進入有摩擦的地面後,撤掉拉力。第四題,兩個木塊均有初始速度v0,先在光滑地面運動,再進入有阻力地面。前四題,木塊均為小木塊(尺寸忽略不計)第五題,上面一個小木塊,下面是長木板,給出長木板長度,長木板撞到牆後停下,而小木塊與牆的碰撞(如果發生碰撞的話)看做完全彈性碰撞
第6/7題,小木塊靜止釋放,第七題小木塊帶電,第七題中的電場,僅僅出現在拋體運動那一部分的空間
1
2
3
4
5
長木板撞到牆後停下,而小木塊與牆的碰撞(如果發生碰撞的話)看做完全彈性碰撞
6
7
勻強電場僅存在於拋體運動發生的那一部分空間
希望這條回答,可以讓同學們明白高中物理該學什麼,把精力用在要點上,好鋼用在刀刃上。
下面放出前面六個小模型的答案,以及其中一種討論情況的詳解。同學們體會一下第三個例子的討論。本例均默認最大靜摩擦力等於滑動摩擦力。學有餘力的同學也可以嘗試一下討論最大靜摩擦力大於滑動摩擦力的情況。(其實應付高考就按照等於就夠了)圖中沒畫重力和彈力,只畫了摩擦力。
①②僅畫出了摩擦力,①②各物體靜止
下面討論模型③,需要分情況討論:
下面詳解一下模型③的第二種情況,不會推導的同學可以模仿一下,如果上面的簡略推導已經看懂,或者自己能夠進行詳細推導,就可以跳過下面這一小段詳解。
詳解模型③情況ii:
注意:m M相對運動,無法用整體法求加速度
隔離法:M初始靜止,要開始向右運動,必須有向右的加速度,它與地面摩擦力向左,那麼,M受到來自m摩擦力向右,且為滑動摩擦
注意,圖中的答案解析部分,受力示意圖只畫出來了摩擦力,還有外力F,沒有畫重力和彈力,摩擦力的大小已經直接在圖中標出。
然後,我們進一步思考模型③,它真的只有三種情況嗎?不,其實還有第四種情況,下面寫出了第四種情況的討論。
但對於③中的iv情況 : m M相對靜止,一起向右運動。這要求m M間摩擦力為靜摩擦力
模型③終於討論完了,下面我們討論模型④,情況簡單了一些,恭喜你已經翻越了最難的一個山峰。
註:④中的兩個木塊質量,以及他們接觸面的摩擦系數,取值都和③一樣
條件為:
條件為:
即為:
條件為:
模型⑤的分析和模型3,4一樣,分情況討論並討論條件。模型⑤確實復雜了一些,你可以不把它完整寫下來,只要能說清楚該如何分析受力,你就算合格了。
下面是模型⑥的答案,自鎖現象,非常常見的一個模型,這種分析方法很重要,當力F非常大時,如何分析。
ii:靜止:
討論滑動條件:
剩下的幾個模型,以及後面的「綜合題」例子,建議大家自己思考一下,可以仿照模型③,模型④的討論。