Ⅰ 怎麼學高一物理,高一物理的重要知識點是什麼
今年剛好給高一上課,就隨便說幾句
高一物理主要由力學和運動學構成。
運動學的的重點內容是:參考系,質點。加速度,勻速直線運動,勻變速直線運動。以及打點計時器實驗(1勻變速直線運動加速度的測定2自由落體運動加速度的測定)
關於運動學常考題:參考系質點的判斷。位移,速度,速度變化,加速度等概念以及計算。打點計時器的數據處理(速度計算,加速度計算(逐差法))。追擊問題,相遇問題,剎車問題,上拋問題……
力學部分重點內容:作用力與反作用力,牛三,彈力,摩擦力。平行四邊形法則(或三角形法則)。牛一,牛二(最重要),超重失重。
關於力學的常考題型就多了:彈力摩擦力的判斷,受力分析,力的合成與分解。最重要的就是牛二的應用,應用相當廣泛,題型非常多,這里就不詳細說明了。
物理學習的時候首先要建立良好的興趣。物理是一門來源於生活的學科。其實很多東西在生活中都能找到原型,所以物理知識點的記憶可以聯系生活中的實例。進行理解性記憶。另外,注意靈活應用,物理的題是做不完了,做題不求多爾在精。坐完了一道就要回坐一系列,能舉一反三,觸類旁通……好了。就這些了。祝你學習愉快,學業進步
Ⅱ 我是高一的學生!物理高一要掌握哪些呢
高一物理化學上學期知識點歸納
高一物理公式總結
一、力 力的平衡
1. 重力:G = mg
2. 摩擦力:
(1) 滑動摩擦力:f = μFN 即滑動摩擦力跟壓力成正比。
(2) 靜摩擦力:①對一般靜摩擦力的計算應該利用牛頓第二定律,切記不要亂用
f =μFN;②對最大靜摩擦力的計算有公式:f = μFN (注意:這里的μ與滑動摩擦定律中的μ的區別,但一般情況下,我們認為是一樣的)
3. 力的合成與分解:
(1) 力的合成與分解都應遵循平行四邊形定則。
(2) 具體計算就是解三角形,並以直角三角形為主。
二、質點的運動------直線運動
1)勻變速直線運動
1.平均速度V平=S/t (定義式) 2.有用推論Vt^2 –Vo^2=2as
3.中間時刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0
8.實驗用推論ΔS=aT^2 ΔS為相鄰連續相等奔?T)內位移之差
9.主要物理量及單位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s
時間(t):秒(s) 位移(S):米(m) 路程:米 速度單位換算:1m/s=3.6Km/h
註:(1)平均速度是矢量。(2)物體速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是決定式。(4)其它相關內容:質點/位移和路程/s--t圖/v--t圖/速度與速率/
2) 自由落體
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt^2/2(從Vo位置向下計算) 4.推論Vt^2=2gh
注:(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速度直線運動規律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下。
3) 豎直上拋
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推論Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值。(2)分段處理:向上為勻減速運動,向下為自由落體運動,具有對稱性。(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
1. 速度公式: vt = v0 + at ①
2. 位移公式: s = v0t + at2 ②
3. 速度位移關系式: - = 2as ③
4. 平均速度公式: = ④
= (v0 + vt) ⑤
= ⑥
5. 位移差公式 : △s = aT2 ⑦
公式說明:(1) 以上公式除④式之外,其它公式只適用於勻變速直線運動。(2)公式⑥指的是在勻變速直線運動中,某一段時間的平均速度之值恰好等於這段時間中間時刻的速度,這樣就在平均速度與速度之間建立了一個聯系。
6. 對於初速度為零的勻加速直線運動有下列規律成立:
(1). 1T秒末、2T秒末、3T秒末…nT秒末的速度之比為: 1 : 2 : 3 : … : n.
(2). 1T秒內、2T秒內、3T秒內…nT秒內的位移之比為: 12 : 22 : 32 : … : n2.
(3). 第1T秒內、第2T秒內、第3T秒內…第nT秒內的位移之比為: 1 : 3 : 5 : … : (2 n-1).
(4). 第1T秒內、第2T秒內、第3T秒內…第nT秒內的平均速度之比為: 1 : 3 : 5 : … : (2 n-1).
三、牛頓運動定律
1. 牛頓第二定律: F合= ma
注意: (1)同一性: 公式中的三個量必須是同一個物體的.
(2)同時性: F合與a必須是同一時刻的.
(3)瞬時性: 上一公式反映的是F合與a的瞬時關系.
(4)局限性: 只成立於慣性系中, 受制於宏觀低速.
2. 整體法與隔離法:
整體法不須考慮整體(系統)內的內力作用, 用此法解題較為簡單, 用於加速度和外力的計算. 隔離法要考慮內力作用, 一般比較繁瑣, 但在求內力時必須用此法, 在選哪一個物體進行隔離時有講究, 應選取受力較少的進行隔離研究.
四------曲線運動 萬有引力
1)平拋運動
1.水平方向速度Vx= Vo 2.豎直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.豎直方向位移(Sy)=gt^2/2
5.運動時間t=(2Sy/g)1/2 (通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向與水平夾角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向與水平夾角α: tgα=Sy/Sx=gt/2Vo
註:(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運動與豎直方向的自由落體運動的合成。(2)運動時間由下落高度h(Sy)決定與水平拋出速度無關。(3)θ與β的關系為tgβ=2tgα 。(4)在平拋運動中時間t是解題關鍵。(5)曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期與頻率T=1/f 6.角速度與線速度的關系V=ωR
7.角速度與轉速的關系ω=2πn (此處頻率與轉速意義相同)
8.主要物理量及單位: 弧長(S):米(m) 角度(Φ):弧度(rad) 頻率(f):赫(Hz)
周期(T):秒(s) 轉速(n):r/s 半徑(R):米(m) 線速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
註:(1)向心力可以由具體某個力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直。(2)做勻速度圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,但動量不斷改變。
3)萬有引力
1.開普勒第三定律T2/R3=K(=4π^2/GM) R:軌道半徑 T :周期 K:常量(與行星質量無關)
2.萬有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它們的連線上
3.天體上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天體半徑(m)
4.衛星繞行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步衛星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天體運動所需的向心力由萬有引力提供,F心=F萬。(2)應用萬有引力定律可估算天體的質量密度等。(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同。(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小。(5)地球衛星的最大環繞速度和最小發射速度均為7.9Km/S。
五----機械能
1.功
(1)做功的兩個條件: 作用在物體上的力.
物體在里的方向上通過的距離.
(2)功的大小: W=Fscosa 功是標量 功的單位:焦耳(J)
1J=1N*m
當 0<= a <派/2 w>0 F做正功 F是動力
當 a=派/2 w=0 (cos派/2=0) F不作功
當 派/2<= a <派 W<0 F做負功 F是阻力
(3)總功的求法:
W總=W1+W2+W3……Wn
W總=F合Scosa
2.功率
(1) 定義:功跟完成這些功所用時間的比值.
P=W/t 功率是標量 功率單位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw
(2) 功率的另一個表達式: P=Fvcosa
當F與v方向相同時, P=Fv. (此時cos0度=1)
此公式即可求平均功率,也可求瞬時功率
1)平均功率: 當v為平均速度時
2)瞬時功率: 當v為t時刻的瞬時速度
(3) 額定功率: 指機器正常工作時最大輸出功率
實際功率: 指機器在實際工作中的輸出功率
正常工作時: 實際功率≤額定功率
(4) 機車運動問題(前提:阻力f恆定)
P=Fv F=ma+f (由牛頓第二定律得)
汽車啟動有兩種模式
1) 汽車以恆定功率啟動 (a在減小,一直到0)
P恆定 v在增加 F在減小 尤F=ma+f
當F減小=f時 v此時有最大值
2) 汽車以恆定加速度前進(a開始恆定,在逐漸減小到0)
a恆定 F不變(F=ma+f) V在增加 P實逐漸增加最大
此時的P為額定功率 即P一定
P恆定 v在增加 F在減小 尤F=ma+f
當F減小=f時 v此時有最大值
3.功和能
(1) 功和能的關系: 做功的過程就是能量轉化的過程
功是能量轉化的量度
(2) 功和能的區別: 能是物體運動狀態決定的物理量,即過程量
功是物體狀態變化過程有關的物理量,即狀態量
這是功和能的根本區別.
4.動能.動能定理
(1) 動能定義:物體由於運動而具有的能量. 用Ek表示
表達式 Ek=1/2mv^2 能是標量 也是過程量
單位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 動能定理內容:合外力做的功等於物體動能的變化
表達式 W合=ΔEk=1/2mv^2-1/2mv0^2
適用范圍:恆力做功,變力做功,分段做功,全程做功
5.重力勢能
(1) 定義:物體由於被舉高而具有的能量. 用Ep表示
表達式 Ep=mgh 是標量 單位:焦耳(J)
(2) 重力做功和重力勢能的關系
W重=-ΔEp
重力勢能的變化由重力做功來量度
(3) 重力做功的特點:只和初末位置有關,跟物體運動路徑無關
重力勢能是相對性的,和參考平面有關,一般以地面為參考平面
重力勢能的變化是絕對的,和參考平面無關
(4) 彈性勢能:物體由於形變而具有的能量
彈性勢能存在於發生彈性形變的物體中,跟形變的大小有關
彈性勢能的變化由彈力做功來量度
6.機械能守恆定律
(1) 機械能:動能,重力勢能,彈性勢能的總稱
總機械能:E=Ek+Ep 是標量 也具有相對性
機械能的變化,等於非重力做功 (比如阻力做的功)
ΔE=W非重
機械能之間可以相互轉化
(2) 機械能守恆定律: 只有重力做功的情況下,物體的動能和重力勢能
發生相互轉化,但機械能保持不變
表達式: Ek1+Ep1=Ek2+Ep2 成立條件:只有重力做功
Ⅲ 高一物理都學哪些內容啊【詳細點,謝謝】
其實 高一的物理 主要就是關於力即使包括靜力學和動力學靜力學即是第四章 物體的平衡動力學即是第二三五六章而後 就是力學的綜合即是第七章和要提前預習的高二上的第八章下面就讓我來詳細說明一下:第一章:力(這張是簡單介紹力,但學習不可馬虎,這章學好了 後面的受力分析就輕鬆了)第二章:直線運動(這章相對較簡單,不過公式較多,一定要記好 )第三章:牛頓運動定律(這章也相對較簡單)第四章:物體的平衡(這章只要把受力分析做好 即第一章學好就輕鬆了)第五章:曲線運動(曲線運動也相對較簡單,只要注意平拋運動和向心運動就行了)第六章:萬有引力定律(這章一定要認真聽講,不是說很難,而是不太好理解 但只要認真聽了的,一定會很簡單,注意記公式,這章公式也很多,這章輕松的就是,一般只會單獨考,不會出現綜合)第七章:機械能(這章就要難一些了,主要是動能這一節,與後面的大綜合密切相關,相當重要)高二上提前預習(但要考的)第八章:動量(這是極其重要的,重要程度可與第七章相比,同樣會有力學的大綜合)而後就是你自己多練題,雖然題海戰術很不好,但理科就是題練出來的!總的來說 高一的較簡單 主要就是上課要認真聽講,然後 一定一定要多做題!祝你成功!
Ⅳ 高一物理應該怎麼學
物理的學習方法有:了解高中物理的知識點、課上認真聽講、全面記錄好筆記、一定要學會分析總結錯誤、做好及時的復習等。
了解高中物理的知識點
物理知識包括運動學【勻變速直線,曲線運動】,相互作用力,牛頓運動定律,萬有引力,機械能,電場,磁場,分子,動量守恆定律,近代物理學史。
一定要掌握各個知識點概念
可以自己根據書本或者教輔總結知識點,特別要搞懂它的性質【通過圖像,事例,題目理解,而不能死記硬背】
課上認真聽講,積極思維,做好適當的記錄
課上認真聽講,要做到明白教師講課的重點,聽課也要有節奏,要做到這一點就要積極思維。
做好適當的記錄是指記下關鍵的地方、自己有疑問的地方、典型的例子及解答的關鍵。一般內容用本子記錄,對一些概念的補充說明可以直接記在書本上。
必須全面記錄好筆記
筆記上要把所有知識全面記錄下來,課堂上記錄重點,課下加以補充。由於高中物理需要補充的知識太多,把筆記記錄在課本上的做法非常不可取,一個原因是需要記錄知識太多而課本空白區域面積太小,再一個原因是如果記錄在課本上會導致課本亂七八糟,既影響記憶效果,又影響心情。
一定要學會分析總結錯誤並把自己所犯錯誤放大
平時對每一次的練習、考試中的任何錯誤都不能輕易放過。平時千萬不要積累錯誤,高中物理知識太多,每天學習任務繁重,今天積累幾個明天積累幾個,到最後就會積重難返!另外一定要學會分析錯誤原因、學會歸納、歸類、舉一反三、一題多解、多題歸一!
做好及時的復習
上完課的當天,必須做好當天的復習。復習的有效方法不只是一遍遍地看書和筆記,而最好是採取回憶式的復習:先把書、筆記合起來回憶上課時老師講的內容,例如:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。
然後打開書和筆記本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來了,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
Ⅳ 高中物理知識有哪些記憶方法
高中物理的學習方法
1.其實高中物理沒有想像中的那麼難,不管是平時練習還是考試,最重要的一點就是總結。不論是力學還是電磁學,每一個章節都有這個章節經常出現的題目,每一道題都有相似的解法,我們如果能夠很好的總結一下每個章節大概都會出現哪種題型,這樣考試時也不過就是在基本題型的基礎上稍加改動,考試時也就不至於得分很低了。還有一點就是,考試如果遇到沒見過的新題,最重要的一點就是不要慌,然後仔細想想這道題和我們做過的哪些題相似,這樣冷靜的思考下來就有可能找到做題的思路。
2.要多做題,雖然題海戰術很沒效率,但是題海戰術也可以起到一定的作用。所以我們要學會「刷題」。
刷題就是拿過來一本復習題,我們要學會篩選出哪些題會做,哪些題不會做,不用每道題都做,這樣可以節省不少時間。還可以及時發現一些比較新的題型。然後積累下來。
3.要有一個錯題本。剛上高中的時候就有人說要做一個錯題本,但是當時覺得沒什麼用,而且很浪費時間。但是錯題本的功效是等到一輪復習時才體現出來的。
高中物理怎麼才能開竅
1.在高中物理的學習中,應熟記基本概念、規律和一些最基本的結論,即所謂我們常提起的最基礎的知識。同學們往往忽視這些基本概念的記憶,認為學習物理不用死記硬背這些文字性的東西,其結果在高三總復習中提問同學物理概念,能准確地說出來的同學很少,即使是補習班的同學也幾乎如此。
我不敢絕對說物理概念背不完整對你某一次考試或某一階段的學習造成多大的影響,但可以肯定地說,這對你對物理問題的理解,對你整個物理系統知識的形成都有內在的不良影響,說不準哪一次考試的哪一道題就因為你概念不準而失分。
2.是學習物理過程中記憶後的工作。在記憶的基礎上,不斷搜集來自課本和參考資料上的許多有關物理知識的相關信息,這些信息有的來自一道題,有的來自一道題的一個插圖,也可能來自一小段閱讀材料等等。在搜集整理過程中,要善於將不同知識點分析歸類,在整理過程中,找出相同點,也找出不同點,以便於記憶。
積累過程是記憶和遺忘相互斗爭的過程,但是要通過反復記憶使知識更全面、更系統,使公式、定理、定律的聯系更加緊密,這樣才能達到積累的目的,絕不能象狗熊掰棒子式的重復勞動,不加思考地機械記憶,其結果只能使記憶的比遺忘的還多。
3.物理知識是分章分節的,物理考綱要求之內容也是一塊一塊的,它們既相互聯系,又相互區別,所以在物理學習過程中要不斷進行小綜合,等高三年級知識學完後再進行系統大綜合。這個過程對同學們能力要求較高,章節內容互相聯系,不同章節之間可以互相類比,真正將前後知識融會貫通,連為一體,這樣就逐漸從綜合中找到知識的聯系,同時也找到了學習物理知識的興趣。
高考物理算好計算題的小技巧
1.對於多體問題,要正確選取研究對象,善於尋找相互聯系
選取研究對象和尋找相互聯系是求解多體問題的兩個關鍵。選取研究對象需根據不同的條件,或採用隔離法,即把研究對象從其所在的系統中抽取出來進行研究;或採用整體法,即把幾個研究對象組成的系統作為整體來進行研究;或將隔離法與整體法交叉使用。
通常,符合守恆定律的系統或各部分運動狀態相同的系統,宜採用整體法;在需討論系統各部分間的相互作用時,宜採用隔離法;對於各部分運動狀態不同的系統,應慎用整體法,有時不能用整體法。至於多個物體間的相互聯系,通常可從它們之間的相互作用、運動的時間、位移、速度、加速度等方面去尋找。
2.對於多過程問題,要仔細觀察過程特徵,妥善運用物理規律
觀察每一個過程特徵和尋找過程之間的聯系是求解多過程問題的兩個關鍵。分析過程特徵需仔細分析每個過程的約束條件,如物體的受力情況、狀態參量等,以便運用相應的物理規律逐個進行研究。至於過程之間的聯系,則可從物體運動的速度、位移、時間等方面去尋找。
3.對於含有隱含條件的問題,要注重審題,深究細琢,努力挖掘隱含條件
注重審題,深究細琢,綜觀全局重點推敲,挖掘並應用隱含條件,梳理解題思路或建立輔助方程,是求解的關鍵。通常,隱含條件可通過觀察物理現象、認識物理模型和分析物理過程,甚至從試題的字里行間或圖像中去挖掘。
4.對於存在多種情況的問題,要認真分析制約條件,周密探討多種情況
解題時必須根據不同條件對各種可能情況進行全面分析,必要時要自己擬定討論方案,將問題根據一定的標准分類,再逐類進行探討,防止漏解。
5.對於數學技巧性較強的問題,要耐心細致尋找規律,熟練運用數學方法
耐心尋找規律、選取相應的數學方法是關鍵。求解物理問題,通常採用的數學方法有:方程法、比例法、數列法、不等式法、函數極值法、微元分析法、圖像法和幾何法等,在眾多數學方法的運用上必須打下扎實的基礎。
6.對於有多種解法的問題,要開拓思路避繁就簡,合理選取最優解法
避繁就簡、選取最優解法是順利解題、爭取高分的關鍵,特別是在受考試時間限制的情況下更應如此。這就要求我們具有敏捷的思維能力和熟練的解題技巧,在短時間內進行斟酌、比較、選擇並作出決斷。當然,作為平時的解題訓練,盡可能地多採用幾種解法,對於開拓我們的解題思路是非常有益的。
Ⅵ 高一物理知識要點
1.質點(A)
(1)沒有形狀、大小,而具有質量的點。
(2)質點是一個理想化的物理模型,實際並不存在。
(3)一個物體能否看成質點,並不取決於這個物體的大小,而是看在所研究的問題中物體的形狀、大小和物體上各部分運動情況的差異是否為可以忽略的次要因素,要具體問題具體分析。
2.參考系(A)
(1)物體相對於其他物體的位置變化,叫做機械運動,簡稱運動。
(2)在描述一個物體運動時,選來作為標準的(即假定為不動的)另外的物體,叫做參考系。
對參考系應明確以下幾點:
①對同一運動物體,選取不同的物體作參考系時,對物體的觀察結果往往不同的。
②在研究實際問題時,選取參考系的基本原則是能對研究對象的運動情況的描述得到盡量的簡化,能夠使解題顯得簡捷。
③因為今後我們主要討論地面上的物體的運動,所以通常取地面作為參照系
3.路程和位移(A)
(1)位移是表示質點位置變化的物理量。路程是質點運動軌跡的長度。
(2)位移是矢量,可以用以初位置指向末位置的一條有向線段來表示。因此,位移的大小等於物體的初位置到末位置的直線距離。路程是標量,它是質點運動軌跡的長度。因此其大小與運動路徑有關。
(3)一般情況下,運動物體的路程與位移大小是不同的。只有當質點做單一方向的直線運動時,路程與位移的大小才相等。圖1-1中質點軌跡ACB的長度是路程,AB是位移S。(4)在研究機械運動時,位移才是能用來描述位置變化的物理量。路程不能用來表達物體的確切位置。比如說某人從O點起走了50m路,我們就說不出終了位置在何處。
4、速度、平均速度和瞬時速度(A)
(1)表示物體運動快慢的物理量,它等於位移s跟發生這段位移所用時間t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物體運動的方向。在國際單位制中,速度的單位是(m/s)米/秒。
(2)平均速度是描述作變速運動物體運動快慢的物理量。一個作變速運動的物體,如果在一段時間t內的位移為s, 則我們定義v=s/t為物體在這段時間(或這段位移)上的平均速度。平均速度也是矢量,其方向就是物體在這段時間內的位移的方向。
(3)瞬時速度是指運動物體在某一時刻(或某一位置)的速度。從物理含義上看,瞬時速度指某一時刻附近極短時間內的平均速度。瞬時速度的大小叫瞬時速率,簡稱速率
5、勻速直線運動(A)
(1)定義:物體在一條直線上運動,如果在相等的時間內位移相等,這種運動叫做勻速直線運動。
根據勻速直線運動的特點,質點在相等時間內通過的位移相等,質點在相等時間內通過的路程相等,質點的運動方向相同,質點在相等時間內的位移大小和路程相等。
(2)勻速直線運動的x—t圖象和v-t圖象(A)
(1)位移圖象(x-t圖象)就是以縱軸表示位移,以橫軸表示時間而作出的反映物體
運動規律的數學圖象,勻速直線運動的位移圖線是通過坐標原點的一條直線。
(2)勻速直線運動的v-t圖象是一條平行於橫軸(時間軸)的直線,如圖2-4-1所示。
由圖可以得到速度的大小和方向,如v1=20m/s,v2=-10m/s,表明一個質點沿正方向以20m/s的速度運動,另一個反方向以10m/s速度運動。
6、加速度(A)
(1)加速度的定義:加速度是表示速度改變快慢的物理量,它等於速度的改變數跟發生這一改變數所用時間的比值,定義式:
(2)加速度是矢量,它的方向是速度變化的方向
(3)在變速直線運動中,若加速度的方向與速度方向相同,則質點做加速運動; 若加速度的方向與速度方向相反,則則質點做減速運動.
7、用電火花計時器(或電磁打點計時器)研究勻變速直線運動(A)
1、實驗步驟:
(1)把附有滑輪的長木板平放在實驗桌上,將打點計時器固定在平板上,並接好電路
(2)把一條細繩拴在小車上,細繩跨過定滑輪,下面吊著重量適當的鉤碼.
(3)將紙帶固定在小車尾部,並穿過打點計時器的限位孔
(4)拉住紙帶,將小車移動至靠近打點計時器處,先接通電源,後放開紙帶.
(2)自由落體加速度
(1)自由落體加速度也叫重力加速度,用g表示.
(2)重力加速度是由於地球的引力產生的,因此,它的方向總是豎直向下.其大小在地球上不同地方略有不,在地球表面,緯度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但這種差異並不大。
(4)通常情況下取重力加速度g=10m/s2
(5)自由落體運動的規律vt=gt. H=gt2/2, vt2=2gh
11、力(A)1.力是物體對物體的作用。⑴力不能脫離物體而獨立存在。⑵物體間的作用是相互的。
2.力的三要素:力的大小、方向、作用點。
3.力作用於物體產生的兩個作用效果。使受力物體發生形變或使受力物體的運動狀態發生改變。
4.力的分類:
⑴按照力的性質命名:重力、彈力、摩擦力等。
⑵按照力的作用效果命名:拉力、推力、壓力、支持力、動力、阻力、浮力、向心力等。
12、重力(A)
1.重力是由於地球的吸引而使物體受到的力
⑴地球上的物體受到重力,施力物體是地球。 ⑵重力的方向總是豎直向下的。
2.重心:物體的各個部分都受重力的作用,但從效果上看,我們可以認為各部分所受重力的作用都集中於一點,這個點就是物體所受重力的作用點,叫做物體的重心。
① 質量均勻分布的有規則形狀的均勻物體,它的重心在幾何中心上。
② 一般物體的重心不一定在幾何中心上,可以在物體內,也可以在物體外。一般採用懸掛法。
3.重力的大小:G=mg
13、彈力(A)
1.彈力⑴發生彈性形變的物體,會對跟它接觸的物體產生力的作用,這種力叫做彈力。
⑵產生彈力必須具備兩個條件:①兩物體直接接觸;②兩物體的接觸處發生彈性形變。
2.彈力的方向:物體之間的正壓力一定垂直於它們的接觸面。繩對物體的拉力方向總是沿著繩而指向繩收縮的方向,在分析拉力方向時應先確定受力物體。
3.彈力的大小:彈力的大小與彈性形變的大小有關,彈性形變越大,彈力越大.
彈簧彈力:F = Kx (x為伸長量或壓縮量,K為勁度系數)
4.相互接觸的物體是否存在彈力的判斷方法:如果物體間存在微小形變,不易覺察,這時可用假設法進行判定.
14、摩擦力(A)
(1 ) 滑動摩擦力:
說明 : a、FN為接觸面間的彈力,可以大於G;也可以等於G;也可以小於G
b、為滑動摩擦系數,只與接觸面材料和粗糙程度有關,與接觸面
積大小、接觸面相對運動快慢以及正壓力FN無關.
(2 ) 靜摩擦力: 由物體的平衡條件或牛頓第二定律求解,與正壓力無關.
大小范圍: O<f靜fm (fm為最大靜摩擦力,與正壓力有關)
說明:
a 、摩擦力可以與運動方向相同,也可以與運動方向相反,還可以與運動方向成一定夾角。
b、摩擦力可以作正功,也可以作負功,還可以不作功。
c、摩擦力的方向與物體間相對運動的方向或相對運動趨勢的方向相反。
d、靜止的物體可以受滑動摩擦力的作用,運動的物體可以受靜摩擦力的作用。
15、力的合成與分解(B)
1.合力與分力 如果一個力作用在物體上,它產生的效果跟幾個力共同作用在物體上產生的效果相同,這個力就叫做那幾個力的合力,而那幾個力叫做這個力的分力。
2.共點力的合成
⑴共點力:幾個力如果都作用在物體的同一點上,或者它們的作用線相交於同一點,這幾個力叫共點力。
⑵力的合成方法 求幾個已知力的合力叫做力的合成。
平行四邊形定則:兩個互成角度的力的合力,可以用表示這兩個力的有向線段為鄰邊,作平行四邊形,它的對角線就表示合力的大小及方向,這是矢量合成的普遍法則。
注意:(1) 力的合成和分解都均遵從平行四邊行法則。 (2) 兩個力的合力范圍: F1-F2 F F1 +F2
(3) 合力可以大於分力、也可以小於分力、也可以等於分力
(4)兩個分力成直角時,用勾股定理或三角函數。
16、共點力作用下物體的平衡(A)
1.共點力作用下物體的平衡狀態
(1)一個物體如果保持靜止或者做勻速直線運動,我們就說這個物體處於平衡狀態
(2)物體保持靜止狀態或做勻速直線運動時,其速度(包括大小和方向)不變,其加速度為零,這是共點力作用下物體處於平衡狀態的運動學特徵。
2.共點力作用下物體的平衡條件
共點力作用下物體的平衡條件是合力為零,亦即F合=0
(1)二力平衡:這兩個共點力必然大小相等,方向相反,作用在同一條直線上。
(2)三力平衡:這三個共點力必然在同一平面內,且其中任何兩個力的合力與第三個力大小相等,方向相反,作用在同一條直線上,即任何兩個力的合力必與第三個力平衡
(3)若物體在三個以上的共點力作用下處於平衡狀態,通常可採用正交分解,必有:
F合x= F1x+ F2x+ ………+ Fnx =0
F合y= F1y+ F2y+ ………+ Fny=0 (按接觸面分解或按運動方向分解)
19、力學單位制(A)
1.物理公式在確定物理量數量關系的同時,也確定了物理量的單位關系。基本單位就是根據物理量運算中的實際需要而選定的少數幾個物理量單位;根據物理公式和基本單位確立的其它物理量的單位叫做導出單位。
2.在物理力學中,選定長度、質量和時間的單位作為基本單位,與其它的導出單位一起組成了力學單位制。選用不同的基本單位,可以組成不同的力學單位制,其中最常用的基本單位是長度為米(m),質量為千克(kg),時間為秒(s),由此還可得到其它的導出單位,它們一起
物理1知識點小結
第一章 運動的描述
第一節 認識運動
機械運動:物體在空間中所處位置發生變化,這樣的運動叫做機械運動。
運動的特性:普遍性,永恆性,多樣性
參考系
1.任何運動都是相對於某個參照物而言的,這個參照物稱為參考系。
2.參考系的選取是自由的。
(1)比較兩個物體的運動必須選用同一參考系。
(2)參照物不一定靜止,但被認為是靜止的。
質點
1.在研究物體運動的過程中,如果物體的大小和形狀在所研究問題中可以忽略是,把物體簡化為一個點,認為物體的質量都集中在這個點上,這個點稱為質點。
2.質點條件:
(1)物體中各點的運動情況完全相同(物體做平動)
(2)物體的大小<<它通過的距離
3.質點具有相對性,而不具有絕對性。
4.理想化模型:根據所研究問題的性質和需要,抓住問題中的主要因素,忽略其次要因素,建立一種理想化的模型,使復雜的問題得到簡化。(為便於研究而建立的一種高度抽象的理想客體)
第二節時間位移
時間與時刻
1.鍾表指示的一個讀數對應著某一個瞬間,就是時刻,時刻在時間軸上對應某一點。兩個時刻之間的間隔稱為時間,時間在時間軸上對應一段。
2.時間和時刻的單位都是秒,符號為s,常見單位還有min,h。
3.通常以問題中的初始時刻為零點。
路程和位移
1.路程表示物體運動軌跡的長度,但不能完全確定物體位置的變化,是標量。
2.從物體運動的起點指向運動的重點的有向線段稱為位移,是矢量。
3.物理學中,只有大小的物理量稱為標量;既有大小又有方向的物理量稱為矢量。
4.只有在質點做單向直線運動是,位移的大小等於路程。兩者運演算法則不同。
第三節記錄物體的運動信息
打點記時器:通過在紙帶上打出一系列的點來記錄物體運動信息的儀器。(電火花打點記時器——火花打點,電磁打點記時器——電磁打點);一般打出兩個相鄰的點的時間間隔是0.02s。
第四節物體運動的速度
物體通過的路程與所用的時間之比叫做速度。
平均速度(與位移、時間間隔相對應)
物體運動的平均速度v是物體的位移s與發生這段位移所用時間t的比值。其方向與物體的位移方向相同。單位是m/s。
瞬時速度(與位置時刻相對應)
瞬時速度是物體在某時刻前後無窮短時間內的平均速度。其方向是物體在運動軌跡上過該點的切線方向。瞬時速率(簡稱速率)即瞬時速度的大小。
速率≥速度
第五節速度變化的快慢加速度
1.物體的加速度等於物體速度變化與完成這一變化所用時間的比值
2.a不由△v、t決定,而是由F、m決定(牛頓第二定律)。
3.變化量=末態量值—初態量值……表示變化的大小或多少
4.變化率=變化量/時間……表示變化快慢
5.如果物體沿直線運動且其速度均勻變化,該物體的運動就是勻變速直線運動(加速度不隨時間改變)。
6.速度是狀態量,加速度是性質量,速度改變數(速度改變大小程度)是過程量。
第六節用圖象描述直線運動
勻變速直線運動的位移圖象
1.s-t圖象是描述做勻變速直線運動的物體的位移隨時間的變化關系的曲線。(不反映物體運動的軌跡)
2.物理中,斜率k≠tanα(2坐標軸單位、物理意義不同)
3.圖象中兩圖線的交點表示兩物體在這一時刻相遇。
勻變速直線運動的速度圖象
1.v-t圖象是描述勻變速直線運動的物體歲時間變化關系的圖線。(不反映物體運動軌跡)
2.圖象與時間軸的面積表示物體運動的位移,在t軸上方位移為正,下方為負,整個過程中位移為各段位移之和,即各面積的代數和。
第二章 探究勻變速直線運動規律
第一、二節 探究自由落體運動/自由落體運動規律
記錄自由落體運動軌跡
1.物體僅在中立的作用下,從靜止開始下落的運動,叫做自由落體運動(理想化模型)。在空氣中影響物體下落快慢的因素是下落過程中空氣阻力的影響,與物體重量無關。
2. 伽利略的科學方法:觀察→提出假設→運用邏輯得出結論→通過實驗對推論進行檢驗→對假說進行修正和推廣
自由落體運動規律
1. 自由落體運動是一種初速度為0的勻變速直線運動,加速度為常量,稱為重力加速度(g)。g=9.8m/s?
2. 重力加速度g的方向總是豎直向下的。其大小隨著緯度的增加而增加,隨著高度的增加而減少。
3. vt?= 2gs
豎直上拋運動
處理方法:分段法(上升過程a=-g,下降過程為自由落體),整體法(a=-g,注意矢量性)
1.速度公式:
第三節勻變速直線運動
勻變速直線運動規律*
第四節汽車行駛安全
1.停車距離=反應距離(車速×反應時間)+剎車距離(勻減速)
2.安全距離≥停車距離
3.剎車距離的大小取決於車的初速度和路面的粗糙程度
4.追及/相遇問題:抓住兩物體速度相等時滿足的臨界條件,時間及位移關系,臨界狀態(勻減速至靜止)。可用圖象法解題。
第三章 研究物體間的相互作用
第一節探究形變與彈力的關系
認識形變
1.物體形狀回體積發生變化簡稱形變。
2.分類:按形式分:壓縮形變、拉伸形變、彎曲形變、扭曲形變。
按效果分:彈性形變、塑性形變
3.彈力有無的判斷:
(1)定義法(產生條件)
(2)搬移法:假設其中某一個彈力不存在,然後分析其狀態是否有變化。
(3)假設法:假設其中某一個彈力存在,然後分析其狀態是否有變化。
彈性與彈性限度
1.物體具有恢復原狀的性質稱為彈性。
2.撤去外力後,物體能完全恢復原狀的形變,稱為彈性形變。
3.如果外力過大,撤去外力後,物體的形狀不能完全恢復,這種現象為超過了物體的彈性限度,發生了塑性形變。
探究彈力
1.產生形變的物體由於要恢復原狀,會對與它接觸的物體產生力的作用,這種力稱為彈力。
2.彈力方向垂直於兩物體的接觸面,與引起形變的外力方向相反,與恢復方向相同。
繩子彈力沿繩的收縮方向;鉸鏈彈力沿桿方向;硬桿彈力可不沿桿方向。
彈力的作用線總是通過兩物體的接觸點並沿其接觸點公共切面的垂直方向。
3.在彈性限度內,彈簧彈力F的大小與彈簧的伸長或縮短量x成正比,即胡克定律。
4.上式的k稱為彈簧的勁度系數(倔強系數),反映了彈簧發生形變的難易程度。
5.彈簧的串、並聯:串聯: 並聯:
第二節研究摩擦力
滑動摩擦力
1.兩個相互接觸的物體有相對滑動時,物體之間存在的摩擦叫做滑動摩擦。
2.在滑動摩擦中,物體間產生的阻礙物體相對滑動的作用力,叫做滑動摩擦力。
3.滑動摩擦力f的大小跟正壓力N(≠G)成正比。即:f=μN
4.μ稱為動摩擦因數,與相接觸的物體材料和接觸面的粗糙程度有關。0<μ<1。
5.滑動摩擦力的方向總是與物體相對滑動的方向相反,與其接觸面相切。
6.條件:直接接觸、相互擠壓(彈力),相對運動/趨勢。
7.摩擦力的大小與接觸面積無關,與相對運動速度無關。
8.摩擦力可以是阻力,也可以是動力。
9.計算:公式法/二力平衡法。
研究靜摩擦力
1.當物體具有相對滑動趨勢時,物體間產生的摩擦叫做靜摩擦,這時產生的摩擦力叫靜摩擦力。
2.物體所受到的靜摩擦力有一個最大限度,這個最大值叫最大靜摩擦力。
3.靜摩擦力的方向總與接觸面相切,與物體相對運動趨勢的方向相反。
4.靜摩擦力的大小由物體的運動狀態以及外部受力情況決定,與正壓力無關,平衡時總與切面外力平衡。
5.最大靜摩擦力的大小與正壓力接觸面的粗糙程度有關。
6.靜摩擦有無的判斷:概念法(相對運動趨勢);二力平衡法;牛頓運動定律法;假設法(假設沒有靜摩擦)。
第三節力的等效和替代
力的圖示
1.力的圖示是用一根帶箭頭的線段(定量)表示力的三要素的方法。
2.圖示畫法:選定標度(同一物體上標度應當統一),沿力的方向從力的作用點開始按比例畫一線段,在線段末端標上箭頭。
3.力的示意圖:突出方向,不定量。
力的等效/替代
1.如果一個力的作用效果與另外幾個力的共同效果作用相同,那麼這個力與另外幾個力可以相互替代,這個力稱為另外幾個力的合力,另外幾個力稱為這個力的分力。
2.根據具體情況進行力的替代,稱為力的合成與分解。求幾個力的合力叫力的合成,求一個力的分力叫力的分解。合力和分力具有等效替代的關系。
3.實驗:平行四邊形定則:
第四節力的合成與分解
力的平行四邊形定則
1.力的平行四邊形定則:如果用表示兩個共點力的線段為鄰邊作一個平行四邊形,則這兩個鄰邊的對角線表示合力的大小和方向。
2.一切矢量的運算都遵循平行四邊形定則。
合力的計算
1.方法:公式法,圖解法(平行四邊形/多邊形/△)
2.三角形定則:將兩個分力首尾相接,連接始末端的有向線段即表示它們的合力。
分力的計算
1.分解原則:力的實際效果/解題方便(正交分解)
2.受力分析順序:G→N→F→電磁力
第五節共點力的平衡條件
共點力
如果幾個力作用在物體的同一點,或者它們的作用線相交於同一點(該點不一定在物體上),這幾個力叫做共點力。
尋找共點力的平衡條件
1.物體保持靜止或者保持勻速直線運動的狀態叫平衡狀態。
2.物體如果受到共點力的作用且處於平衡狀態,就叫做共點力的平衡。
3.二力平衡是指物體在兩個共點力的作用下處於平衡狀態,其平衡條件是這兩個離的大小相等、方向相反。多力亦是如此。
4.正交分解法:把一個矢量分解在兩個相互垂直的坐標軸上,利於處理多個不在同一直線上的矢量(力)作用分解。
第六節作用力與反作用力
探究作用力與反作用力的關系
1.一個物體對另一個物體有作用力時,同時也受到另一物體對它的作用力,這種相互作用力稱為作用力和反作用力。
2.力的性質:物質性(必有施/手力物體),相互性(力的作用是相互的)
3.平衡力與相互作用力:
同:等大,反向,共線
異:相互作用力具有同時性(產生、變化、小時),異體性(作用效果不同,不可抵消),二力同性質。平衡力不具備同時性,可相互抵消,二力性質可不同。
牛頓第三定律
1.牛頓第三定律:兩個物體之間的作用力與反作用力總是大小相等、方向相反。
2.牛頓第三定律適用於任何兩個相互作用的物體,與物體的質量、運動狀態無關。二力的產生和消失同時,無先後之分。二力分別作用在兩個物體上,各自分別產生作用效果。
第四章 力與運動
第一節伽利略理想實驗與牛頓第一定律
伽利略的理想實驗(見課本,以及單擺實驗)
牛頓第一定律
1.牛頓第一定律(慣性定律):一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止。——物體的運動並不需要力來維持。
2.物體保持原來的勻速直線運動狀態或靜止狀態的性質叫慣性。
3.慣性是物體的固有屬性,與物體受力、運動狀態無關,質量是物體慣性大小的唯一量度。
4.物體不受力時,慣性表現為物體保持勻速直線運動或靜止狀態;受外力時,慣性表現為運動狀態改變的難易程度不同。
第二、三節影響加速度的因素/探究物體運動與受力的關系
加速度與物體所受合力、物體質量的關系
第四節牛頓第二定律
牛頓第二定律
1.牛頓第二定律:物體的加速度跟所受合外力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。
2.a=k?F/m(k=1)→ F=ma
3.k的數值等於使單位質量的物體產生單位加速度時力的大小。國際單位制中k=1。
4.當物體從某種特徵到另一種特徵時,發生質的飛躍的轉折狀態叫做臨界狀態。
5.極限分析法(預測和處理臨界問題):通過恰當地選取某個變化的物理量將其推向極端,從而把臨界現象暴露出來。
6.牛頓第二定律特性:
(1) 矢量性:加速度與合外力任意時刻方向相同
(2) 瞬時性:加速度與合外力同時產生/變化/消失,力是產生加速度的原因。
(3) 相對性:a是相對於慣性系的,牛頓第二定律只在慣性系中成立。
(4) 獨立性:力的獨立作用原理:不同方向的合力產生不同方向的加速度,彼此不受對方影響。
(5) 同體性:研究對象的統一性。
第五節牛頓第二定律的應用
解題思路:物體的受力情況 ?牛頓第二定律? a? 運動學公式 ?物體的運動情況
第六節超重與失重
超重和失重
1.物體對支持物的壓力(或對懸掛物的拉力)大於物體所受重力的情況稱為超重現象(視重>物重),物體對支持物的壓力(或對懸掛物的拉力)小於物體所受重力的情況稱為失重現象(物重<視重)。
2.只要豎直方向的a≠0,物體一定處於超重或失重狀態。
3.視重:物體對支持物的壓力或對懸掛物的拉力(儀器稱值)。
4.實重:實際重力(來源於萬有引力)。
5.N=G+ma
(設豎直向上為正方向,與v無關)
6.完全失重:一個物體對支持物的壓力(或對懸掛物的拉力)為零,達到失重現象的極限的現象,此時a=g=9.8m/s?。
7.自然界中落體加速度不大於g,人工加速使落體加速度大於g,則落體對上方物體(如果有)產生壓力,或對下方牽繩產生拉力。
第七節力學單位
單位制的意義
1.單位制是由基本單位和導出單位組成的一系列完整的單位體制。
2.基本單位可任意選定,導出單位則由定義方程式與比例系數確定的。基本單位選取的不同,組成的單位制也不同。
國際單位制中的力學單位
1.國際單位制(符號~單位):時間(t)~s,長度(l)~m,質量(m)~kg,電流(I)~A,物質的量(n)~mol,熱力學溫度~K,發光強度~cd(坎培拉)
2.牛頓1N:使1kg的物體產生單位加速度時力的大小,即1N=1kg?m/s?。
3.常見單位換算:1英尺=12英寸=0.3048m,1英寸=2.540cm,1英里=1.6093km
Ⅶ 高一物理要記的公式、知識點、常考的。有哪些
物理是一門邏輯性非常強的學科,學好物理既要以一定的數學知識為基礎,同時更要有較強的邏輯思維能力。因此很多同學都感到學好物理特別難,尤其是進入高中以後,經常可以聽到同學中流傳著這樣一句話:" 物理難,化學繁,數學作業做不完。"於是就更覺得中學物理非常難學。
物理固然有復雜性的一面,但是只要我們抓住物理學的特點,掌握正確的學習方法,這門功課是完全可以學好的。在此,筆者就想根據多年的教學經驗,談談如何學好中學物理。
一、要善於觀察, 於觀察的過程中學習物理。
物理學是研究自然界中物理現象的科學。這些現象包括力現象,聲音現象,熱現象,電和磁現象,光現象,原子和原子核的運動變化等現象。學習物理的主要任務就要研究這些現象,找出其中的規律,了解產生這些現象的原因,並使同學們知道和掌握,以更好地為生產和生活服務。我們知道,我們周圍的世界就是由物質構成的,許多生產和生活現象都是物理現象,要學好物理,就要認真觀察周圍存在的各種物理現象。
觀察首先要廣泛,全面。物理學得比較好的同學,大多是勤於觀察,善於觀察的。因而,這些同學往往興趣廣泛,求知慾強,眼界開闊,見多識廣,具有很強的好奇心。他們在學習物理時,往往實物感較強,思路較寬,比較容易掌握物理現象和物理過程,從而進行正確的分析。例如,看到彩虹,不是單純地好奇於她五彩斑斕的色彩,而應注意觀察裡面有幾種顏色?為什麼有這幾種顏色?這幾種顏色是如何排列的?為什麼會是著這樣排列的;打開收音機,不應只是單純地聽一聽美妙的音樂,而是看一看裡面有哪些元件?這些元件是怎樣組和的?為什麼通過這些元件可以聽到電台廣播?電台廣播是如何發送的......。勤於觀察,善於提出問題必將使自己對物理產生濃厚的興趣,推動自己去看書,去研究,去探索。這樣有的放矢,必將打消畏懼物理的心理,對物理真正產生興趣。
觀察要有針對性。同學們在廣泛觀察的基礎上,應該重視觀察與已學的知識有關的物理現象。例如:初中學習了"壓強"這個物理概念,我們就要注意觀察物體間相互作用時產生的壓強與作用力和受力面積的關系。象載重拖拉機的履帶;載重汽車的後輪變成四個;刀磨快了才好切東西;以及釘圖釘、縫衣服、在沙地上行走等等。都應該注意這些日常現象,並能將這些現象與"壓強"這一概聯系起來。久而久之,腦中必然積蓄了大量的物理現象以及與之有關的物理知識。
觀察還必須目的明確。俗說"外行看熱鬧,內行看門道",對於看到的現象,不應專注它的好看與新奇,而是應當找出這些現象後所隱藏的物理原因、物理規律。例如:紡錘型的圓錐滾輪沿V形軌道向上滾。我們不應被其表面現象所迷惑,滾輪放在斜軌下端是不會自動向上滾的。我們只要知道滾輪向上滾時,重心是不斷下降的,那麼滾輪上坡的道理就會一下子明白了。另外,看到硬幣浮在水面上,應該與液體的表面張力聯系起來;看到肥皂泡上五顏六色的花紋,應該與廣的干涉聯系起來......,只有這樣,我們觀察的目的才算達到了。
我們千萬要忌諱對周圍的一些現象漠不關心,不觀察,不思考,這對學習物理是不利的。其實,物理上許多定律的發現和重大的發明都是源於觀察的基礎上。大家都比較熟悉的,著名的物理學家牛頓發現萬有引力定律,就是建立在仔細觀察蘋果落地這一現象的基礎上的。瓦特在燒開水時,觀察到水蒸氣產生的力量推開了壺蓋的基礎上,發明了蒸汽機等。過去一些同學進入中學後往往覺得物理越學越難,這和他們長期困於書本之中,不注意觀察周圍的生活和現象,對一切都漠不關心恐怕不無關系。
二、要重視實驗, 勤於實驗,在實驗的基礎上掌握物理規律。
物理學是一門以實驗為基礎的科學。許多物理規律都是從模擬自然現象的實驗中總結出來的。多做實驗可以幫助我們形成正確的概念,增強分析問題解決問題的能力,加深對物理規律的理解。宋代詩人陸游曾說:"紙上得來終覺淺覺,絕知此事要躬行。"他說,要獲得知識,僅靠書本上的知識不夠的,還必須我們親身實踐,把知與行、腦與手結合起來。
Ⅷ 高一物理需掌握的知識點
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
註:
(1)平均速度是矢量;
(2)物體速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s--t圖、v--t圖/速度與速率、瞬時速度
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:
(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
(3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:
(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
(2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
註:
(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;
(2)運動時間由下落高度h(y)決定與水平拋出速度無關;
(3)θ與β的關系為tgβ=2tgα;
(4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑?:米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
註:
(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;
(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。
3)萬有引力
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
注:
(1)天體運動所需的向心力由萬有引力提供,F向=F萬;
(2)應用萬有引力定律可估算天體的質量密度等;
(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同;
(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);
(5)地球衛星的最大環繞速度和最小發射速度均為7.9km/s。
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:
(1)勁度系數k由彈簧自身決定;
(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
(3)fm略大於μFN,一般視為fm≈μFN;
(4)其它相關內容:靜摩擦力(大小、方向)〔見第一冊P8〕;
(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);
(6)安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
註:
(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F′{負號表示方向相反,F、F′各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子〔見第一冊P67〕
注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕
5.機械波、橫波、縱波〔見第二冊P2〕
6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9.波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}
註:
(1)物體的固有頻率與振幅、驅動力頻率無關,取決於振動系統本身;
(2)加強區是波峰與波峰或波谷與波谷相遇處,減弱區則是波峰與波谷相遇處;
(3)波只是傳播了振動,介質本身不隨波發生遷移,是傳遞能量的一種方式;
(4)干涉與衍射是波特有的;
(5)振動圖象與波動圖象;
(6)其它相關內容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕。
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N?s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總或p=p』′也可以是m1v1+m2v2=m1v1′+m2v2′
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
註:
(1)正碰又叫對心碰撞,速度方向在它們「中心」的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)系統動量守恆的條件:合外力為零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恆,原子核衰變時動量守恆;
(5)爆炸過程視為動量守恆,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量轉化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);
(3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少
(4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度系數和形變數有關。
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米
2.油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}
3.分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力(1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),
W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}
6.熱力學第二定律
克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}
7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}
注:
(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;
(2)溫度是分子平均動能的標志;
3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;
(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;
(5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大ΔU>0;吸收熱量,Q>0
(6)物體的內能是指物體所有的分子動能和分子勢能的總和,對於理想氣體分子間作用力為零,分子勢能為零;
(7)r0為分子處於平衡狀態時,分子間的距離;
(8)其它相關內容:能的轉化和定恆定律〔見第二冊P41〕/能源的開發與利用、環保〔見第二冊P47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。
九、氣體的性質
1.氣體的狀態參量:
溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間,單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,標准大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
注:
(1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;
(2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。
十、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器〔見第二冊P111〕
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:
(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
(3)常見電場的電場線分布要求熟記〔見圖[第二冊P98];
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=106μF=1012PF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽〔見第二冊P101〕/示波管、示波器及其應用〔見第二冊P114〕等勢面〔見第二冊P105〕。
十一、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
Ⅸ 高一物理怎麼學好,高一物理最好的學習方法
學習物理非常注重過程,一個認知、理解、運用的過程。
1.認知:利用身邊的事物或現象甚至是老師敘述的一些例子來幫助自己去充分認識它,對它產生興趣。
2.理解:用理解的方式去記憶公式、定理、試驗等等。可以用形象思維等等巧妙的方法去理解和記憶。例如,什麼是真空,可以這樣去理解:真空就是真的空了,什麼都沒有了。
3.運用:一類是來應付考試,另一類則是來解釋身邊得一些物理現象。
所以,在學習時,首先,不要有懼怕的心理,因為你前一段沒學好的經歷可能會暗示你什麼,這可能會導致你惡性循環。努力告訴自己「我能行!!!」其實心理暗示很有用哦!不過,為了給自己增加底氣,最好還是做好預習工作,做到心裡有數。
其次,上課要緊跟老師的思路,適當地記些筆記,記一些書本上沒有明確闡明的甚至是遺漏的以及自己容易出錯的知識點。課下抽時間多練一練,別以任何理由來推託,從而放棄了練習的最佳時期,最後只能導致悲劇的發生。
最後一點也是最重要的一點,就是一定要做好及時總結。例如,上次考試的卷子發下來了,雖然認真訂正過了,但還要想想為什麼會錯?正確答案是怎麼算出來的?如果下次再考到還會錯嗎?等等。
我想,通過這些學習方法,一定能學好物理的。