導航:首頁 > 物理學科 > 物理學發展史約為多少年

物理學發展史約為多少年

發布時間:2022-06-21 03:00:13

① 物理學史的發展史

物理學是研究物質及其行為和運動的科學。它是最早形成的自然科學之一,如果把天文學包括在內則有可能是名副其實歷史最悠久的自然科學。最早的物理學著作是古希臘科學家亞里士多德的《物理學》。形成物理學的元素主要來自對天文學、光學和力學的研究,而這些研究通過幾何學的方法統合在一起形成了物理學。這些方法形成於古巴比和古希臘時期,當時的代表人物如數學家阿基米德和天文學家托勒密;隨後這些學說被傳入阿拉伯世界,並被當時的阿拉伯科學家海什木等人發展為更具有物理性和實驗性的傳統學說;最終這些學說傳入了西歐,首先研究這些內容的學者代表人物是羅吉爾·培根。然而在當時的西方世界,哲學家們普遍認為這些學說在本質上是技術性的,從而一般沒有察覺到它們所描述的內容反映著自然界中重要的哲學意義。而在古代中國和印度的科學史上,類似的研究數學的方法也在發展中。
在這一時代,包含著所謂「自然哲學」(即物理學)的哲學所集中研究的問題是,在基於亞里士多德學說的前提下試圖對自然界中的現象發展出解釋的手段(而不僅僅是描述性的)。根據亞里士多德以及其後蘇格拉底的哲學,物體運動是因為運動是物體的基本自然屬性之一。天體的運動軌跡是正圓的,這是因為完美的圓軌道運動被認為是神聖的天球領域中的物體運動的內在屬性。沖力理論作為慣性與動量概念的原始祖先,同樣來自於這些哲學傳統,並在中世紀時由當時的哲學家菲洛彭洛斯、伊本·西那、布里丹等人發展。而古代中國和印度的物理傳統也是具有高度的哲學性的。 在十七世紀的歐洲,自然哲學家逐漸展開了一場針對中世紀經院哲學的進攻,他們持有的觀點是,從力學和天文學研究抽象出的數學模型將適用於描述整個宇宙中的運動。被譽為「現代自然科學之父」的義大利(或按當時地理為托斯卡納大公國)物理學家、數學家、天文學家伽利略·伽利萊就是這場轉變中的領軍人物。伽利略所處的時代正值思想活躍的文藝復興之後,在此之前列奧納多·達芬奇所進行的物理實驗、尼古拉斯·哥白尼的日心說以及弗朗西斯·培根提出的注重實驗經驗的科學方法論都是促使伽利略深入研究自然科學的重要因素,哥白尼的日心說更是直接推動了伽利略試圖用數學對宇宙中天體的運動進行描述。伽利略意識到這種數學性描述的哲學價值,他注意到哥白尼對太陽、地球、月球和其他行星的運動所作的研究工作,並認為這些在當時看來相當激進的分析將有可能被用來證明經院哲學家們對自然界的描述與實際情形不符。伽利略進行了一系列力學實驗闡述了他關於運動的一系列觀點,包括藉助斜面實驗和自由落體實驗批駁了亞里士多德認為落體速度和重量成正比的觀點,還總結出了自由落體的距離與時間平方成正比的關系,以及著名的斜面理想實驗來思考運動的問題。他在1632年出版的著作《關於托勒密和哥白尼兩大世界體系的對話》中提到:「只要斜面延伸下去,球將無限地繼續運動,而且不斷加速,因為此乃運動著的重物的本質。」,這種思想被認為是慣性定律的前身。但真正的慣性概念則是由笛卡爾於1644年所完成,他明確地指出了「除非物體受到外因作用,否則將永遠保持靜止或運動狀態」,而「所有的運動本質都是直線的」。
伽利略在天文學上最著名的貢獻是於1609年改良了折射式望遠鏡,並藉此發現了木星的四顆衛星、太陽黑子以及金星類似於月球的相。伽利略對自然科學的傑出貢獻體現在他對力學實驗的興趣以及他用數學語言描述物體運動的方法,這為後世建立了一個基於實驗研究的自然哲學傳統。這個傳統與培根的實驗歸納的方法論一起,深刻影響了一批後世的自然科學家,包括義大利的埃萬傑利斯塔·托里拆利、法國的馬林·梅森和布萊茲·帕斯卡、荷蘭的克里斯蒂安·惠更斯、英格蘭的羅伯特·胡克和羅伯特·波義耳。 三大定律和萬有引力定律
艾薩克·牛頓
1687年,英格蘭物理學家、數學家、天文學家、自然哲學家艾薩克·牛頓出版了《自然哲學的數學原理》一書,這部里程碑式的著作標志著經典力學體系的正式建立。牛頓在人類歷史上首次用一組普適性的基礎數學原理——牛頓三大運動定律和萬有引力定律——來描述宇宙間所有物體的運動。牛頓放棄了物體的運動軌跡是自然本性的觀點(例如開普勒認為行星運動軌道本性就是橢圓的),相反,他指出,任何現在可觀測到的運動、以及任何未來將發生的運動,都能夠通過它們已知的運動狀態、物體質量和外加作用力並使用相應原理進行數學推導計算得出。
伽利略、笛卡爾的動力學研究(「地上的」力學),以及開普勒和法國天文學家布里阿德在天文學領域的研究(「天上的」力學)都影響著牛頓對自然科學的研究。(布里阿德曾特別指出從太陽發出到行星的作用力應當與距離成平方反比關系,雖然他本人並不認為這種力真的存在)。1673年惠更斯獨立提出了圓周運動的離心力公式(牛頓在1665年曾用數學手段得到類似公式),這使得在當時科學家能夠普遍從開普勒第三定律推導出平方反比律。羅伯特·胡克、愛德蒙·哈雷等人由此考慮了在平方反比力場中物體運動軌道的形狀,1684年哈雷向牛頓請教了這個問題,牛頓隨後在一篇9頁的論文(後世普遍稱作《論運動》)中做了解答。在這篇論文中牛頓討論了在有心平方反比力場中物體的運動,並推導出了開普勒行星運動三定律。其後牛頓發表了他的第二篇論文《論物體的運動》,在這篇論文中他闡述了慣性定律,並詳細討論了引力與質量成正比、與距離平方成反比的性質以及引力在全宇宙中的普遍性。這些理論最終都匯總到牛頓在1687年出版的《原理》一書中,牛頓在書中列出了公理形式的三大運動定律和導出的六個推論(推論1、2描述了力的合成和分解、運動疊加原理;推論3、4描述了動量守恆定律;推論5、6描述了伽利略相對性原理)。由此,牛頓統一了「天上的」和「地上的」力學,建立了基於三大運動定律的力學體系。
牛頓的原理(不包括他的數學處理方法)引起了歐洲大陸哲學家們的爭議,他們認為牛頓的理論對物體運動和引力缺乏一個形而上學的解釋從而是不可接受的。從1700年左右開始,大陸哲學和英國傳統哲學之間產生的矛盾開始升級,裂痕開始增大,這主要是根源於牛頓與萊布尼茲各自的追隨者就誰最先發展了微積分所展開的唇槍舌戰。起初萊布尼茲的學說在歐洲大陸更占上風(在當時的歐洲,除了英國以外,其他地方都主要使用萊布尼茲的微積分符號),而牛頓個人則一直為引力缺乏一個哲學意義的解釋而困擾,但他在筆記中堅持認為不再需要附加任何東西就可以推論出引力的實在性。十八世紀之後,大陸的自然哲學家逐漸接受了牛頓的這種觀點,對於用數學描述的運動,開始放棄作出本體論的形而上學解釋。 牛頓的理論體系是建立在他的絕對時間和絕對空間的假設之上的,牛頓對時間和空間有著如下的理解: 「 絕對的、真正的和數學的時間自身在流逝著,而且由於其本性而在均勻地、與任何外界事物無關地流逝著。 」 「 絕對空間,就其本性而言,是與外界任何事物無關而永遠是相同的和不動的。 」 —牛頓, 《自然哲學的數學原理》 牛頓從絕對時空的假設進一步定義了「絕對運動」和「絕對靜止」的概念,為了證明絕對運動的存在性,牛頓還在1689年構思了一個理想實驗,即著名的水桶實驗。在水桶實驗中,一個注水的水桶起初保持靜止。當它開始發生轉動時,水桶中的水最初仍保持靜止,但隨後也會隨著水桶一起轉動,於是可以看到水漸漸地脫離其中心而沿桶壁上升形成凹狀,直到最後和水桶的轉速一致,水面相對靜止。牛頓認為水面的升高顯示了水脫離轉軸的傾向,這種傾向不依賴於水相對周圍物體的任何移動。牛頓的絕對時空觀作為他理論體系的基礎假設,卻在其後的兩百年間倍受質疑。特別是到了十九世紀末,奧地利物理學家恩斯特·馬赫在他的《力學史評》中對牛頓的絕對時空觀做出了尖銳的批判。
新課標高考:高中物理學史匯總,本專題肯定會在2013年高考理綜物理試題中出現,一般小題形式出現。大家一定要注意了解這方面的內容。這個比較簡單,背熟就可以了!I.必考部分:(必修1、必修2、選修3-1、3-2)一、力學:1.1638年,義大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體和輕物體下落一樣快。並在比薩斜塔做了兩個不同質量的小球下落的實驗,證明了他的觀點是正確的,推翻了古希臘學者亞里士多德的觀點(即:質量大的小球下落快是錯誤的)。2.1654年,德國的馬德堡市做了一個轟動一時的實驗——馬德堡半球實驗。3.1687年,英國科學家牛頓在《自然哲學的數學原理》著作中提出了三條運動定律(即牛頓三大運動定律)。4.17世紀,伽利略通過構思的理想實驗指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去。得出結論:力是改變物體運動的原因,推翻了亞里士多德的觀點:力是維持物體運動的原因。同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。5.英國物理學家胡克對物理學的貢獻:胡克定律 。經典題目:胡克認為只有在一定的條件下,彈簧的彈力才與彈簧的形變數成正比(對)6.1638年,伽利略在《兩種新科學的對話》一書中,運用觀察 ——假設——數學推理的方法,詳細研究了拋體運動。7.人們根據日常的觀察和經驗,提出「地心說」,古希臘科學家托勒密是代表。而波蘭天文學家哥白尼提出了「日心說」,大膽反駁地心說。8.17世紀,德國天文學家開普勒提出開普勒三大定律。9.牛頓於 1687年正式發表萬有引力定律 。1798年英國物理學家卡文迪許利用扭秤實驗裝置比較准確地測出了引力常量。10.1846年,英國劍橋大學學生亞當斯和法國天文學家勒維烈(勒維耶)應用萬有引力定律,計算並觀測到海王星。1930年,美國天文學家湯苞用同樣的計算方法發現冥王星。11.我國宋朝發明的火箭是現代火箭的鼻祖,與現代火箭原理相同。但現代火箭結構復雜,其所能達到的最大速度主要取決於噴氣速度和質量比(火箭開始飛行的質量與燃料燃盡時的質量比)。俄國科學家齊奧爾科夫斯基被稱為近代火箭之父,他首先提出了多級火箭和慣性導航的概念。多級火箭一般都是三級火箭,我國已成為掌握載人航天技術的第三個國家。12.1957年10月,蘇聯發射第一顆人造地球衛星。1961年4月,世界第一艘載人宇宙飛船 「東方1號」帶著尤里加加林第一次踏入太空。13.20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用於微觀粒子和高速運動物體。二、電磁學:13.1785年法國物理學家庫侖利用扭秤實驗發現了電荷之間的相互作用規律 --庫侖定律,並測出了靜電力常量k的值。14.1752年,富蘭克林在費城通過風箏實驗驗證閃電是放電的一種形式,把天電與地電統一起來,並發明避雷針。15.1837年,英國物理學家法拉第最早引入了電場概念,並提出用電場線表示電場。16.1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。17.1826年德國物理學家歐姆(1787~1854)通過實驗得出歐姆定律。18.1911年,荷蘭科學家昂尼斯(或昂納斯)發現大多數金屬在溫度降到某一值時,都會出現電阻突然降為零的現象--超導現象。19.19世紀,焦耳和楞次先後各自獨立發現電流通過導體時產生熱效應的規律,即焦耳--楞次定律。20.1820年,丹麥物理學家奧斯特發現電流可以使周圍的小磁針發生偏轉,稱為電流磁效應。21.法國物理學家安培發現兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥,同時提出了安培分子電流假說。並總結出安培定則(右手螺旋定則)判斷電流與磁場的相互關系和左手定則判斷通電導線在磁場中受到磁場力的方向。22.荷蘭物理學家洛侖茲提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛倫茲力)的觀點。23.英國物理學家湯姆孫發現電子,並指出:陰極射線是高速運動的電子流。24.湯姆孫的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素。25.1932年,美國物理學家勞倫茲發明了迴旋加速器能在實驗室中產生大量的高能粒子。最大動能僅取決於磁場和D形盒直徑。帶電粒子圓周運動周期與高頻電源的周期相同 。但當粒子動能很大,速率接近光速時,根據狹義相對論,粒子質量隨速率顯著增大,粒子在磁場中的迴旋周期發生變化,進一步提高粒子的速率很困難。26.1831年,英國物理學家法拉第發現了由磁場產生電流的條件和規律 ——電磁感應定律。27.1834年,俄國物理學家楞次發表確定感應電流方向的定律--楞次定律。28.1835年,美國科學家亨利發現自感現象(因電流變化而在電路本身引起感應電動勢的現象),日光燈的工作原理即為其應用之一,雙繞線法制精密電阻為消除其影響應用之一。Ⅱ.選考部分:(選修3-3、3-4、3-5)三、熱學(3-3選考):29.1827年,英國植物學家布朗發現懸浮在水中的花粉微粒不停地做無規則運動的現象--布朗運動。30.19世紀中葉,由德國醫生邁爾 。英國物理學家焦爾。德國學者亥姆霍茲最後確定能量守恆定律。31.1850年,克勞修斯提出熱力學第二定律的定性表述:不可能把熱從低溫物體傳到高溫物體而不產生其他影響,稱為克勞修斯表述。次年開爾文提出另一種表述:不可能從單一熱源取熱,使之完全變為有用的功而不產生其他影響,稱為開爾文表述。32.1848年,開爾文提出熱力學溫標,指出絕對零度( -273.15℃)是溫度的下限。熱力學溫標與攝氏溫度轉換關系為T=t+273.15 K。熱力學第三定律:熱力學零度不可達到。四、波動學、光學、相對論(3-4選考):33.17世紀,荷蘭物理學家惠更斯確定了單擺周期公式。周期是2s的單擺叫秒擺。34.1690年,荷蘭物理學家惠更斯提出了機械波的波動現象規律--惠更斯原理。35.奧地利物理學家多普勒(1803~1853)首先發現由於波源和觀察者之間有相對運動,使觀察者感到頻率發生變化的現象--多普勒效應(相互接近,f增大。相互遠離,f減少)。36.1864年,英國物理學家麥克斯韋發表《電磁場的動力學理論》的論文,提出了電磁場理論,預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎。電磁波是一種橫波。37.1887年,德國物理學家赫茲用實驗證實了電磁波的存在,並測定了電磁波的傳播速度等於光速。38.1894年,義大利馬可尼和俄國波波夫分別發明了無線電報,揭開無線電通信的新篇章。39.1800年,英國物理學家赫歇耳發現紅外線。1801年,德國物理學家裡特發現紫外線。1895年,德國物理學家倫琴發現x射線(倫琴射線),並為他夫人的手拍下世界上第一張x射線的人體照片。40.1621年,荷蘭數學家斯涅耳找到了入射角與折射角之間的規律--折射定律。41.1801年,英國物理學家托馬斯·楊成功地觀察到了光的干涉現象。42.1818年,法國科學家菲涅爾和泊松計算並實驗觀察到光的圓板衍射--泊松亮斑。43.1864年,英國物理學家麥克斯韋預言了電磁波的存在,並指出光是一種電磁波。1887年,赫茲用實驗證實了電磁波的存在,光是一種電磁波。44.1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:①相對性原理--不同的慣性參考系中,一切物理規律都是相同的。②光速不變原理--不同的慣性參考系中,光在真空中的速度一定是c不變。45.愛因斯坦還提出了相對論中的一個重要結論——質能方程式E=mc2。46.公元前 468~前376,我國的墨翟及其弟子在《墨經》中記載了光的直線傳播。影的形成。光的反射。平面鏡和球面鏡成像等現象,為世界上最早的光學著作。47.1849年法國物理學家斐索首先在地面上測出了光速,以後又有許多科學家採用了更精密的方法測定光速,如美國物理學家邁克爾遜的旋轉棱鏡法。(注意其測量方法)48.關於光的本質:17世紀明確地形成了兩種學說:一種是牛頓主張的微粒說,認為光是光源發出的一種物質微粒。另一種是荷蘭物理學家惠更斯提出的波動說,認為光是在空間傳播的某種波。這兩種學說都不能解釋當時觀察到的全部光現象。49.物理學晴朗天空上的兩朵烏雲:①邁克遜-莫雷實驗一相對論(高速運動世界);②熱輻射實驗一一量子論(微觀世界)。50.19世紀和20世紀之交,物理學的三大發現:x射線的發現,電子的發現,放射性 同位素的發現。51.1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:①相對性原理--不同的慣性參考系中,一切物理規律都是相同的。②光速不變原理--不同的慣性參考系中,光在真空中的速度一定是c不變。52.1900年,德國物理學家普朗克解釋物體熱輻射規律提出能量子假說:物質發射或吸收能量時,能量不是連續的,而是一份一份的,每一份就是一個最小的能量單位,即能量子。53.激光--被譽為20世紀的「世紀之光」。五、動量、波粒二象性、原子物理(3-5選考):54.1900年,德國物理學家普朗克為解釋物體熱輻射規律提出:電磁波的發射和吸收不是連續的,而是一份一份的,把物理學帶進了量子世界。受其啟發1905年愛因斯坦提出光子說,成功地解釋了光電效應規律,因此獲得諾貝爾物理獎。55.1922年,美國物理學家康普頓在研究石墨中的電子對x射線的散射時--康普頓效應,證實了光的粒子性(說明動量守恆定律和能量守恆定律同時適用於微觀粒子)。56.1913年,丹麥物理學家玻爾提出了自己的原子結構假說,成功地解釋和預言了氫原子的輻射電磁波譜,為量子力學的發展奠定了基礎。57.1924年,法國物理學家德布羅意大膽預言了實物粒子在一定條件下會表現出波動性。58.1927年美。英兩國物理學家得到了電子束在金屬晶體上的衍射圖案。電子顯微鏡與光學顯微鏡相比,衍射現象影響小很多,大大地提高了分辨能力,質子顯微鏡的分辨本能更高。59.1858年,德國科學家普里克發現了一種奇妙的射線--陰極射線(高速運動的電子流)。60.1906年,英國物理學家湯姆生發現電子,獲得諾貝爾物理學獎。61.1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。62.1897年,湯姆生利用陰極射線管發現了電子,說明原子可分,有復雜內部結構,並提出原子的棗糕模型。63.1909~1911年,英國物理學家盧瑟福和助手們進行了α粒子散射實驗,並提出了原子的核式結構模型。由實驗結果估計原子核直徑數量級為10m~15m。1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,並發現了質子。預言原子核內還有另一種粒子,被其學生查德威克於1932年在α粒子轟擊鈹核時發現,由此人們認識到原子核由質子和中子組成。64.1885年,瑞士的中學數學教師巴耳末總結了氫原子光譜的波長規律——巴耳末系。65.1913年,丹麥物理學家波爾最先得出氫原子能級表達式。66.1896年,法國物理學家貝克勒爾發現天然放射現象,說明原子核有復雜的內部結構。天然放射現象:有兩種衰變(α、β),三種射線(α、β、γ),其中γ 射線是衰變後新核處於激發態,向低能級躍遷時輻射出的。衰變快慢與原子所處的物理和化學狀態無關。67.1896年,在貝克勒爾的建議下,瑪麗-居里夫婦發現了兩種放射性更強的新元素--釙(Po)鐳(Ra)。68.1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,發現了質子,並預言原子核內還有另一種粒子——中子。69.1932年,盧瑟福學生查德威克於在α粒子轟擊鈹核時發現中子,獲得諾貝爾物理獎。70.1934年,約里奧-居里夫婦用α粒子轟擊鋁箔時,發現了正電子和人工放射性同位素。71.1939年12月,德國物理學家哈恩和助手斯特拉斯曼用中子轟擊鈾核時,鈾核發生裂變。72.1942年,在費米。西拉德等人領導下,美國建成第一個裂變反應堆(由濃縮鈾棒、控制棒、中子減速劑、水泥防護層、熱交換器等組成)。73.1952年,美國爆炸了世界上第一顆氫彈(聚變反應、熱核反應)。人工控制核聚變的一個可能途徑是:利用強激光產生的高壓照射小顆粒核燃料。74.1932年發現了正電子,1964年提出誇克模型。粒子分三大類:媒介子——傳遞各種相互作用的粒子,如:光子。輕子——不參與強相互作用的粒子,如:電子。中微子。強子——參與強相互作用的粒子,如:重子(質子、中子、超子)和介子,強子由更基本的粒子誇克組成,誇克帶電量可能為元電荷。

② 物理學的發展史

近代意義的物理學誕生於歐洲15—17世紀。人們一般將歐洲歷史作為物理學史的社會背景。從遠古到公元5世紀屬古代史時期;5—13世紀為中世紀時期;14—16世紀為文藝復興運動時期;16—17世紀為科學革命時期,以N.哥白尼、伽利略、牛頓為代表的近代科學在此時期產生。

從此之後,科學隨各個世紀的更替而發展。近半個世紀,人們按照物理學史特點,將其發展大致分期如下:從遠古到中世紀屬古代時期。從文藝復興到19世紀,是經典物理學時期。牛頓力學在此時期發展到頂峰,其時空觀、物質觀和因果關系影響了光、聲、熱、電磁的各學科。

甚而影響到物理學以外的自然科學和社會科學。隨著20世紀的到來,量子論和相對論相繼出現;新的時空觀、概率論和不確定度關系等在宇觀和微觀領域取代牛頓力學的相關概念,人們稱此時期為近代物理學時期。

(2)物理學發展史約為多少年擴展閱讀:

伽利略·伽利雷(1564~1642年)人類現代物理學的創始人,奠定了人類現代物理科學的發展基礎。1900~1926年 建立了量子力學。1926年 建立了費米狄拉克統計。1927年 建立了布洛赫波的理論。1928年 索末菲提出能帶的猜想。1929年 派爾斯提出禁帶、空穴的概念。

同年貝特提出了費米面的概念。1947年貝爾實驗室的巴丁、布拉頓和肖克萊發明了晶體管,標志著信息時代的開始。1957年 皮帕得測量了第一個費米面超晶格材料納米材料光子。1958年傑克.基爾比發明了集成電路。20世紀70年代出現了大規模集成電路。

發展前景:

應用物理學專業的畢業生主要在物理學或相關的科學技術領域中從事科研、教學、技術開發和相關的管理工作。科研工作包括物理前沿問題的研究和應用,技術開 發工作包括新特性物理應用材料如半導體等,應用儀器的研製如醫學儀器、生物儀器、科研儀器等。

應用物理專業的就業范圍涵蓋了整個物理和工程領域,融物理理 論和實踐於一體,並與多門學科相互滲透。應用物理學專業的學生如具有扎實的物理理論的功底和應用方面的經驗,能夠在很多工程技術領域成為專家。我國每年培養本科應用物理專業人才約12000人。

和該專業存在交叉的專業包括物理專業,工程物理專業,半導體和材料專業等。人才需求方面,我國對應用物理專業的人才需求仍舊是供不應求。

③ 物理學史是如何分期的

對於物理學史的分期,有多種不同的處理方法,如按年代劃分,按人物劃分,按經濟形態劃分,按物理學發展的特點分期等。現採用現在物理學史教學中比較通行的分期方法,按照物理科學本身發展的規律,結合社會經濟各時期的特點,並考慮到不同時期有不同的研究方法,把物理學發展的歷史大體分為三個時期:

1、 物理學的萌芽時期(從遠古至16世紀中葉)

科學的萌芽時期,也可以叫作經驗科學和自然哲學時期,這個時期包括物理學在內的科學還沒有從自然哲學中分化出來,相當於物理學發展的古代時期。這時期大體是在歐洲文藝復興及資本主義生產關系廣泛發展以前,在我國則在明末以前,在這時期內我國和古希臘形成兩個東西交相輝映的文化中心。經驗科學已從生產勞動中逐漸分化出來。這時的主要方法是直覺的觀察(包括現象的描述與經驗的初步總結)與哲學的猜測性思辨。與生產活動及人們的直接感官有關的天文、力、熱、聲、光(幾何光學)等知識首先得到較多發展,除希臘的靜力學外,中國在以上幾方面在當時都處在領先地位。

2、經典物理時期(16世紀中葉7到19世紀末)

15世紀末資本主義開始萌芽,社會生產力得到了發展,推動了技術與科學的進程。16世紀中葉,哥白尼提出「日心說」;17世紀晚期,牛頓建立經典力學體系,標志著近代物理學的誕生;之後,經典熱力學、電磁學相繼建立,形成了比較完整的經典物理學體系。這時期還建立了系統的觀察實驗與嚴密的數學推理相結合的方法。可以進一步劃分為1600-1800年經典力學建立與發展階段和1800-1900年經典物理學各部門分別發展的階段。

3、現代物理學革命時期(20世紀到現在)

20世紀初相對論與量子力學的建立,導致了探討物質結構和相互作用的統一理論以及天體物理等新科學飛速發展,在實驗手段、數學工具和邏輯推理方法等方面也都大大進一步。物理學還正在向其他學科滲透,交叉科學大量涌現。物理學的規律和方法正在不斷擴大其范圍。

現代物理學時期可分為三個階段:第一階段(1905—1931年)的特徵是廣泛應用相對論和量子概念,這個階段以量子力學的創立和形成而告終,量子力學是牛頓之後第四個基本物理學理論。第二階段是亞原子物理學階段(1932—1954年),在此階段中物理學深入到了新的物質層次,即原子核的世界。第三階段(1955年至今)是亞核物理學即宇宙物理學階段,這個階段顯著的特點是研究新的時間—中間尺度中的現象。

現代物理學的發展,引起人們對物質、運動、空間、時間、因果律乃至生命現象的認識的重大變化,對物理學理論的性質的認識也發生了重大變化。隨著物理學向其他學科領域的推進,產生了一系列物理學的新部門和邊緣科學,井為現代科學技術提供了新思路和新方法。

④ 介紹物理學簡史

物理學發展史(從1638年至1962年)

公元1638年,義大利科學家伽利略的《兩種新科學》一書出版,書內載有斜面實驗的詳細描述。伽利略的動力學研究與1609~1618年間德國科學家開普勒根據天文觀測總結所得開普勒三定律,同為牛頓力學的基礎。

公元1643年,義大利科學家托利拆利作大氣壓實驗,發明水銀氣壓計。

公元1646年,法國科學家帕斯卡實驗驗證大氣壓的存在。

公元1654年,德國科學家格里開發明抽氣泵,獲得真空。

公元1662年,英國科學家波義耳實驗發現波義耳定律。十四年後,法國科學家馬里奧特也獨立的發現此定律。

公元1663年,格里開作馬德堡半球實驗。

公元1666年,英國科學家牛頓用三棱鏡作色散實驗。

公元1669年,巴塞林那斯發現光經過方解石有雙折射的現象。

公元1675年,牛頓作牛頓環實驗,這是一種光的干涉現象,但牛頓仍用光的微粒說解釋。

公元1752年,美國科學家富蘭克林作風箏實驗,引雷電到地面。

公元1767年,美國科學家普列斯特勒根據富蘭克林導體內不存在靜電荷的實驗,推得靜電力的平方反比定律。

公元1780年,義大利科學家加伐尼發現蛙腿筋肉收縮現象,認為是動物電所致。不過直到1791年他才發表這方面的論文。

公元1785年,法國科學家庫侖用他自己發明的扭秤,從實驗得靜電力的平方反比定律。在這以前,英國科學家米切爾已有過類似設計,並於1750年提出磁力的平方反比定律。

公元1787年,法國科學家查理發現了氣體膨脹的查理-蓋·呂薩克定律。蓋·呂薩克的研究發表於1802年。

公元1792年,伏打研究加伐尼現象,認為是兩種金屬接觸所致。

公元1798年,英國科學家卡文迪許用扭秤實驗測定萬有引力常數G。

公元1798年,美國科學家倫福德發表他的摩擦生熱的實驗,這些實驗事實是反對熱質說的重要依據。

公元1799年,英國科學家戴維做真空中的摩擦實驗,以證明熱是物體微粒的振動所致。

公元1800年,英國科學家赫休爾從太陽光譜的輻射熱效應發現紅外線。

公元1801年,德國科學家裡特爾從太陽光譜的化學作用,發現紫外線。

公元1801年,英國科學家托馬斯·楊用干涉法測光波波長。

公元1802年,英國科學家沃拉斯頓發現太陽光譜中有暗線。

公元1808年,法國科學家馬呂斯發現光的偏振現象。

公元1811年,英國科學家布儒斯特發現偏振光的布儒斯特定律。

公元1815年,德國科學家夫琅和費開始用分光鏡研究太陽光語中的暗線。

公元1819年,法國科學家杜隆與珀替發現克原子固體比熱是一常數,約為6卡/度·克原子,稱杜隆·珀替定律。

公元1820年,丹麥科學家奧斯特發現導線通電產生磁效應。

公元1820年,法國科學家畢奧和沙伐由實驗歸納出電流元的磁場定律。

公元1820年,法國科學家安培由實驗發現電流之間的相互作用力,1822年進一步研究電流之間的相互作用,提出安培作用力定律。

公元1821年,愛沙尼亞科學家塞貝克發現溫差電效應(塞貝克效應)。

公元1827年,英國科學家布朗發現懸浮在液體中的細微顆粒作不斷地雜亂無章運動,是分子運動論的有力證據。

公元1830年,諾比利發明溫差電堆。

公元1831年,法拉第發現電磁感應現象。

公元1834年,法國科學家珀耳帖發現電流可以致冷的珀耳帖效應。

公元1835年,美國科學家亨利發現自感,1842年發現電振盪放電。

公元1840年,英國科學家焦耳從電流的熱效應發現所產生的熱量與電流的平方、電阻及時間成正比,稱焦耳-楞茨定律(楞茨也獨立地發現了這一定律)。其後,焦耳先後於1843,1845,1847,1849直至1878年測量熱功當量,歷經四十年,共進行四百多次實驗。

公元1842年,法國科學家勒諾爾從實驗測定實際氣體的性質,發現與波義耳定律及蓋·呂薩克定律有偏離。

公元1843年,法拉第從實驗證明電荷守恆定律。

公元1845年,法拉第發現強磁場使光的偏振面旋轉,稱法拉第效應。

公元1849年,法國科學家斐索首次在地面上測光速。



公元1851年,法國科學家傅科做傅科擺實驗,證明地球自轉。

公元1852年,英國科學家焦耳與威廉·湯姆遜發現氣體焦耳-湯姆遜效應(氣體通過狹窄通道後突然膨脹引起溫度變化)。

公元1858年,德國科學家普呂克爾在放電管中發現陰極射線。

公元1859年,德國科學家基爾霍夫開創光譜分析,其後通過光譜分析發現銫、銣等新元素,他還發現發射光譜和吸收光譜之間的聯系,建立了輻射定律。

公元1866年,德國科學家昆特做昆特管實驗,用以測量氣體或固體中的聲速。

公元1869年,德國科學家希托夫用磁場使陰極射線偏轉。

公元1871年,英國科學家瓦爾萊發現陰極射線帶負電。

公元1875年,英國科學家克爾發現在強電場的作用下,某些各向同性的透明介質會變為各向異性,從而使光產生雙折射現象,稱克爾電光效應。

公元1876年,德國科學家哥爾德茨坦開始大量研究陽極射線的實驗,導致極墜射線的發現。

公元1879年,英國科學家克魯克斯開始一系列實驗,研究陰極射線。

公元1879年,奧地利科學家斯忒藩發現黑體輻射經驗公式。

公元1879年,美國科學家霍爾發現電流通過金屬時,在磁場作用下產生橫向電動勢的霍爾效應。

公元1880年,法國科學家居里兄弟發現晶體的壓電效應。

公元1881年,美國科學家邁克耳遜首次做以太漂移實驗,得到零結果。由此產生邁克耳遜干涉儀,靈敏度極高。

公元1885年,邁克耳遜與莫雷合作改進斐索流水中光速的測量。

公元1887年,邁克耳遜與莫雷再次做以太漂移實驗,又得零結果。

公元1887年,德國科學家赫茲作電磁波實驗,證實了英國科學家麥克斯韋的電磁場理論。同時,赫茲發現光電效應。

公元1890年,匈牙利科學家厄沃作實驗證明慣性質量與引力質量相等。

公元1893年,德國科學家勒納德研究陰極射線時,在射線管上裝一薄鋁窗,使陰極射線從管內穿出進入空氣,射程約l厘米,人稱勒納德射線。

公元1895年,P.居里發現居里點和居里定律。

公元1895年,德國科學家倫琴發現x射線。

公元1896年,法國科學家貝克勒爾發現放射性。

公元1896年,荷蘭科學家塞曼發現磁場使光譜線分裂,後稱塞曼效應,並證實了荷蘭科學家洛侖茲關於電子論的推測。

⑤ 物理學發展史是怎樣的

從遠古到公元5世紀屬古代史時期;5—13世紀為中世紀時期;14—16世紀為文藝復興運動時期;16—17世紀為科學革命時期,以N.哥白尼、伽利略、牛頓為代表的近代科學在此時期產生,從此之後,科學隨各個世紀的更替而發展。近半個世紀,人們按照物理學史特點,將其發展大致分期如下:

①從遠古到中世紀屬古代時期。

②從文藝復興到19世紀,是經典物理學時期。牛頓力學在此時期發展到頂峰,其時空觀、物質觀和因果關系影響了光、聲、熱、電磁的各學科,甚而影響到物理學以外的自然科學和社會科學。

③隨著20世紀的到來,量子論和相對論相繼出現;新的時空觀、概率論和不確定度關系等在宇觀和微觀領域取代牛頓力學的相關概念,人們稱此時期為近代物理學時期。

(5)物理學發展史約為多少年擴展閱讀:

物理學來源於古希臘理性唯物思想。早期的哲學家提出了許多范圍廣泛的問題,諸如宇宙秩序的來源、世界多樣性和各類變種的起源、如何說明物質和形式、運動和變化之間的關系等。

尤其是,以留基波、德謨克利特為代表,後又被伊壁鳩魯和盧克萊修發展的原子論,以及以愛利亞的芝諾為代表的斯多阿學派主張自然界連續性的觀點,對自然界的結構和運動、變化等作出各自的說明。原子論曾對從18世紀起的化學和物理學起著相當大的影響。

經典物理學形成之初,磨鏡與制鏡工藝對物理學與天文學都有過幫助和促進。早先發明的眼鏡以及在1600年左右突然問世的望遠鏡、顯微鏡,為伽利略等物理學家觀測天體帶來方便,也促使菲涅耳、笛卡爾、牛頓等一大批光學家作出幾何光學的研究。

後者的成就又促成反射望遠鏡、折射望遠鏡和消色差折射望遠鏡在17—18世紀紛紛問世。各種望遠鏡的進步又推動物理學的發展,如用它觀察木衛蝕、發現光行差等。當牛頓建立起經典力學大廈時,現代一切機械、土木建築、交通運輸、航空航天等工程技術的理論基礎也得到初步確立。

18世紀60年代開始的工業革命,以蒸汽機的廣泛使用為標志。起初,蒸汽機的熱機效率僅為5%左右,為提高蒸汽機的效率,一大批物理學家進行熱力學研究。J.瓦特曾根據J.布萊克的「潛熱」理論在技術因素上(加入冷凝器)改進蒸汽機。

但是,當時尚未有人認識到汽缸的熱僅僅部分地轉化為機械功。此後,卡諾建立了熱功轉換的循環原理,從理論上為熱機效率的提高指明了方向,也因此在19世紀下半葉出現了N.奧托和R.狄塞爾的內燃機。

除了物理學與技術之關系外,在科學發展史上,物理學與鄰近的天文學、化學和礦物學是密切相關的,而物理學與數學的聯系更為密切。物理學的概念、理論和方法,也幫助其他學科的建立與發展,如氣象學、地球科學、生物學等。物理學與哲學的關系也十分特別。

⑥ 物理學發展史是什麼

1. 古代物理學時期
這一時期是從公元前8世紀至公元15世紀,是物理學的萌芽時期。無論在東方還是在西方,物理學還處於前科學的萌芽階段,嚴格的說還不能稱其為「學」。物理知識一方麵包含在哲學中,如希臘的自然哲學,另一方面體現在各種技術中,如中國古代的科技。 這一時期的物理學有如下特徵:在研究方法上主要是表面的觀察、直覺的猜測和形式邏輯的演繹;在知識水平上基本上是現象的描述、經驗的膚淺的總結和思辨性的猜測;在內容上主要有物質本原的探索、天體的運動、靜力學和光學等有關知識,其中靜力學發展較為完善;在發展速度上比較緩慢,社會功能不明顯。 這一時期的物理學對於西方又可分為兩個階段,即古希臘-羅馬階段和中世紀階段。〖1〗古希臘-羅馬階段(公元前8世紀至公元5紀)。主要有古希臘的原子論、阿基米德(Archimedes,公元前287-公元前212)的力學、托勒密(Claudius Ptolemaeus,約90-168)的天文學等。〖2〗中世紀階段(公元5世紀至公元15世紀)。主要有勒·哈增(AL-Hazen,約965-1038)的光學、沖力說等。
2. 近代物理學時期 (又稱經典物理學時期)
這一時期是從16世紀至19世紀,是經典物理學的誕生、發展和完善時期。物理學與哲學分離,走上獨立發展的道路,迅速形成比較完整嚴密的經典物理學科學體系。 這一時期的物理學有如下特徵:在研究方法上採用實驗與數學相結合、分析與綜合相結合和歸納與演繹相結合等方法;在知識水平上產生了比較系統和嚴密科學理論與實驗;在內容上形成比較完整嚴密的經典物理學科學體系;在發展速度上十分迅速,社會功能明顯,推動了資本主義生產與社會的迅速發展。 這一時期的物理學又可細分為三個階段。〖1〗草創階段(16世紀至17世紀)。主要在天文學和力學領域中爆發了一場「科學革命」,牛頓力學誕生。〖2〗消化和漸進階段(18世紀)。建立了分析力學,光學、熱學和靜電學也取得較大的發展。〖3〗鼎盛階段(19世紀)。相繼建立了波動光學、熱力學與分子運動論、電磁學,使經典物理學體系臻於完善。
3. 現代物理學時期
這一時期是從19世紀末至今,是現代物理學的誕生和取得革命性發展時期。物理學的研究領域得到巨大的拓展,實驗手段與設備得到前所未有的增強,理論基礎發生了質的飛躍。 這一時期的物理學有如下特徵:在研究方法上更加依賴大規模的實驗、高度抽象的理性思維和國際化的合作與交流;在認識領域上拓展到微觀(10-13)與宇觀(200億光年)和接近光速的高速運動新領域,變革了人類對物質、運動、時空、因果律的認識;在發展速度上非常迅猛,社會功能十分顯著,推動了社會的飛速發展。 這一時期的物理學又可大致地分為兩個階段。〖1〗革命與奠基階段(1895年至1927年)。建立了相對論和量子力學,奠定了現代物理學的基礎。〖2〗飛速發展階段(1927年至今)產生了量子場論、原子核物理學、粒子物理學、半導體物理學、現代宇宙學、現代物理技術等分支學科。

⑦ 高中物理發展史

物理學的發展史
1、1638年,義大利物理學家伽利略
論證重物體不會比輕物體下落得快;
2、英國科學家牛頓
1683年,提出了三條運動定律。
1687年,發表萬有引力定律;
3、17世紀,伽利略理想實驗法指出:
在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;
4、20愛因斯坦提出的狹義相對論
經典力學不適用於微觀粒子和高速運動物體。
5、17世紀德國天文學家開普勒
提出開普勒三定律;
6、1798年英國物理學家卡文迪許
利用扭秤裝置比較准確地測出了引力常量;
7、奧地利物理學家多普勒(1803-1853)
發現由於波源和觀察者之間有相對運動,使觀察者感到頻率發生變化的現象——多普勒效應。
8、1827年英國植物學家布朗
懸浮在水中的花粉微粒不停地做無規則運動的現象——布朗運動。
9、1785年法國物理學家庫侖
利用扭秤實驗發現了電荷之間的相互作用規律——庫侖定律。
10、1752年,富蘭克林
過風箏實驗驗證閃電是電的一種形式,把天電與地電統一起來,並發明避雷針。
11、1826年德國物理學家歐姆(1787-1854)
通過實驗得出歐姆定律。
12、1911年荷蘭科學家昂尼斯
大多數金屬在溫度降到某一值時,都會出現電阻突然降為零的現象——超導現象。
13、1841~1842年焦耳和楞次
先後各自獨立發現電流通過導體時產生熱效應的規律,稱為焦耳——楞次定律。
14、1820年,丹麥物理學家奧斯特
電流可以使周圍的磁針偏轉的效應,稱為電流的磁效應。
15、荷蘭物理學家洛侖茲
提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛侖茲力)的觀點。
16、1831年英國物理學家法拉第
發現了由磁場產生電流的條件和規律——電磁感應現象;
17、1834年,楞次
確定感應電流方向的定律。
18、1832年,亨利
發現自感現象。
19、1864年英國物理學家麥克斯韋
預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎。
20、1887年德國物理學家赫茲
用實驗證實了電磁波的存在並測定了電磁波的傳播速度等於光速。
21、公元前468-前376,我國的墨翟
在《墨經》中記載了光的直線傳播、影的形成、光的反射、平面鏡和球面鏡成像等現象,為世界上最早的光學著作。
22、1621年荷蘭數學家斯涅耳
入射角與折射角之間的規律——折射定律。
23、關於光的本質有兩種學說:
一種是牛頓主張的微粒說
認為光是光源發出的一種物質微粒;
一種是荷蘭物理學家惠更斯提出的波動說
認為光是在空間傳播的某種波。
24、1801年,英國物理學家托馬斯?楊
觀察到了光的干涉現象
25、1818年,法國科學家泊松
觀察到光的圓板衍射——泊松亮斑。
26、1887年由赫茲
證實了電磁理的存在。
27、1895年,德國物理學家倫琴
發現X射線(倫琴射線)。
28、1900年,德國物理學家普朗克
解釋物體熱輻射規律提出電磁波的發射和吸收不是連續的,而是一份一份的,把物理學帶進了量子世界;
29、1905年愛因斯坦
提出光子說,成功地解釋了光電效應規律。
30、1913年,丹麥物理學家玻爾
提出了原子結構假說,成功地解釋和預言了氫原子的輻射電磁波譜。

⑧ 物理學有幾百年的歷史

你好!
作為發展的萌芽階段,可以追溯到2000多年前,比如那時候就發現了一些物理現象,並且對這些現象做出過經驗性的總結,但是並不能稱之為物理學。
真正的物理學理論體系的建立,應該從牛頓的那本劃時代著作《自然哲學的數學原理》開始的,也就是在17世紀80年代。

⑨ 物理學發展歷史約為多久

可以說很久了,最早可追溯到亞里士多德,阿基米德時代吧

⑩ 簡述物理學的發展簡史

物理學發展史與各年代成就物理學是研究物質運動和相互作用的規律的科學,是除數學外最基本的一門學科。
物理運動是自然界最普遍的一種現象。

因此物理學研究的對象和內容就是宇宙間各種物質的性質、存在狀態、各種物理運動形式及其轉化現象、物質的內部結構及這些內部結構的組成部分,物理領域的各種基本相互作用及其規律。由於一切物理現象都在時間、空間中表現出來和發生運動和轉化,所以物理學也要研究時間和空間的性質、聯系等。

進行物理學研究,首先是觀察各種客觀物理現象;或是進行試驗,通過變革研究對象以觀察因而產生的運動和轉化狀況中,找出規律;再從許多表象性的規律中,揭示基本規律,建立較為系統的理論。 物理學研究除了要依靠好的科學方法外,還要取決於認知工具。工具越先進,研究效率越高,成果越顯著。 物理學在發展過程中形成了一套完整的科學方法,它對其他學科的研究,乃至哲學發展,都有重要意義.

物理學發展史(從1638年至1962年)

公元1638年,義大利科學家伽利略的《兩種新科學》一書出版,書內載有斜面實驗的詳細描述。伽利略的動力學研究與1609~1618年間德國科學家開普勒根據天文觀測總結所得開普勒三定律,同為牛頓力學的基礎。

公元1643年,義大利科學家托利拆利作大氣壓實驗,發明水銀氣壓計。

公元1646年,法國科學家帕斯卡實驗驗證大氣壓的存在。

公元1654年,德國科學家格里開發明抽氣泵,獲得真空。

公元1662年,英國科學家波義耳實驗發現波義耳定律。十四年後,法國科學家馬里奧特也獨立的發現此定律。

公元1663年,格里開作馬德堡半球實驗。

公元1666年,英國科學家牛頓用三棱鏡作色散實驗。

公元1669年,巴塞林那斯發現光經過方解石有雙折射的現象。

公元1675年,牛頓作牛頓環實驗,這是一種光的干涉現象,但牛頓仍用光的微粒說解釋。

公元1752年,美國科學家富蘭克林作風箏實驗,引雷電到地面。

公元1767年,美國科學家普列斯特勒根據富蘭克林導體內不存在靜電荷的實驗,推得靜電力的平方反比定律。

公元1780年,義大利科學家加伐尼發現蛙腿筋肉收縮現象,認為是動物電所致。不過直到1791年他才發表這方面的論文。

公元1785年,法國科學家庫侖用他自己發明的扭秤,從實驗得靜電力的平方反比定律。在這以前,英國科學家米切爾已有過類似設計,並於1750年提出磁力的平方反比定律。

公元1787年,法國科學家查理發現了氣體膨脹的查理-蓋·呂薩克定律。蓋·呂薩克的研究發表於1802年。

公元1792年,伏打研究加伐尼現象,認為是兩種金屬接觸所致。

公元1798年,英國科學家卡文迪許用扭秤實驗測定萬有引力常數G。

公元1798年,美國科學家倫福德發表他的摩擦生熱的實驗,這些實驗事實是反對熱質說的重要依據。

公元1799年,英國科學家戴維做真空中的摩擦實驗,以證明熱是物體微粒的振動所致。

公元1800年,英國科學家赫休爾從太陽光譜的輻射熱效應發現紅外線。

公元1801年,德國科學家裡特爾從太陽光譜的化學作用,發現紫外線。

公元1801年,英國科學家托馬斯·楊用干涉法測光波波長。

公元1802年,英國科學家沃拉斯頓發現太陽光譜中有暗線。

公元1808年,法國科學家馬呂斯發現光的偏振現象。

公元1811年,英國科學家布儒斯特發現偏振光的布儒斯特定律。

公元1815年,德國科學家夫琅和費開始用分光鏡研究太陽光語中的暗線。

公元1819年,法國科學家杜隆與珀替發現克原子固體比熱是一常數,約為6卡/度·克原子,稱杜隆·珀替定律。

公元1820年,丹麥科學家奧斯特發現導線通電產生磁效應。

公元1820年,法國科學家畢奧和沙伐由實驗歸納出電流元的磁場定律。

公元1820年,法國科學家安培由實驗發現電流之間的相互作用力,1822年進一步研究電流之間的相互作用,提出安培作用力定律。

公元1821年,愛沙尼亞科學家塞貝克發現溫差電效應(塞貝克效應)。

公元1827年,英國科學家布朗發現懸浮在液體中的細微顆粒作不斷地雜亂無章運動,是分子運動論的有力證據。

公元1830年,諾比利發明溫差電堆。

公元1831年,法拉第發現電磁感應現象。

公元1834年,法國科學家珀耳帖發現電流可以致冷的珀耳帖效應。

公元1835年,美國科學家亨利發現自感,1842年發現電振盪放電。

公元1840年,英國科學家焦耳從電流的熱效應發現所產生的熱量與電流的平方、電阻及時間成正比,稱焦耳-楞茨定律(楞茨也獨立地發現了這一定律)。其後,焦耳先後於1843,1845,1847,1849直至1878年測量熱功當量,歷經四十年,共進行四百多次實驗。

公元1842年,法國科學家勒諾爾從實驗測定實際氣體的性質,發現與波義耳定律及蓋·呂薩克定律有偏離。

公元1843年,法拉第從實驗證明電荷守恆定律。

公元1845年,法拉第發現強磁場使光的偏振面旋轉,稱法拉第效應。

公元1849年,法國科學家斐索首次在地面上測光速。

公元1851年,法國科學家傅科做傅科擺實驗,證明地球自轉。

公元1852年,英國科學家焦耳與威廉·湯姆遜發現氣體焦耳-湯姆遜效應(氣體通過狹窄通道後突然膨脹引起溫度變化)。

公元1858年,德國科學家普呂克爾在放電管中發現陰極射線。

公元1859年,德國科學家基爾霍夫開創光譜分析,其後通過光譜分析發現銫、銣等新元素,他還發現發射光譜和吸收光譜之間的聯系,建立了輻射定律。

公元1866年,德國科學家昆特做昆特管實驗,用以測量氣體或固體中的聲速。

公元1869年,德國科學家希托夫用磁場使陰極射線偏轉。

公元1871年,英國科學家瓦爾萊發現陰極射線帶負電。

公元1875年,英國科學家克爾發現在強電場的作用下,某些各向同性的透明介質會變為各向異性,從而使光產生雙折射現象,稱克爾電光效應。

公元1876年,德國科學家哥爾德茨坦開始大量研究陽極射線的實驗,導致極墜射線的發現。

公元1879年,英國科學家克魯克斯開始一系列實驗,研究陰極射線。

公元1879年,奧地利科學家斯忒藩發現黑體輻射經驗公式。

公元1879年,美國科學家霍爾發現電流通過金屬時,在磁場作用下產生橫向電動勢的霍爾效應。

公元1880年,法國科學家居里兄弟發現晶體的壓電效應。

公元1881年,美國科學家邁克耳遜首次做以太漂移實驗,得到零結果。由此產生邁克耳遜干涉儀,靈敏度極高。

公元1885年,邁克耳遜與莫雷合作改進斐索流水中光速的測量。

公元1887年,邁克耳遜與莫雷再次做以太漂移實驗,又得零結果。

公元1887年,德國科學家赫茲作電磁波實驗,證實了英國科學家麥克斯韋的電磁場理論。同時,赫茲發現光電效應。

公元1890年,匈牙利科學家厄沃作實驗證明慣性質量與引力質量相等。

公元1893年,德國科學家勒納德研究陰極射線時,在射線管上裝一薄鋁窗,使陰極射線從管內穿出進入空氣,射程約l厘米,人稱勒納德射線。

公元1895年,P.居里發現居里點和居里定律。

公元1895年,德國科學家倫琴發現x射線。

公元1896年,法國科學家貝克勒爾發現放射性。

公元1896年,荷蘭科學家塞曼發現磁場

閱讀全文

與物理學發展史約為多少年相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1422
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1004
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071