導航:首頁 > 物理學科 > 什麼是外場物理學

什麼是外場物理學

發布時間:2022-07-05 08:22:12

⑴ 物理學中。,什麼是場啊。。

簡單的說,一塊燒紅的鐵塊,周圍就有一個「場」!叫什麼場無所謂,暫且叫「熱場」吧。

怎麼證明?你把手放到他附近,是不是感到熱?那就對了。

至於物理學的引力場、電場、磁場也類似,都是中心有個源頭:天體、電流、磁體之類的。

至於場到底是什麼?真不好說,只能說是物質某種能量的輻射、發散。

⑵ 什麼是物理學/

物理學是研究自然界的物質結構、物體間的相互作用和物體運動最一般規律的自然科學。物理學研究的范圍
——
物質世界的層次和數量級物理學
(Physics)質子
10-15
m空間尺度:物


構物質相互作用物質運動規律微觀粒子Microscopic介觀物質mesoscopic宏觀物質macroscopic宇觀物質cosmological類星體
10
26
m時間尺度:基本粒子壽命
10-25
s宇宙壽命
1018
s緒
論E-15E-12E-09E-06E-031mE+03E+06E+09E+12E+15E+18E+21E+24E+27最小
的細胞原子原子核基本粒子DNA長度星系團銀河系最近恆
星的距離太陽系太陽山哈勃半徑超星系團人蛇吞尾圖,形象地表示了物質空間尺寸的層次物理現象按空間尺度劃分:量子力學經典物理學宇宙物理學按速率大小劃分:
相對論物理學非相對論物理學按客體大小劃分:
微觀系統宏觀系統
按運動速度劃分:
低速現象高速現象
實驗物理理論物理計算物理今日物理學物理學的發展。
物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸,二是近代人們通過發明創造供觀察測量用的科學儀器,實驗得出的結果,間接認識物質內部組成建立在的基礎上。物理學從研究角度及觀點不同,可分為微觀與宏觀兩部分,宏觀是不分析微粒群中的單個作用效果而直接考慮整體效果,是最早期就已經出現的,微觀物理學隨著科技的發展理論逐漸完善。其次,物理又是一種智能。

⑶ 什麼是物理學

什麼是「物理學」?這是科技史,尤其是物理學史不可迴避的一個十分基礎的課題。近年來物理學概念內涵之演變引人關注,對這方面的了解將會給教授者、學習者一定的指導和啟示。 1、物理學概念的西方源起 「物理學」(即英語里的「physics」),最早始見於古希臘亞里士多德的《物理學》一書,該書的中文譯者張竹明先生指出:這本「《物理學》是一門以自然界為特定對象的哲學。它不同於我們現在的物理學,但卻包括了現在的物理學,也包括化學、生物學、天文學、地學等等在內,總之,涉及整個自然科學,它只研究自然界的總原理,是自然哲學」[1]。鑒於亞里士多德的《物理學》中有許多物理方面的錯誤結論,所以1949年因提出了宇宙起源的大爆炸學說而聲名大震的美籍前蘇聯物理學家喬治·伽莫夫曾指出:亞里士多德「在物理學領域中最重要的貢獻也許只是創造了這門學科的名字,」這個詞由古希臘「自然」一詞推演而來[2]。 2、中文「物理學」一詞的來源 1900年,日本人藤田豐八把飯盛挺造編寫的《物理學》譯成了中文,由當時上海江南製造局刊行。這本書是我國第一本具有現代「physics」內容的稱為「物理學」的書。 如此說,並非1900年以前中國就沒有「physics」.東方的包括中國的近代科學都是從西方傳進來的,實際情況是從西方傳到中國遠比傳到日本還要早.不過1900年以前,我國譯述西方物理學著作沒有採用「物理學」的譯法,而是多譯為「格物學」或「格致學」.如1879年美國人林樂知將羅斯古編寫的一本物理書翻譯成漢語並命名為《格致啟蒙》,其中第二卷為格物學;1883年美國傳教士丁韙良(丁韙良,英文名Martin,1888年曾來中國傳教,接觸中國古代文明後曾提出「丁韙良猜測」:中國的「元氣說」曾影響過笛卡爾提出「以太」漩渦說)也將一本物理書譯為漢語,名字為《格物測算》.另外,國內1886年有譯著《格致小引》,1889年又有《格物入門》出版。 大量史料表明:「格物學」或「格致學」就是「physics」的早期漢語意譯.這兩種譯法是「格物致知」一詞兩種形式的縮寫。「格物致知」一詞源於儒家「致知在格物,格物而後知至」的思想. 應該強調的是,日本學者指出:「特別值得大書一筆的是,近世中國的漢譯著述成為日本翻譯西洋科學譯字的依據.」[3]日本早期物理學史研究者桑木或雄說:「在我國最初把『physics』稱為『窮理學』.明崇禎年間一本名叫《物理小識》的書,闡述的內容包括天文、氣象、醫葯等方面.早在宋代,同樣內容包含在《物類志》和《物類感應》等著述中,這些都是中國物理著作的淵源.」
記得採納啊

⑷ 物理學的概念是什麼

物理學是研究物質運動最一般規律及物質基本結構的學說.具體地說,按所研究的物質運動形態和具體對象,它涉及的范圍包括:力學、聲學、熱學和分子物理學、電磁學、光學、原子和原子核物理學、基本粒子物理學、固體物理學以及對氣體和液體的研究等. 物理學包括實驗和理論兩大部分,經過實踐檢驗被證實為可靠的理論物理包括:理論力學、熱力學和統計物理學、電動力學、相對論、量子力學和量子場論.當然這些理論也只能是相對真理,有各自的局限性.運用物理學的基本理論和實驗方法研究各種專門問題,使物理學中各種新的分支不斷涌現和形成如流體力學、彈性力學、無線電電子學、金屬物理學、半導體物理、電介質物理、超導體物理、等離子物理、固體發光、液晶及激光等.一些邊緣學科也隨物理的廣泛應用而陸續形成如化學物理、生物物理、天體物理及海洋物理等等.

⑸ 物理學是什麼

物理學是研究物質運動最一般規律和物質基本結構的學科。作為自然科學的帶頭學科,物理學研究大至宇宙,小至基本粒子等一切物質最基本的運動形式和規律,因此成為其他各自然科學學科的研究基礎。它的理論結構充分地運用數學作為自己的工作語言,以實驗作為檢驗理論正確性的唯一標准,它是當今最精密的一門自然科學學科。

物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸,二是近代人們通過發明創造供觀察測量用的科學儀器,實驗得出的結果,間接認識物質內部組成建立在的基礎上。

(5)什麼是外場物理學擴展閱讀:

物理學的主要研究領域分為:

1、凝聚態物理

研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。

2、原子,分子和光學物理

研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。

3、高能/粒子物理

粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。據基本粒子的相互作用標准模型描述,有12種已知物質的基本粒子模型(誇克和輕粒子)。

4、天體物理

天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。1931年卡爾發現了天體發出的無線電訊號。

參考資料來源:網路-物理學

⑹ 物理學中的場到底是什麼東西書上說的完全搞不懂

場是物質存在的一種形態。(注意不要受到生活經驗的局限來理解「場」的概念)

在物理學中,具有空間函數關系的物理量就構成了該物理量的場。 場有三類:

標量場,例如溫度場
矢量場,例如磁場、力場
張量場

----
電磁場

靜止的電荷會產生靜電場;靜止的磁偶極子會產生靜磁場。運動的電荷被稱為電流,會產生電場和磁場。電場和磁場統稱為電磁場。

電磁場對電荷產生力,以此可以檢測電磁場的存在。

電荷、電流與電磁場的關系由麥克斯韋方程組決定。麥克斯韋方程共有四條,是一組偏微分方程,其未知量是電場強度(E)、磁場強度(H)、電通量密度(D)、磁通量密度(B)。其中包括這些未知量對時間和空間的偏導數。給定了源(電荷與電流)和邊界條件(電場與磁場在邊界上的值),可以用數值方法求解麥克斯韋方程,從而得到電場和磁場在不同時刻和位置的值。這一過程稱為電磁場數值計算,或者計算電磁學,在電子工程尤其是微波與天線工程中有重要地位。現有的電磁場數值方法包括有限元法(Finite Element Method, FEM),矩量法(Method of Moments, MoM),時域有限差分(Finite-Difference Time-Domain, FDTD)。在計算的精度與速度方面已經取得很多進展。可以准確計算普通天線或者微波器件的電磁場。

電磁場根據隨時間變化的情況不同可以分為:

靜電場/靜磁場(又稱為恆穩電場/磁場):電場/磁場不隨時間變化,但在不同的空間位置可以有不同的值。
時諧電磁場(time-harmonic electromagnetic fields):電磁場隨時間的變化是正弦函數,但在不同的空間位置可以有不同的幅度和相位,通常可以用復數phaser來表示。
時變電磁場:在空間某點的電磁場隨時間的變化是普通的時間函數,如果變換到頻域,其頻譜包含各種頻率分量。
靜電場/靜磁場問題可以簡化為拉普拉斯方程(Laplace)或者普瓦松方程(Poisson),時諧電磁場問題可以簡化為亥姆霍茲方程(Helmholtz)。在這些簡化之下,比直接求解麥克斯韋方程要容易。

在電子工程中,靜電場/靜磁場主要用於計算電容和電感。時諧電磁場主要用於計算天線和微波器件的參數,或者雷達目標的散射截面。

⑺ 請問物理學的【場】到底是什麼

想像一下,你觸摸一個物體,放大到原子的層面,你究竟與這個物體接觸了嗎?構成你手的原子的電子與這個物體接觸了嗎?原子核呢?

其實有沒有接觸並不重要,重要的是你們之間有相互作用。換言之,正是因為在場中一些物體與場產生了相互作用證明了場的存在。很多時候這並不直觀,但是你只要知道,在一定情況下,物體和場間有相互作用就行。把條件和結果掌握即可,具體本質是什麼不重要。物理學其實並沒有去探尋本質,只不過在發掘規律罷了。

⑻ 什麼是物理理論

理論物理

一、學科概況
理論物理是從理論上探索自然界未知的物質結構、相互作用和物質運動的基本規律的學科。理論物理的研究領域涉及粒子物理與原子核物理、統計物理、凝聚態物理、宇宙學等,幾乎包括物理學所有分支的基本理論問題。
二、培養目標
1.博士學位 應具備堅實的理論物理基礎和廣博的現代物理知識,了解理論物理學科的現狀及發展方向,有扎實的數學基礎,熟練掌握現代計算技術,能應用現代理論物理方法處理相關學科中發現的有關理論問題。具有獨立從事科學研究的能力,具有嚴謹求實的科學態度和作風,在國際前沿方向或交錯領域中有較深入的研究,並取得有創造性的成果。至少掌握一門外國語,能熟練地閱讀本專業的外文資料,具有一定的寫作能力和進行國際學術交流的能力。畢業後可獨立從事前沿理論課題的研究,並能開辟新的研究領域。學位獲得者應能勝任高等院校、科研院所及高科技企業的教學」研究、開發和管理工作。
2.碩士學位 應有扎實的理論物理基礎和相關的背景知識,了解理論物理學科的現狀及發展方向,掌握研究物質的微觀及宏觀現象所用的模型和方法等專業理論以及相關的數學與計算方法,有嚴謹求實的科學態度和作風,具備從事前沿課題研究的能力。應較為熟練地掌握一門外國語,能閱讀本專業的外文資料。畢業後能勝任高等院校、科研院所及高科技企業的教學、研究、開發和管理工作。
三、業務范圍
1.學科研究范圍 理論物理是在實驗現象的基礎上,以理論的方法和模型研究基本粒子、原子核、原子、分子、等離子體和凝聚態物質運動的基本規律,解決學科本身和高科技探索中提出的基本理論問題。研究范圍包括粒子物理理論、原子核理論、凝聚態理論、統計物理、光子學理論、原子分子理論、等離子體理論、量子場論與量子力學、引力理論、數學物理、理論生物物理、非線性物理、計算物理等。
2.課程設置 高等量子力學、高等統計物理、量子場論、群論、規范場論、現代數學方法、計算物理、凝聚態理論、量子多體理論、粒子物理、核理論、非平衡統計物理、非線性物理、廣義相對論、量子光學、理論生物物理、天體物理、微分幾何、拓撲學等。
四、主要相關學科
粒子物理與原子核物理,原子和分子物理,凝聚態物理,等離子體物理,聲學,光學,無線電物理,基礎數學,應用數學,計算數學,凝聚態物理,化學物理,天體物理,宇宙學,材料科學,信息科學和生命科學

-------------------------------------------------------
目前主要研究方向:
(一)、粒子物理和量子場論
粒子物理學是研究物質微觀結構及基本相互作用規律的物理學前沿學科。粒子物理理論作為量子場的基本理論,取得了極大的成功。粒子物理標准模型的建立是二十世紀物理學的重大成就之一,它能統一描述目前人類已知的最小"粒子"(誇克、輕子、光子、膠子、中間玻色子、Higgs 粒子)的性質及強、電、弱三種基本相互作用。粒子物理學有許多研究方向,例如:強子物理、重味物理、輕子物理、中微子物理、標准模型精確檢驗、對稱性和對稱性破壞、標准模型擴展等等。
當前,該所開展的粒子物理理論研究主要圍繞粒子物理標准模型中尚未解決的一些基本問題和有關實驗所暗示的新物理進行。其主要內容為:電弱對稱性破缺機制,CP破壞和費米子質量起源,太陽和大氣中微子失蹤之謎以及粒子物理中的一些重要問題,量子色動力學的低能動力學,量子味動力學,手征微擾理論,重味誇克有效場論,手征對稱性和誇克禁閉,格點規范理論,重味物理,中微子物理,強子結構和性質,超高能碰撞等。研究中特別注意各種新理論和新模型,如:超對稱理論和模型,超對稱大統一模型,兩個或多個Higgs模型,味對稱規范模型。在研究方式上注重緊密與實驗結合,並以實驗為基礎,探索超出標准模型的新理論和新模型以及新的物理概念,運用和發展量子場論、群論、數學物理和計算物理等理論物理方法,開展與粒子物理前沿相關的量子場論研究。此外,重視與其他學科的交叉,開展粒子天體物理,粒子宇宙學和粒子核物理以及與粒子物理有關的超弦理論唯象學的研究。

(二)、超弦理論和場論
量子場論是研究微觀世界的基本工具,屬於重要的前沿領域,它的研究成果直接地影響理論物理許多分支領域的進展。弦理論是在量子場論基礎上發展起來的一種新的物理模型,它避免了通常場論中遇到的紫外發散等問題,是當前統一四種相互作用理論的重要嘗試。
目前該所在此方向的研究課題為:
1、量子場論及超弦理論,特別是其非微擾問題;弦理論的最新發展;
2、場論(特別是規范場論)及弦理論的數學工具,包括非對易幾何,幾何量子化等以及非對易空間上的規范場論、離散群或離散點集上規范場論、用非線性聯絡的規范場論等。
3、各種數學物理和計算物理問題;
4、低維場論,特別是與低維凝聚態物理有關的場論;
5、與粒子物理相聯系的量子場論問題;弦理論在粒子物理中的應用;
6、與引力理論相關的量子場論問題,包括源於弦理論的量子引力、黑洞熵的起源等等。

(三)、引力理論與宇宙學
愛因斯坦的廣義相對論是一個十分成功的經典引力理論,將引力量子化從而 建立一個自恰的量子引力理論是當前理論物理的一大重要任務。與廣義相對論相比,標量-張量引力論具有很強的競爭力。廣義相對論在宇宙學及天體物理中的應用(包括大爆炸宇宙模型、中子星和黑洞、引力透鏡以及引力波的預言)已取得巨大成功,但是,許多疑難問題有待解決。例如,奇性困難,暗物質的構成及其存在形式、物理性質、在宇宙中的佔有比例及其對宇宙演化的作用,物質反物質的不對稱性,宇宙常數和暗能量問題,原初核合成,宇宙早期相變過程的拓撲缺陷問題,宇宙早期暴漲模型的建立,黑洞的量子力學,引力的全息性質等。
國際上若干大型的空間和地面天文觀測裝置(包括大型望遠鏡、引力波天文台、等效原理的檢驗裝置等等)將在今後若干年內投入使用,這將對現有的宇宙學模型、引力波的預言以及等效原理的正確性提供更精確的檢驗,隨之而來的將是宇宙學和引力論的迅速發展,為理論工作提供更多獲取重要成果的機遇。
理論物理所在本方向的研究圍繞上述疑難問題開展。 (四)、凝聚態理論和計算凝聚態物理
復雜性和多樣性是多體微觀量子世界的基本特徵,對其規律性的探索是凝聚態理論研究的核心。這方面的每一次突破,例如能帶論和超導的BCS理論的建立,都對量子多體物理的應用和微觀世界的認識產生了深刻的變革,其成果交叉滲透到數學、化學、材料、信息、計算機等許多學科和領域。近年來,在陶瓷材料、半導體異質結及其它低維固體材料中發現的大量反常物理現象召喚著新的電子論的誕生。對這些新的物理現象的研究是該所研究人員的一個中心任務,主要的研究方向包括:
量子Hall效應、高溫超導電性、巨磁阻等強關聯系統的物理機理、量子液體及量子臨界現象;
量子多體理論方法,特別是數值計算的方法的探索和應用。計算方法包括密度矩陣重整化群、量子蒙特-卡羅計算、從頭計算等;
量子點、線、碳管等納米材料、半導體材料或結構中的非平衡量子輸運及自旋電子學;
格點系統中的量子反散射與可積問題研究。

(五)、統計物理與理論生命科學
統計物理學研究方法極為普遍,研究對象廣泛,它是微觀到宏觀的橋梁,簡單到復雜的階梯,理論到應用的途徑。從生物大分子序列分析,到認識其空間結構,到理解生命活動中的物理化學過程,生命科學提出了大量富有挑戰性的統計物理問題。這些問題的研究將深化對生命現象本質的認識,同時也將促進統計物理學本身的發展。
該所過去在本研究方向上重點開展了相變理論與臨界現象、非線性動力學等方面的研究,目前研究重點集中在有限系統臨界現象、重整化群方法、生物大分子序列分析以及生物體系中的輸運問題等方面,探討由生命科學激發的具有普遍意義的統計物理問題。生物信息學研究是本方向的熱點,該所研究人員與北京華大基因研究中心有很密切的合作關系,在水稻基因組研究工作中已作出重要創新性成果。

(六)、理論生物物理
雙親分子膜是凝聚態物理軟物質,或者叫復雜流體的前沿研究對象,是物理、化學、生物學交叉學科的研究課題。該所研究人員主要是運用微分幾何方法,以液晶為模型,研究雙親分子膜的形狀及其相變問題,已作出一組有國際影響的工作。現在本方向的研究正在向單分子膜、生物大分子與它們的生物功能聯系(DNA單分子彈性、蛋白質折疊等)的理論探索擴展。

(七)、原子核理論
從20世紀九十年代中期開始到本世紀初的十年內,國際上先後有一批超大型核物理實驗裝置投入運行,如TJNAF(CEBAF),RIB,RHIC 等等,核物理的發展進入了一個新階段。這些新的巨型裝置為從更深入的層次上研究核子-核子相互作用、核內的短程行為和核結構、各種極端條件下的核現象、核性質和多體理論方法提供了很好的機遇。在未來十年中,該所的研究人員將集中力量開展超重元素的性質及其合成途徑,極端條件下的原子核結構,核天體物理及核內誇克效應等方面的研究,以求得對原子核運動規律的新認識。

(八)、量子物理、量子信息和原子分子理論
目前高技術的發展使得以前無法得到的極端物理條件(如極端強場、超低溫度和可控的介觀尺度)在實驗室中得以實現。在這些特殊條件下,物質與光場的相互作用過程會呈現出一系列全新的物理現象,使得人們能重新認識物理學基本問題,導致新興學科分支(如量子信息)的建立。
量子信息是以量子力學基本原理為基礎、充分利用量子相乾的獨特性質(量子並行和量子糾纏),探索以全新的方式進行計算、編碼和信息傳輸的可能性,為突破晶元元件尺度的極限提供新概念、新思路和新途徑。量子力學與信息科學結合,充分顯示了學科交叉的重要性,可能會導致信息科學觀念和模式的重大變革。該所本方向的研究將基於量子物理基本問題的理論和最新實驗的結合, 鼓勵學科間的交叉滲透。發揮理論物理對量子信息研究具有前瞻性和指導性的作用,瞄準國際前沿,立足思想創新、探索和解決當前量子信息前沿領域的關鍵理論性問題。
目前該所在此方向上的研究課題主要為:
1.量子測量和量子開系統的基本問題:包括量子系統與經典系統相互作用,量子到經典過渡的基本模型,微觀信息宏觀提取的理論機制,量子耗散和量子退相干理論;也包括發展和應用實際的量子測量理論,探討提高探測量子態效率的可能性。
2. 特殊量子態的基本特性。包括研究各種宏觀量子態(原子玻色-愛因斯坦凝聚和原子激光,介觀電流,微腔激子-極化子)的基本特性和運動規律,並探索它們作為量子信息載體的可能性.也包括超冷囚禁原子、分子系統與受限光場的相互作用,如腔量子電動力學和原子光學。
3.量子信息方案的物理基礎。包括演化過程的動力學控制、糾纏態的度量,多粒態的局域制備和純化、已知量子態遠程制備和未知量子態遠程傳輸。還包括提出新的量子演算法、量子編碼和量子糾錯的新型方案,研究量子信息中的計算復雜性理論和相應的各種數學物理問題。
4. 強場中的原子分子運動。主要興趣集中在強磁場和強激光場中原子分子的動力學行為,其中,許多全新的實驗現象要求發展處理非微擾問題的嶄新概念和方法。這方面的研究對揭示混沌體系的動力學和利用外場控制分子、原子過程有著重要意義。

(九)、計算物理
辛演算法和保結構演算法是我國著名數學家馮康及其學派在80年代中期系統提出、並完善和發展起來的。他們在這個領域的工作不僅一直領先,而且在計算數學領域佔有非常重要的地位並取得了國際上的公認。在計算數學和計算物理中,引入保持所計算的Hamilton系統的辛結構,或者對於接觸系統等保持系統有關的幾何結構的思想非常重要。最近,國際上沿著保結構的思想,有關領域又有新的進展。比如多辛演算法和李群演算法的提出等等,它們分別是保持無限維系統的多辛結構的演算法和系統李群對稱性的演算法。
該所在本研究方向上研究辛演算法、多辛演算法等各種保結構演算法 及其在物理中的應用。

⑼ 物理學中的場到底是什麼東西

物理學中的場,指的是物質存在的一種特殊形式,比如電場、磁場等。
物理學家認為動量應該存在於場之中。如此的認定讓物理學家們相信電磁場是真實的存在,使得場的概念成為整個現代物理學的範式。在物理里,場是一個以時空為變數的物理量。

⑽ 什麼是物理學

什麼是「物理學」?這是科技史,尤其是物理學史不可迴避的一個十分基礎的課題。近年來物理學概念內涵之演變引人關注,對這方面的了解將會給教授者、學習者一定的指導和啟示。

1、物理學概念的西方源起

「物理學」(即英語里的「physics」),最早始見於古希臘亞里士多德的《物理學》一書,該書的中文譯者張竹明先生指出:這本「《物理學》是一門以自然界為特定對象的哲學。它不同於我們現在的物理學,但卻包括了現在的物理學,也包括化學、生物學、天文學、地學等等在內,總之,涉及整個自然科學,它只研究自然界的總原理,是自然哲學」[1]。鑒於亞里士多德的《物理學》中有許多物理方面的錯誤結論,所以1949年因提出了宇宙起源的大爆炸學說而聲名大震的美籍前蘇聯物理學家喬治·伽莫夫曾指出:亞里士多德「在物理學領域中最重要的貢獻也許只是創造了這門學科的名字,」這個詞由古希臘「自然」一詞推演而來[2]。

2、中文「物理學」一詞的來源

1900年,日本人藤田豐八把飯盛挺造編寫的《物理學》譯成了中文,由當時上海江南製造局刊行。這本書是我國第一本具有現代「physics」內容的稱為「物理學」的書。

如此說,並非1900年以前中國就沒有「physics」.東方的包括中國的近代科學都是從西方傳進來的,實際情況是從西方傳到中國遠比傳到日本還要早.不過1900年以前,我國譯述西方物理學著作沒有採用「物理學」的譯法,而是多譯為「格物學」或「格致學」.如1879年美國人林樂知將羅斯古編寫的一本物理書翻譯成漢語並命名為《格致啟蒙》,其中第二卷為格物學;1883年美國傳教士丁韙良(丁韙良,英文名Martin,1888年曾來中國傳教,接觸中國古代文明後曾提出「丁韙良猜測」:中國的「元氣說」曾影響過笛卡爾提出「以太」漩渦說)也將一本物理書譯為漢語,名字為《格物測算》.另外,國內1886年有譯著《格致小引》,1889年又有《格物入門》出版。

大量史料表明:「格物學」或「格致學」就是「physics」的早期漢語意譯.這兩種譯法是「格物致知」一詞兩種形式的縮寫。「格物致知」一詞源於儒家「致知在格物,格物而後知至」的思想.

應該強調的是,日本學者指出:「特別值得大書一筆的是,近世中國的漢譯著述成為日本翻譯西洋科學譯字的依據.」[3]日本早期物理學史研究者桑木或雄說:「在我國最初把『physics』稱為『窮理學』.明崇禎年間一本名叫《物理小識》的書,闡述的內容包括天文、氣象、醫葯等方面.早在宋代,同樣內容包含在《物類志》和《物類感應》等著述中,這些都是中國物理著作的淵源.」[3]

2002年4月在北京召開了中國近現代科學技術回顧與展望國際學術研討會,會上仍有學者認為將「physics」譯為「物理」不如譯為「格物」或「格致」更符合漢語文化.但是「物理學」一詞畢竟被中國人所逐漸接受,1902年京師大學堂在格致科下設物理學課目,1912年改格致科為理科,下設物理門.同年金陵大學設物理學課目,1918年商務印書館出版了由陳幌編寫的《物理學》,這是第一本國人命名為《物理學》的「physics」著作。可見我國用「物理學」譯「physics」還是較晚的,1900年在德國普朗克已經提出了能量量子化假說,標志著物理學跨人了現代的大門,量子力學的序幕已經拉開.

必須特別指出的是,在中國「物理」一詞出現並不晚,不過含義不同於「physics」。明代呂坤(1536一1618)著有《呻吟語》,其中卷六第二部分名為「物理」,大體是有關物性學的,並用以引申一些關於人文及世界的觀點.宋代朱熹(1130一1200)等人常用「物之至理」或「物理」一詞.當代著名物理學家李政道曾引用唐代杜甫《曲江二首))中的詩句「細推物理須行樂,何用浮名絆此身」來說明物理一詞在盛唐時即已出現[4]。其實在中科院哲學研究所和北大哲學系編著的《中國哲學史資料簡編))(中華書局)「兩漢一隋唐」部分中就記載了三國時吳人楊泉曾著書《物理論》,是研究和評論當時有關天文、地理、工藝、農業及醫學知識的著作。更久遠的有,在約公元前二世紀成書的《淮南子·覽冥訓》中就有:「夫隧之取火於日,慈石引鐵,葵之向日,雖有明智,弗能然也,故耳目之察,不足以分物理;心意之論,不足以定是非」之論述.中國古代的「物理」,應是泛指一切事物的道理.

3、關於「物理學」的一般傳統認識

一般的物理學教材或辭典手冊大都這樣介紹:物理學是研究物質運動最一般規律及物質基本結構的學說。具體地說,按所研究的物質運動形態和具體對象,它涉及的范圍包括:力學、聲學、熱學和分子物理學、電磁學、光學、原子和原子核物理學、基本粒子物理學、固體物理學以及對氣體和液體的研究等.物理學包括實驗和理論兩大部分,經過實踐檢驗被證實為可靠的理論物理包括:理論力學、熱力學和統計物理學、電動力學、相對論、量子力學和量子場論.當然這些理論也只能是相對真理,有各自的局限性.運用物理學的基本理論和實驗方法研究各種專門問題,使物理學中各種新的分支不斷涌現和形成如流體力學、彈性力學、無線電電子學、金屬物理學、半導體物理、電介質物理、超導體物理、等離子物理、固體發光、液晶及激光等。一些邊緣學科也隨物理的廣泛應用而陸續形成如化學物理、生物物理、天體物理及海洋物理等等.

作為一門學科,物理學之存在須以以下幾個要素為前提:

1)一種描述性的通過自然現象之間的相互關系來理解和說明自然的自然觀.這種自然觀建立在兩個信念之上:其一是自然有可以被人們認識和理解的理性規律.「相信世界在本質是有秩序的和可以認識的這一信念,是一切科學工作的基礎.」(愛因斯坦語);其二相信自然是實存的,且具有近恆常性而不是唯心主義的迷夢或理念世界的幻影.

2)存在一種與上述自然觀相適應的定量方法系統來處理現象,尤其允許可近似量化處理.具體而言就是公理化的邏輯與具有實用可操作性的數學體系,它可說是科學理論的骨架.

3)重視實驗,既把實驗看成理論的來源,又看成審判理論的法官.如果沒有實驗這一要素,科學即使能誕生往往也只能是一個封閉的理論構架,雖自身可能邏輯自洽,但因缺乏證實或證偽機制而易流於玄想並喪失進一步發展的生命力.

4)社會和文化的需要.

4、《物理網路全書》關於「物理學」的解釋

美國麥格勞一希爾圖書出版公司1983年第5次出版由帕克主編的《物理網路全書))(科學出版社,1996年8月),書中關於物理學的主要觀點如下:

物理學在以前稱為自然哲學.物理學涉及自然的某些方面,它們可以通過一種基本的途徑,即依據一些基本原理和基本定律來加以理解.隨著時間的推移,不同的特殊學科從物理學中分了出來,形成自己的研究領域.(典型的分化論,本文作者注).在此過程中,物理學保持著它的本來面目:理解自然界的結構和解釋自然現象。

物理學的最基本部分是力學和場論。力學涉及質點或物體在給定力作用下的運動.場物理學則涉及萬有引力場、電磁場、核力場以及其他力場的起源、本質和特性.力學和場論合在一起就構成了理解科學上所提出的自然現象的最基本途徑,最終目的是要通過這兩個方面理解全部自然現象。

物理學的較古老的或者稱經典的分法,是以自然現象的某些一般類型為基礎的.當時,對於這些自然現象是已經知道特別適合於應用物理學方法來研究的.按照這樣的分法,計有經典力學及其分支天體力學、流體力學和彈道學;熱學和熱力學;氣體運動論和統計力學;光學、聲學;電學和電磁學.這樣的分法現在都還通行,但其中有許多越來越有被列入應用物理學或技術的分支的趨勢,越來越不屬於物理學本身的固有的分支了。

數學物理學用數學來研究物理現象,它包括所有各門物理學中較數學化的部分以及統計力學、量子力學、相對論和場論的絕大部分內容.通常在數學物理學和理論物理學之間所作的區別是:對於後者,雖然形式上也全都是數學,但它被認為是更接近於實驗物理學的.然而,不論是數學物理學還是理論物理學都不可能真正與實驗物理學分開,因為一個對自然的完全理解,只有同時應用理論和實驗才能得到。

在物理學的各個領域內,其特點與其說是取決於所涉及主題的內容,還不如說是取決於對所探索內容的理解的精確性和深度.物理學的目的是通過數學建立一個統一的理論體系,它的結構和行為要盡可能廣泛地復現整個自然界.其他科學只滿足於用本門學科的特殊局限概念來描述和聯系各種現象,而物理學則總是探索著把對同一現象的理解,作為一個特殊的表現形式而納入作為整體的自然界的基本統一結構.按照這樣的目的,物理學的特色就在於:精密的儀器設備、精確的測量以及通過數學來表達所得到的結果。

《物理網路全書》的這種特色說顯然有問題,既言特色就該是獨具的,可你能以此區分物理與化學嗎?化學家赫許巴赫的高論有助於我們在一定意義上區分理化:

「典型化學家高於一切的願望是理解為什麼一種物質和其他物質行為不同;而物理學家則通常期望尋找超出特定物質的規律.」

5、朝永振一郎關於「物理學」的見解

朝永振一郎(1906一1979)是日本理論物理學家,因在量子電動力學方面的貢獻獲1965年諾貝爾物理學獎.

1977年10月是日本數學物理學會成立100周年,在紀念大會上,朝氏以「什麼是物理學」為題目作了一個報告[5].但他只講了幾段物理學歷史及物理學與技術的關系,並沒有直接回答這個問題(至少從漢譯文看來如此).他說:「不過依我看來,物理學以像模像樣的自然科學形式出現,似乎是在開普勒、伽利略、牛頓時期才開始的.」開普勒主要研究行星圍繞太陽的運動,與開普勒不同伽利略則研究地上現象.牛頓將兩人的成果集中起來再進行深人研究,建立了牛頓三定律和萬有引力定律.

朝氏認為現代物理學的性質有二:第一,採用觀測或實驗方法;第二,用數學來表達定律.

他認為我們要用物理學來了解存在於自然深處的規律,這個思想在考慮什麼是物理學時不可忽視.朝氏強調物理學的進一步發展不僅使自身范圍擴大了,由力學發展到光、熱、電磁、原子和分子等方面甚至連化學等也納人了物理學范疇.有重新統一一切現象、整合一切學科的趨勢,我們不妨與分化論相對稱之為統一論.著名物理學家盧瑟福也有一句名言:「一切科學要麼是物理學,要麼是集郵術.」[6]這可以看成物理學大統論的最簡潔的定義說明.

6、哥本哈根學派的觀點

以上的觀點雖有不同,但都不違背牛頓的說法:「自然哲學的目的在於發現自然界的結構和作用,並且盡可能把它們歸結為一些普遍的法則和一般的定律—用觀察和實驗來建立這些法則,從而導出事物的原因和結果.[7]就是說科學的目的是發現客觀的與人無關的自然規律或真理.

這種思想在微觀領域受到了沖擊.

在這種領域,觀測對現象的影響是不可忽略的.因此以玻爾(N.Bohr)、海森伯(w.Heisenberg)為代表的量子力學哥本哈根學派斷言:認為物理學的任務是去發現自然界是怎樣的是錯的.物理學涉及的是關於自然界我們能說什麼.「描述自然界的目的不在於提示現象的真實本質,而只在於盡可能遠地把多種多樣經驗的各個方面之間的關系追溯出來」(玻爾)[8];「自然科學不是自然界本身,而是人和自然界之間關系的一部分,因而就依賴於人,有人的烙印」(海森伯)[8];「當你尋求生活的和諧時,你必須永遠不要忘記,在生存的戲劇中我們自己既是演員又是觀眾.』,(玻爾)[8].顯然量子力學的科學觀與其前物理相比出現了巨大的變化.

7、「未來我們選擇怎樣的物理學?」一文的相關思想

S.M.Gruner和J.S.Langer在1995年第12期《Physics Today》以「未來我們選擇怎樣的物理學」為題發表了文章,認為物理學概念的演變就是被定義得越來越狹窄了.為了拯救物理,如今物理學家對物理學的定義不是根據那些特定的專業和領域,而是基於那些不同時期和不同研究活動結合為科學家共同體的一組概念工具.分別是:

l)在一組核心學科方面接受過高級訓練.目前這些學科有力學、電學、磁學、熱力學、統計力學和量子力學等.

2)掌握了研究物理現象所使用的定量方法和整理數據的方法

3)有較強的抽象能力和打破常規的勇氣和精神、能超越特定研究對象的洞察力和對問題本質的把握.

這些概念化工具比其他任何特徵和標准更能使物理學家區別於其他科學家.最能體現物理學家與其他科學家不同的地方,不在於他們所涉及的領域,所研究的問題,而取決於他們所採用的研究方法和所尋求信息的特徵.天文學家研究脈沖星,生物學家研究生命系統,物理學家對二者都關心,因此這兩者都是物理學的研究對象。

8、趙凱華先生的觀點

縱觀20世紀物理學研究對象的擴展,從宏觀到微觀,從傳統的物理過程到化學過程(量子化學),從無生命的到有生命的……從不同角度看,學科既有分化又有統一整合,分化論與統一整合論都有道理都有事實依據,二者絕不是非此即彼、誓不兩立的關系.由於統一與分化學科得以向廣度和深度發展分化標志著科學局部發展的成熟,統一整合標志著科學整體認識上的深入.但也正由於統一與分化,使得現在很難用傳統的眼光來界定什麼是物理學。一位外國物理學家風趣地自問自答:What is physics?Physics is what physicists do.按邏輯,人們應繼續問:what are physicists?答案可借鑒上面提到的Gruner和Langer關於物理學家共同體概念給出.

趙凱華先生說[9]:「我想給這句話加個註解.物理學家所作的研究怎樣才算得上是物理工作?論文能為國際上公認的物理雜志或物理學術會議所接受,可算得是一條充分條件」1995年在我國廈門召開了第19屆國際統計物理大會.大會的論文摘要中出現了按傳統的觀念不像物理名詞的詞彙,如細菌生長、生物進化、生物膜、輪軸藻細胞、細胞色素C、厄爾尼諾、南方振盪、紅血球、心率、鳥兒為什麼一起飛、免疫網路、曲折的河流、神經網路、沙堆模型、交通流量等等.「可見,今天已不可能再用研究對象來界定什麼是物理學,物理學是所有自然科學和工程技術的理論基礎,物理學代表著一套獲得知識、組織知識和運用知識的有效步驟和方法.把這套方法運用到什麼問題上這問題就變成了物理學.」[9]這與Gruner和Langer的觀點在精神上是相似的.

諸年來還有另一現象影響著人們對物理學看法的改變.

現在有不少物理專長人才畢業後不搞物理這就要求物理學必須相應有所改變.1996年國際大學物理教育學術研討會在美國馬里蘭大學召開.大會發布的統計數據表示,在美國有超過60%的物理專業畢業生進人了各工業部門,獲得學士學位的畢業生中有超過2/3的人不從事物理方面的工作,英國的統計數字大體與美國相似.在我們國內也存在這一現象按傳統看法這是「用非所學」,是人才培養上的浪費.趙凱華先生認為這是正常現象,他說:「一個人學了物理學之後干什麼都可以,他的物理學沒有白學……在我看來,對於學物理學的人無所謂『改行,……』[9].中國大恆集團總工程師、光電技術所所長宋菲君也說過:「有什麼比掌握『四大力學』更困難?能夠掌握四大力學的人只要下功夫,從事什麼職業都會有所建樹.物理學工作者特別適合於從事高新技術開發,做創新的工作.」[10]趙、宋二先生的說法,只有在打破過去對物理專業的認識,徹底樹立物理學方法論的新物理觀基礎上才能得以正確理解.

9、啟示

前面的關於「物理學」的觀點,有同有異,莫衷一是.但可以肯定的是,「物理學」概念的內涵己經且正在發生著演變如果說物理學過去在物質和精神上曾很好地造福於人類,各種輝煌成就的取得與物理學家的打破常規的勇氣和探索精神密不可分那麼,今天和明天的人們將進一步認識到物理學是一套獲得、組織、運用和探求知識的有效方法,這是至關重要和更有意義的.這樣的認識無論對學習物理的人還是教授物理的人都應成為其指導學習工作的原則一旦物理學方法論思想真真實實地被人們所掌握,那麼學習物理的人就不再會滿足於背點概念公式做幾道題,而是更注重在一定的基礎上對物理思想、物理方法的領悟,並能在諸多領域得以應用.當然,物理方法不是空談即能掌握的,它只能形成於良好的物理專業素質之上.這要求廣大物理教師必須致力於履行素質教育.良好的物理專業素質主要體現為清晰全面准確的物理思想、扎實的數學應用能力和較好的實驗能力幾個方面,簡言之,即具備良好的理論素質及實驗素質,且對學生打基礎而言這二者同等重要,不可偏廢。2002年6月20日丁肇中先生在CCTV的「東方之子」欄目中說得好:「在學校成績好,就做理論;動手能力強,就做實驗.這種觀點是完全錯誤的。很多成功的實驗物理學家都精通理論,做實驗最重要的是找題目,動手能力、做法是次要的」

另一方面,物理學發展史告訴我們,一流的理論物理學家往往也具有扎實的實驗基礎。牛頓做過許多著名的實驗,愛因斯坦讀大學時也曾用很大精力做實驗,這對他後來獲得巨大的理論成功至關重要.

「物理學是一門實實在在的科學,是一門久經考驗的科學,是一門偉大而艱巨的科學,那些曇花一現的理論、學說和物理學是無可比擬的,那些在改革浪潮中用蠱惑人心的語言裝飾起來的雕蟲小技更是不值一提,物理學的發展就像宇宙演變一樣永不止息[11]。

這話感情色彩較濃,但不無道理.

閱讀全文

與什麼是外場物理學相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1421
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1002
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071