㈠ 物理,氫原子光譜
氫原子光譜(atomic spectrum of hydrogen)是最簡單的原子光譜。由A.埃斯特朗首先從氫放電管中獲得,後來W.哈根斯和H.沃格耳等在拍攝恆星光譜中也發現了氫原子光譜線。到1885年已在可見光和近紫外光譜區發現了氫原子光譜的14條譜線,譜線強度和間隔都沿著短波方向遞減。其中可見光區有4條,分別用Hα、Hβ、Hγ、Hδ表示,其波長的粗略值分別為656.28納米、486.13納米、434.05納米和410.17納米。
氫原子光譜是氫原子內的電子在不同能級躍遷時發射或吸收不同頻率 的光子形成的光譜。氫原子光譜為不連續的線光譜。
㈡ 氫原子的光譜圖如何看理解
光譜『spectrum』
光波是由原子內部運動的電子產生的.各種物質的原子內部電子的運動情況不同,所以它們發射的光波也不同.研究不同物質的發光和吸收光的情況,有重要的理論和實際意義,已成為一門專門的學科——光譜學.下面簡單介紹一些關於光譜的知識.
分光鏡觀察光譜要用分光鏡,這里我們先講一下分光鏡的構造原理.圖6-18是分光鏡的構造原理示意圖.它是由平行光管A、三棱鏡P和望遠鏡筒B組成的.平行光管A的前方有一個寬度可以調節的狹縫S,它位於透鏡L1的焦平面①處.從狹縫射入的光線經透鏡L1折射後,變成平行光線射到三棱鏡P上.不同顏色的光經過三棱鏡沿不同的折射方向射出,並在透鏡L2後方的焦平面MN上分別會聚成不同顏色的像(譜線).通過望遠鏡筒B的目鏡L3,就看到了放大的光譜像.如果在MN那裡放上照相底片,就可以攝下光譜的像.具有這種裝置的光譜儀器叫做攝譜儀.
發射光譜物體發光直接產生的光譜叫做發射光譜.發射光譜有兩種類型:連續光譜和明線光譜.
連續分布的包含有從紅光到紫光各種色光的光譜叫做連續光譜(彩圖6).熾熱的固體、液體和高壓氣體的發射光譜是連續光譜.例如電燈絲發出的光、熾熱的鋼水發出的光都形成連續光譜.
只含有一些不連續的亮線的光譜叫做明線光譜(彩圖7).明線光譜中的亮線叫做譜線,各條譜線對應於不同波長的光.稀薄氣體或金屬的蒸氣的發射光譜是明線光譜.明線光譜是由游離狀態的原子發射的,所以也叫原子光譜.觀察氣體的原子光譜,可以使用光譜管(圖6-19),它是一支中間比較細的封閉的玻璃管,裡面裝有低壓氣體,管的兩端有兩個電極.把兩個電極接到高壓電源上,管里稀薄氣體發生輝光放電,產生一定顏色的光.
觀察固態或液態物質的原子光譜,可以把它們放到煤氣燈的火焰或電弧中去燒,使它們氣化後發光,就可以從分光鏡中看到它們的明線光譜.
實驗證明,原子不同,發射的明線光譜也不同,每種元素的原子都有一定的明線光譜.彩圖7就是幾種元素的明線光譜.每種原子只能發出具有本身特徵的某些波長的光,因此,明線光譜的譜線叫做原子的特徵譜線.利用原子的特徵譜線可以鑒別物質和研究原子的結構.
吸收光譜高溫物體發出的白光(其中包含連續分布的一切波長的光)通過物質時,某些波長的光被物質吸收後產生的光譜,叫做吸收光譜。例如,讓弧光燈發出的白光通過溫度較低的鈉氣(在酒精燈的燈心上放一些食鹽,食鹽受熱分解就會產生鈉氣),然後用分光鏡來觀察,就會看到在連續光譜的背景中有兩條挨得很近的暗線(見彩圖8.分光鏡的分辨本領不夠高時,只能看見一條暗線).這就是鈉原子的吸收光譜.值得注意的是,各種原子的吸收光譜中的每一條暗線都跟該種原子的發射光譜中的一條明線相對應.這表明,低溫氣體原子吸收的光,恰好就是這種原子在高溫時發出的光.因此,吸收光譜中的譜線(暗線),也是原子的特徵譜線,只是通常在吸收光譜中看到的特徵譜線比明線光譜中的少.
光譜分析由於每種原子都有自己的特徵譜線,因此可以根據光譜來鑒別物質和確定它的化學組成.這種方法叫做光譜分析.做光譜分析時,可以利用發射光譜,也可以利用吸收光譜.這種方法的優點是非常靈敏而且迅速.某種元素在物質中的含量達10-10克,就可以從光譜中發現它的特徵譜線,因而能夠把它檢查出來.光譜分析在科學技術中有廣泛的應用.例如,在檢查半導體材料硅和鍺是不是達到了高純度的要求時,就要用到光譜分析.在歷史上,光譜分析還幫助人們發現了許多新元素.例如,銣和銫就是從光譜中看到了以前所不知道的特徵譜線而被發現的.光譜分析對於研究天體的化學組成也很有用.十九世紀初,在研究太陽光譜時,發現它的連續光譜中有許多暗線(參看彩圖9,其中只有一些主要暗線).最初不知道這些暗線是怎樣形成的,後來人們了解了吸收光譜的成因,才知道這是太陽內部發出的強光經過溫度比較低的太陽大氣層時產生的吸收光譜.仔細分析這些暗線,把它跟各種原子的特徵譜線對照,人們就知道了太陽大氣層中含有氫、氦、氮、碳、氧、鐵、鎂、硅、鈣、鈉等幾十種元素.
復色光經過色散系統分光後按波長的大小依次排列的圖案,如太陽光經過分光後形成按紅橙黃綠藍靛紫次序連續分布的彩色光譜.有關光譜的結構,發生機制,性質及其在科學研究、生產實踐中的應用已經累積了很豐富的知識並且構成了一門很重要的學科~光譜學.光譜學的應用非常廣泛,每種原子都有其獨特的光譜,猶如人們的「指紋」一樣各不相同.它們按一定規律形成若干光譜線系.原子光譜線系的性質與原子結構是緊密相聯的,是研究原子結構的重要依據.應用光譜學的原理和實驗方法可以進行光譜分析,每一種元素都有它特有的標識譜線,把某種物質所生成的明線光譜和已知元素的標識譜線進行比較就可以知道這些物質是由哪些元素組成的,用光譜不僅能定性分析物質的化學成分,而且能確定元素含量的多少.光譜分析方法具有極高的靈敏度和准確度.在地質勘探中利用光譜分析就可以檢驗礦石里所含微量的貴重金屬、稀有元素或放射性元素等.用光譜分析速度快,大大提高了工作效率.還可以用光譜分析研究天體的化學成分以及校定長度的標准原器等.
復色光經過色散系統(如棱鏡、光柵)分光後,按波長(或頻率)的大小依次排列的圖案。例如,太陽光經過三棱鏡後形成按紅、橙、黃、綠、藍、靛、紫次序連續分布的彩色光譜。紅色到紫 色,相應於波長由7,700—3,900埃的區域,是為人眼所能感覺的可見部分。紅端之外為波長更長的紅外光,紫端之外則為波長更短的紫外光,都不能為肉眼所覺察,但能用儀器記錄。
因此,按波長區域不同,光譜可分為紅外光譜、可見光譜和紫外光譜;按產生的本質不同,可分為原子光譜、分子光譜;按產生的方式不同,可分為發射光譜、吸收光譜和散射光譜;按光譜表觀形態不同,可分為線光譜、帶光譜和連續光譜。
量子力學中稱為「自旋」的量有時被認為所有物理量中最「量子力學」的。這樣,我們對之稍微多加註意是明智的。什麼是自旋?它本質上是粒子旋轉的度量。「自旋」這個術語暗示某種像板球或棒球自旋的東西。讓我們回憶一下角動量的概念,正如能量和動量一樣,它是守恆的只要物體不受摩擦力或其他力的干擾,它的角動量就不隨時間改變。量子力學的自旋的確是如此,但是我們這里開心的是單獨粒子的「自旋」,而不是大量的單獨粒子圍繞著它們共同質心的軌道運動(這正是板球的情形)。物理學的一個顯著事實是,自然中發現的大多數粒子在這種意義下的確是在「自旋」,每種粒子都有自己固有的自旋的大小8。然而,正如下面要看到的,單獨量子力學粒子的自旋有一種我們絕不能從自旋著的板球等等的經驗所能預料到的某種特殊的性質。
首先,對於每一特殊類型的粒子,其自旋的大小總是一樣的。只有自旋的軸的方向可以(以一種我們就要講到的非常奇怪的方式)改變。這和板球的情形形成全然的對比,板球可依出球方式的不同具有任意大小任意方向的自旋,對於質子,中子,電子,自旋大小是原先允許的一個原子的量子化的角動量的最小正值的一半。
每一個粒子都不自旋的對象不允許有這個角動量值。它只能是由自旋為粒子自身的固有的性質而引起的(也就是說,不是因為它的「部分」圍繞某種中心的公轉引起的)。
光譜分如下幾種形式。
①線狀光譜。由狹窄譜線組成的光譜。單原子氣體或金屬蒸氣所發的光波均有線狀光譜,故線狀光譜又稱原子光譜。當原子能量從較高能級向較低能級躍遷時,就輻射出波長單一的光波。嚴格說來這種波長單一的單色光是不存在的,由於能級本身有一定寬度和多普勒效應等原因,原子所輻射的光譜線總會有一定寬度(見譜線增寬);即在較窄的波長范圍內仍包含各種不同的波長成分。原子光譜按波長的分布規律反映了原子的內部結構,每種原子都有自己特殊的光譜系列。通過對原子光譜的研究可了解原子內部的結構,或對樣品所含成分進行定性和定量分析。
②帶狀光譜。由一系列光譜帶組成,它們是由分子所輻射,故又稱分子光譜。利用高解析度光譜儀觀察時,每條譜帶實際上是由許多緊挨著的譜線組成。帶狀光譜是分子在其振動和轉動能級間躍遷時輻射出來的,通常位於紅外或遠紅外區。通過對分子光譜的研究可了解分子的結構。
③連續光譜。包含一切波長的光譜,赤熱固體所輻射的光譜均為連續光譜。同步輻射源(見電磁輻射)可發出從微波到X射線的連續光譜,X射線管發出的軔致輻射部分也是連續譜。
④吸收光譜。具有連續譜的光波通過物質樣品時,處於基態的樣品原子或分子將吸收特定波長的光而躍遷到激發態,於是在連續譜的背景上出現相應的暗線或暗帶,稱為吸收光譜。每種原子或分子都有反映其能級結構的標識吸收光譜。研究吸收光譜的特徵和規律是了解原子和分子內部結構的重要手段。吸收光譜首先由J.V.夫琅和費在太陽光譜中發現(稱夫琅和費線),並據此確定了太陽所含的某些元素。
具體的元素光譜:紅色代表硫元素,藍色代表氧元素,而綠色代表氫元素。
參考資料:http://ke..com/view/41199.htm
㈢ 玻爾研究氫原子光譜有何價值
1913年丹麥物理學家玻爾為解決盧瑟福原子行星模型的不穩定(按經典理論,原子中電子繞原子核作圓周運動要輻射能量,導致軌道半徑縮小直到跌落進原子核,與正電荷中和),提出定態假設:原子中的電子並不像行星一樣可在任意經典力學的軌道上運轉,穩定軌道的作用量fpdq必須為h的整數倍(角動量量子化),即fpdq=nh,n稱之為量子數。玻爾又提出原子發光過程不是經典輻射,是電子在不同的穩定軌道態之間的不連續的躍遷過程,光的頻率由軌道態之間的能量差AE=hV確定,即頻率法則。這樣,玻爾原子理論以它簡單明晰的圖像解釋了氫原子分立光譜線,並以電子軌道態直觀地解釋了化學元素周期表,導致了72號元素鉛的發現,在隨後的短短十多年內引發了一系列的重大科學進展。這在物理學史上是空前的。
由於量子論的深刻內涵,以玻爾為代表的哥本哈根學派對此進行了深入的研究,他們對對應原理、矩陣力學、不相容原理、測不準關系、互補原理。量子力學的幾率解釋等都做出了貢獻。
1923年4月美國物理學家康普頓發表了X射線被電子散射所引起的頻率變小現象,即康普頓效應。按經典波動理論,靜止物體對波的散射不會改變頻率。而按愛因斯坦光量子說這是兩個「粒子」碰撞的結果。光量子在碰撞時不僅將能量傳遞而且也將動量傳遞給了電子,使光量子說得到了實驗的證明。
光不僅僅是電磁波,也是一種具有能量動量的粒子。1924年美籍奧地利物理學家泡利發表了「不相容原理」:原子中不能有兩個電子同時處於同一量子態。這一原理解釋了原子中電子的殼層結構。這個原理對所有實體物質的基本粒子(通常稱之為費米子,如質子、中子、誇克等)都適用,構成了量子統計力學———費米統計的基點。為解釋光譜線的精細結構與反常塞曼效應,泡利建議對於原於中的電子軌道態,除了已有的與經典力學量(能量、角動量及其分量)對應的三個量子數之外應引進第四個量子數。這個量子數後來稱為「自旋」,是表述基本粒子一種內在性質的物理量。
1924年,法國物理學家德布羅意提出了表達波粒二象性的愛因斯坦———德布羅意關系:E=hV,p=h/入,將表徵粒子性的物理量能量、動量與表徵波性的頻率、波長通過一個常數h相等。
1925年,德國物理學家海森伯和玻爾,建立了量子理論第一個數學描述———矩陣力學。1926年,奧地利科學家提出了描述物質波連續時空演化的偏微分方程———薛定愕方程,給出了量子論的另一個數學描述——波動力學。後來,物理學家把二者將矩陣力學與波動力學統一起來,統稱量子力學。
量子力學在低速、微觀的現象范圍內具有普遍適用的意義。它是現代物理學基礎之一,在現代科學技術中的表面物理、半導體物理、凝聚態物理、粒子物理、低溫超導物理、量子化學以及分子生物學等學科的發展中,都有重要的理論意義。量子力學的產生和發展標志著人類認識自然實現了從宏觀世界向微觀世界的重大飛躍。
㈣ 關於氫原子光譜
依其發現之科學家及譜線所在之能量區段可將其劃分為以下系列,系列中各譜線則用α、β等希臘字母來命名:
來曼系列
主條目:來曼系
主量子數n大於或等於2的電子躍遷到n = 1的能階,產生的一系列光譜線稱為「來曼系列」。此系列譜線能量位於紫外光波段。
巴耳末系列
主條目:巴耳末系
主量子數n大於或等於3的電子躍遷到n = 2的能階,產生的一系列光譜線稱為「巴耳末系」。巴耳末系有四條譜線處於可見光波段,所以是最早被發現的線系。
1885年,巴耳末(J.J. Balmer,瑞士,1825-1898)將位於可見光波段,能量位於410.12奈米、434.01奈米、486.07奈米、656.21奈米等譜線,以下列經驗公式表示: ,m = 3、4、5、6...,此方程稱為巴耳末公式方程。
帕申系列
主條目:帕申系
主量子數n大於或等於4的電子躍遷到n = 3的能階,產生的一系列光譜線稱為「帕申系列」,由帕申於1908年發現,位於紅外光波段。
布拉格系列
主條目:布拉開線系
主量子數n大於或等於5的電子躍遷到n = 4的能階,產生的一系列光譜線稱為「布拉格系列」,由布拉格於1922年發現,位於紅外光波段。
蒲芬德系列
主條目:蒲芬德系
主量子數n大於或等於6的電子躍遷到n = 5的能階,產生的一系列光譜線稱為「蒲芬德系列」,由蒲芬德於1924年發現,位於紅外光波段。
韓福瑞系
主條目:韓福瑞系
主量子數n大於或等於7的電子躍遷到n = 6的能階,產生的一系列光譜線稱為「韓福瑞系列」,由韓福瑞於1953年發現,位於紅外光波段。
㈤ 什麼是氫光譜
氫原子光譜
1913年丹麥物理學家玻爾為解決盧瑟福原子行星模型的不穩定(按經典理論,原子中電子繞原子核作圓周運動要輻射能量,導致軌道半徑縮小直到跌落進原子核,與正電荷中和),提出定態假設:原子中的電子並不像行星一樣可在任意經典力學的軌道上運轉,穩定軌道的作用量fpdq必須為h的整數倍(角動量量子化),即fpdq=nh,n稱之為量子數。玻爾又提出原子發光過程不是經典輻射,是電子在不同的穩定軌道態之間的不連續的躍遷過程,光的頻率由軌道態之間的能量差AE=hV確定,即頻率法則。這樣,玻爾原子理論以它簡單明晰的圖像解釋了氫原子分立光譜線,並以電子軌道態直觀地解釋了化學元素周期表,導致了72號元素鉛的發現,在隨後的短短十多年內引發了一系列的重大科學進展。這在物理學史上是空前的。
由於量子論的深刻內涵,以玻爾為代表的哥本哈根學派對此進行了深入的研究,他們對對應原理、矩陣力學、不相容原理、測不準關系、互補原理。量子力學的幾率解釋等都做出了貢獻。
1923年4月美國物理學家康普頓發表了X射線被電子散射所引起的頻率變小現象,即康普頓效應。按經典波動理論,靜止物體對波的散射不會改變頻率。而按愛因斯坦光量子說這是兩個「粒子」碰撞的結果。光量子在碰撞時不僅將能量傳遞而且也將動量傳遞給了電子,使光量子說得到了實驗的證明。
光不僅僅是電磁波,也是一種具有能量動量的粒子。1924年美籍奧地利物理學家泡利發表了「不相容原理」:原子中不能有兩個電子同時處於同一量子態。這一原理解釋了原子中電子的殼層結構。這個原理對所有實體物質的基本粒子(通常稱之為費米子,如質子、中子、誇克等)都適用,構成了量子統計力學———費米統計的基點。為解釋光譜線的精細結構與反常塞曼效應,泡利建議對於原於中的電子軌道態,除了已有的與經典力學量(能量、角動量及其分量)對應的三個量子數之外應引進第四個量子數。這個量子數後來稱為「自旋」,是表述基本粒子一種內在性質的物理量。
氫原子光譜可用下式表示:
1/λ=R[1/(n1)^2-1/(n2)^2]
n1=1 n2=2,3,4...賴曼線系 紫外區
n1=2 n2=3,4,5...巴耳麥線系 可見光區
n1=3 n2=4,5,6...帕邢線系 紅外區
n1=4 n2=5,6,7...布喇開線系 紅外區
n1=5 n2=6,7,8...逢德線系 紅外區
圖片:http://203.68.192.9/SCIENCE/content/1980/00070127/images/0024.gif
1924年,法國物理學家德布羅意提出了表達波粒二象性的愛因斯坦———德布羅意關系:E=hV,p=h/入,將表徵粒子性的物理量能量、動量與表徵波性的頻率、波長通過一個常數h相等。
1925年,德國物理學家海森伯和玻爾,建立了量子理論第一個數學描述———矩陣力學。1926年,奧地利科學家提出了描述物質波連續時空演化的偏微分方程———薛定愕方程,給出了量子論的另一個數學描述——波動力學。後來,物理學家把二者將矩陣力學與波動力學統一起來,統稱量子力學。
量子力學在低速、微觀的現象范圍內具有普遍適用的意義。它是現代物理學基礎之一,在現代科學技術中的表面物理、半導體物理、凝聚態物理、粒子物理、低溫超導物理、量子化學以及分子生物學等學科的發展中,都有重要的理論意義。量子力學的產生和發展標志著人類認識自然實現了從宏觀世界向微觀世界的重大飛躍。