❶ 算術平方根怎麼開.請舉一些例子.看起來跟清楚.
在這里,我「定義」a^b=a的b次方。
(10a+b)^2 = 100a^2+20ab+b^2 = 100a^2+b(20a+b)
a代表的是已經計算出來的結果,b代表的是當前需要計算的位上的數。在每次計算過程中,100a^2都被減掉,剩下b(20a+b)。然後需要做的就是找到最大的整數b'使b'(20a+b')<=b(20a+b)。
因此,我就照著書里的方法,推導開立方筆演算法。
(10a+b)^3 = 1000a^3+300a^2*b+30a*b^2+b^3 = 1000a^3+b[300a^2+b(30a+b)]
如果每次計算後都能減掉1000a^3的話,那麼剩下的任務就是找到最大的整數b',使b'[300a^2+b'(30a+b')]<=b[300a^2+b(30a+b)]。
於是,我就設計了一個版式。下面就開始使用這個版式來檢驗開立方筆演算法。
例如:147^3=3176523
一開始,如下圖所示,將3176523從個位開始3位3位分開。(3'176'523)
第一步,我們知道,1^3 < 3 < 2^3,所以,第一位應該填1。
1^3 = 1,3 - 1 = 2,餘2,再拖三位,一共是2176。
接下來這一步就比較復雜了。因為我水平有限,我現在還不能把它改造得比較好。
依照「b[300a^2+b(30a+b)]」,所以:
1^2*300=300,1*30=30,如圖上所寫。
第二位就填4,所以上圖3個空位都填4。
然後(34*4+300)*4=1744,2176-1744=432,再拖三位得432523。
然後就照上面一樣,
14^2*300=58800,14*30=420,如上圖所寫。
第三位就填7,所以上圖下邊3個空位都填7。
然後(427*7+58800)*7=432523,432523-432523=0,到此開立方結束。
在我以後的一些實踐中,發現越往後開,300*a^2與b(30a+b)的差距就越大,尋找b的工作就越容易,因為結果中有一項是300*a^2*b。
徒手開n次方根的方法:
原理:設被開方數為X,開n次方,設前一步的根的結果為a,現在要試根的下一位,設為b,
則有:(10*a+b)^n-(10*a)^n<=c(前一步的差與本段合成);且b取最大值
用純文字描述比較困難,下面用實例說明:
我們求 2301781.9823406 的5次方根:
第1步:將被開方的數以小數點為中心,向兩邊每隔n位分段(下面用'表示);不足部分在兩端用0補齊;
23'01781.98234'06000'00000'00000'..........
從高位段向低位段逐段做如下工作:
初值a=0,差c=23(最高段)
第2步:找b,條件:(10*a+b)^n-(10*a)^n<=c,即b^5<=23,且為最大值;顯然b=1
差c=23-b^5=22,與下一段合成,
c=c*10^n+下一段=22*10^5+01781=2201781
第3步:a=1(計算機語言賦值語句寫作a=10*a+b),找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:(10+b)^5-10^5<=2201781,
b取最大值8,差c=412213,與下一段合成,
c=c*10^5+下一段=412213*10^5+98234=41221398234
第4步:a=18,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:(180+b)^5-180^5<=41221398234,
b取最大值7
說明:這里可使用近似公式估算b的值:
當10*a>>b時,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即:
b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7
以下各步都更加可以使用此近似公式估算b之值
差c=1508808527;與下一段合成,
c=c*10^5+下一段=1508808527*10^5+06000=150880852706000
第5步:a=187,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:
(1870+b)^5-1870^5<=150880852706000,
b取最大值2,差c=28335908584368;與下一段合成,
c=c*10^5+下一段=2833590858436800000
第6步:a=1872,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:
(18720+b)^5-18720^5<=2833590858436800000,
b取最大值4,差c=376399557145381376;與下一段合成,
c=c*10^5+下一段=37639955714538137600000
.............................
最後結果為:18.724......
以上是轉貼一網站的內容,我自己前半部分有些明白,後半部分還不明白,但我可以確定以上的解答過程才是正確的,而絕不是一個數的3倍.
述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.
❷ ,若一個數的平方根為無理數,怎麼求這個數的平方根如根號5的結果為多少怎麼算求過程
常用的可以記住,比如√2=1.414 √3=1.732 √5=2.232
然後進行估算。
常用估算方法取這個數相鄰的平方數,如
4<5<9
所以2<√5<3
❸ 什麽是算術平方根平方根的概念是怎樣求算術平方根和平方根
一般地,如果一個非負數X的平方等於y,那麼這個非負數X就叫做y的算術平方根(即一個非負數的正的平方根叫做算數平方根)。
特別地,我們規定0的算術平方根是0。
平方根,又叫二次方根,對於非負實數來說,是指某個自乘結果等於的實數,表示為(√ˉˉ),其中屬於非負實數的平方根稱算術平方根。有時我們說的平方根指算術平方根。正整數的平方根通常是無理數。
❹ 無理數平方根具體怎麼求
①:此無理數若能寫成分數形式,則可以進行分母有理化,用根號的形式寫出平方根。
②:不能寫成分數形式,用計算器!取近似值。
❺ 怎樣求出如6這樣的數的算術平方根
6的算數平方根表示為根號6,是個無理數,即無限不循環小數,要想求出其近似值可以用計算器,也可以數學用表當中的平方根表。
❻ 算術平方根的格式
如下:
算術平方根的定義:若一個正數x的平方等於a,即x^2=a,則這個正數x為a的算術平方根。
例如:求25的算術平方根格式:
25的算術平方根是√25,√25=5,所以25的算術平方根是5。
算術平方根產生:
根號(即算術平方根)的產生源於正方形的對角線長度「根號二」,這個 「根號二」的發現 一度引起了畢達哥拉斯學派的恐慌。因為按當時的權威解釋(也就是畢達哥拉斯學派的學說),萬物皆數(也就是說世界上所有的事物都可以用有理數來表示)。
對於這個無理數「根號二」,最終人們選取了用根號來表示。
❼ 平方根是怎麼求出來的
對於非負實數來說,平方根,是指自乘結果等於的實數,表示為±(√x),讀作正負根號下x或x的平方根。其中的非負的平方根稱為算術平方根。正整數的平方根通常是無理數。可由下式唯一定義:在分數指數中,我們有:依定義,可知開平方運算對乘法滿足分配律,即:注意若n是非負實數且時,因為必定是正數,但有正負兩個解。 應等於±;即(見絕對值)。
❽ 有理數和無理數和平方根的概念以及計算方式
能夠化為兩個整數之比的數叫作有理數,整數和分數統稱為有理數
無理數,即非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環。 常見的無理數有非完全平方數的平方根、π和e(其中後兩者均為超越數)等。無理數的另一特徵是無限的連分數表達式。
平方根,又叫二次方根,表示為〔√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數;0隻有一個平方根,就是0本身;負數有兩個共軛的純虛平方根。
演算法1:
假設被開放數為a,如果用sqrt(a)表示根號a 那麼((sqrt(x)-sqrt(a/x))^2=0的根就是sqrt(a)
變形得
sqrt(a)=(x+a/x)/2
所以你只需設置一個約等於(x+a/x)/2的初始值,代入上面公式,可以得到一個更加近似的值,再將它代入,就得到一個更加精確的值……依此方法,最後得到一個足夠精度的(x+a/x)/2的值。
如:計算sqrt(5)
設初值為2
1)sqrt(5)=(2+5/2)/2=2.25
2)sqrt(5)=(2.25+5/2.25)/2=2.236111
3)sqrt(5)=(2.236111+5/2.236111)/2=2.236068
這三步所得的結果和sqrt(5)相差已經小於0.001
或者可以用二分法:
設f(x)=x^2-a
那麼sqrt(a)就是f(x)=0的根。
你可以先找兩個正值m,n使f(m)<0,f(n)>0
根據函數的單調性,sqrt(a)就在區間(m,n)間。
然後計算(m+n)/2,計算f((m+n)/2),如果它大於零,那麼sqrt(a)就在區間(m,(m+n)/2)之間。
小於零,就在((m+n)/2,n)之間,如果等於零,那麼(m+n)/2當然就是sqrt(a)。這樣重復幾次,你可以把sqrt(a)存在的范圍一步步縮小,在最後足夠精確的區間內隨便取一個值,它就約等於sqrt(a)。