A. 物理學中的典型的理想模型有哪些/
勻速運動、勻變速直線運動、自由落體運動、簡諧振動、勻速圓周運動、平拋運動、彈性碰撞等等。
1、勻速運動
勻速運動只有勻速直線運動,但勻速圓周運動實際上是勻速率圓周運動或者是勻角速度運動,其加速度不為零,故勻速圓周運動不是勻速運動。
2、勻變速直線運動
其速度時間圖象是一條傾斜的直線,表示在任意相等的時間內速度的變化量都相同,即速度(v)的變化量與對應時間(t)的變化量之比保持不變(加速度不變)。
3、自由落體運動
源於地心引力,物體在只受重力作用下從相對靜止開始下落的運動叫做自由落體運動(其初速度為Vo=0m/s)譬如用手握住某種物體,不施加任何外力的理想條件下輕輕松開手後發生的物理現象。
4、質點沿圓周運動
因為物體作圓周運動時速率不變,但速度方向隨時發生變化。所以勻速圓周運動的線速度是每時每刻都在發生變化的。
5、平拋運動的物體
平拋運動是曲線運動,平拋運動的時間僅與拋出點的豎直高度有關;物體落地的水平位移與時間(豎直高度)及水平初速度有關,其速度變化的方向始終是豎直向下的。
B. 物理理想化模型都有什麼
1、質點:
例如,我們從力學角度研究引力作用下物體的運動時,只需考慮質量這一最重要的屬性,其他因素均可略去。
對於具有一定質量的物體,我們假設其質量集中在物體的質量中心,便抽象出質點模型。質點是力學中的一個基本概念,只要所考慮的運動僅涉及物體的位置移動,並且所涉及的空間尺度比物體自身的尺度大得多時,都可以用質點模型來代表所研究的客體。
在上述條件下,不但微觀世界中的電子、質子、中子等基本粒子可以看作質點,地球上的各種生物和其他物體可用質點模型來代表,就是恆星、行星等各種天體,也可以看作質點。
2、剛體:
但是,當要研究的客體運動,需要涉及它自身的轉動時,質點模型便不適用了,於是又抽象出剛體模型。真實的物體在受到力的作用時,多少會發生形狀的變化,當這種形變可以忽略不計時,便可近似地看作是剛體。
所以剛體也是一種簡化了的理想模型。只要所研究的運動僅涉及平動和轉動,而不涉及物體的形變時,剛體便是很有效的力學模型。
(2)有哪些物理模型知乎擴展閱讀:
理想模型字面相關延伸:理想實驗
局限:
「理想實驗」在自然科學的理論研究中有著重要的作用,但是,「理想實驗」的方法也有其一定的局限性。
「理想實驗」只是一種邏輯推理的思維過程,它的作用只限於邏輯上的證明與反駁,而不能用來作為檢驗認識正確與否的標准.相反,由「理想實驗」所得出的任何推論,都必須由觀察或實驗的結果來檢驗。
C. 有哪些物理理想模型
還有單擺 彈簧振子 點光源 理想氣體 電場線 磁感線 光線 剛體
想不出來了
D. 高中物理中常用的模型有什麼
單擺 光線 直線 點電荷 光滑平面 輕質彈簧 理想變壓器 電光源 電場線 磁感線
人船模型
皮帶輪模型(重點)
連體模型(重點)
滑輪與傳送帶相互作用模型(重點)
子彈打木塊模型
電磁學導棒模型(重點)
碰撞與類碰撞模型(重點)
繩子,彈簧,桿產生彈力模型(重點)
彈簧類模型(重點)
單擺模型
基本就是這些了,還要注意總結力電綜合模型
E. 物理模型都有什麼
就是將實際或抽象的問題用常見易想的物理過程表示,這種表示法可以說是一種物理模型。比如將下落的返回艙當作下落的小球等等思維方式。
中學物理模型一般可分三類:物質模型、狀態模型、過程模型。
1、物質模型。物質可分為實體物質和場物質。
實體物質模型有力學中的質點、輕質彈簧、彈性小球等;電磁學中的點電荷、平行板電容器、密繞螺線管等;氣體性質中的理想氣體;光學中的薄透鏡、均勻介質等。
場物質模型有如勻強電場、勻強磁場等都是空間場物質的模型。
2、狀態模型。研究流體力學時,流體的穩恆流動(狀態);研究理想氣體時,氣體的平衡態;研究原子物理時,原子所處的基態和激發態等都屬於狀態模型。
3、過程模型。在研究質點運動時,如勻速直線運動、勻變速直線運動、勻速圓周運動、平拋運動、簡諧運動等;在研究理想氣體狀態變化時,如等溫變化、等壓變化、等容變化、絕熱變化等;還有一些物理量的均勻變化的過程,如某勻強磁場的磁感應強度均勻減小、均勻增加等;非均勻變化的過程,如汽車突然停止都屬於理想的過程模型。
模型是對實際問題的抽象,每一個模型的建立都有一定的條件和使用范圍學生在學習和應用模型解決問題時,要弄清模型的使用條件,要根據實際情況加以運用。比如一列火車的運行,能否看成質點,就要根據質點的概念和要研究的火車運動情況而定,在研究火車過橋所需時間時,火車的長度相對於橋長來說,一般不能忽略,所以不能看成質點;在研究火車從北京到上海所需的時間時,火車的長度遠遠小於北京到上海的距離,可忽略不記,因此火車就可以看成為質點。
F. 屬於理想的物理模型有哪些
1、實物模型(用來代替研究對象的理想模型),如:質點,剛體,點電荷,理想變壓器,黑體,理想氣體。
2、條件模型(將研究對象所處條件理想化的物理模型),如:輕桿,輕繩,輕彈簧,光滑,勻強電場。
3、過程模型(忽略次要因素作用,只考慮主要因素作用過程),如:將物體從高度較低的位置下落的過程,忽略空氣阻力,看作自由落體運動。
(6)有哪些物理模型知乎擴展閱讀:
在不同情境下,理想物理模型也有所不同,因為理想物理模型是隨著研究對象和研究問題的改變而改變。理想物理物理模型是一個抽象的概念,是人為主觀設定的一個模型,所以研究對象是否可以看作理想物理模型與其本身的性質並無直接聯系,而取決於研究對象的性質對研究問題的影響程度。
實際的物理現象和物理規律一般都是十分復雜的,涉及到許多因素。舍棄次要因素,抓住主要因素,從而突出客觀事物的本質特徵。
G. 高中物理模型有哪些
1、物質模型。物質可分為實體物質和場物質。
實體物質模型有力學中的質點、輕質彈簧、彈性小球等;電磁學中的點電荷、平行板電容器、密繞螺線管等;氣體性質中的理想氣體;光學中的薄透鏡、均勻介質等。
場物質模型有如勻強電場、勻強磁場等都是空間場物質的模型。
2、狀態模型。研究流體力學時,流體的穩恆流動(狀態);研究理想氣體時,氣體的平衡態;研究原子物理時,原子所處的基態和激發態等都屬於狀態模型。
3、過程模型。在研究質點運動時,如勻速直線運動、勻變速直線運動、勻速圓周運動、平拋運動、簡諧運動等;在研究理想氣體狀態變化時,如等溫變化、等壓變化、等容變化、絕熱變化等;還有一些物理量的均勻變化的過程,如某勻強磁場的磁感應強度均勻減小、均勻增加等;非均勻變化的過程,如汽車突然停止都屬於理想的過程模型。
H. 高中有哪些重要的物理模型
高中重要的物理模型:
1、力學中的質點、輕質彈簧、彈性小球等;電磁學中的點電荷、平行板電容器、密繞螺線管等;氣體性質中的理想氣體;光學中的薄透鏡、均勻介質。
2、場物質模型有勻強電場、勻強磁場。
3、勻速直線運動、勻變速直線運動、勻速圓周運動、平拋運動、簡諧運動等;在研究理想氣體狀態變化時,如等溫變化、等壓變化、等容變化、絕熱變化。
I. 高中物理常見模型種類歸納,越詳細越好
常見的有:
⒈"質心"模型:質心(多種體育運動).集中典型運動規律.力能角度.
⒉"繩件.彈簧.桿件"三件模型:三件的異同點,直線與圓周運動中的動力學問題和功能問題.
⒊"掛件"模型:平衡問題.死結與活結問題,採用正交分解法,圖解法,三角形法則和極值法.
⒋"追碰"模型:運動規律.碰撞規律.臨界問題.數學法(函數極值法.圖像法等)和物理方法(參照物變換法.守恆法)等.
⒌"運動關聯"模型:一物體運動的同時性.獨立性.等效性.多物體參與的獨立性和時空聯系.
⒍"皮帶"模型:摩擦力.牛頓運動定律.功能及摩擦生熱等問題.
⒎"斜面"模型:運動規律.三大定律.數理問題.
⒏"平拋"模型:運動的合成與分解.牛頓運動定律.動能定理(類平拋運動).
⒐"行星"模型:向心力(各種力).相關物理量.功能問題.數理問題(圓心.半徑.臨界問題).
⒑"全過程"模型:勻變速運動的整體性.保守力與耗散力.動量守恆定律.動能定理.全過程整體法.
⒒"人船"模型:動量守恆定律.能量守恆定律.數理問題.
⒓"子彈打木塊"模型:三大定律.摩擦生熱.臨界問題.數理問題.
⒔"爆炸"模型:動量守恆定律.能量守恆定律.
⒕"單擺"模型:簡諧運動.圓周運動中的力和能問題.對稱法.圖象法.
⒖"限流與分壓器"模型:電路設計.串並聯電路規律及閉合電路的歐姆定律.電能.電功率.實際應用.
⒗"電路的動態變化"模型:閉合電路的歐姆定律.判斷方法和變壓器的三個制約問題.
⒘"磁流發電機"模型:平衡與偏轉.力和能問題.
⒙"迴旋加速器"模型:加速模型(力能規律).迴旋模型(圓周運動).數理問題.
⒚"對稱"模型:簡諧運動(波動).電場.磁場.光學問題中的對稱性.多解性.對稱性.
⒛電磁場中的單桿模型:棒與電阻.棒與電容.棒與電感.棒與彈簧組合.平面導軌.豎直導軌等,處理角度為力電角度.電學角度.力能角度.
21.電磁場中的"雙電源"模型:順接與反接.力學中的三大定律.閉合電路的歐姆定律.電磁感應定律.
22.交流電有效值相關模型:圖像法.焦耳定律.閉合電路的歐姆定律.能量問題.
23."能級"模型:能級圖.躍遷規律.光電效應等光的本質綜合問題.
24.遠距離輸電升壓降壓的變壓器模型.
J. 高中物理模型有哪些
高中物理的學習如果能滲透模型的話,大家就會很快成為持有利劍而心有劍法的劍客,時間稍長,諳熟於心,你就能手持木劍而能獨步天下,不是人常說:有理走遍天下,無理寸步難行么?有物理才能走遍天下!再稍長,你就可用劍氣,而無需劍形了,最後你就完全可以不再用劍,達到無劍似有劍的最高境界!劍譜如下:
⒈"質心"模型:質心(多種體育運動).集中典型運動規律.力能角度.
⒉"繩件.彈簧.桿件"三件模型:三件的異同點,直線與圓周運動中的動力學問題和功能問題.
⒊"掛件"模型:平衡問題.死結與活結問題,採用正交分解法,圖解法,三角形法則和極值法.
⒋"追碰"模型:運動規律.碰撞規律.臨界問題.數學法(函數極值法.圖像法等)和物理方法(參照物變換法.守恆法)等.
⒌"運動關聯"模型:一物體運動的同時性.獨立性.等效性.多物體參與的獨立性和時空聯系.
⒍"皮帶"模型:摩擦力.牛頓運動定律.功能及摩擦生熱等問題.
⒎"斜面"模型:運動規律.三大定律.數理問題.
⒏"平拋"模型:運動的合成與分解.牛頓運動定律.動能定理(類平拋運動).
⒐"行星"模型:向心力(各種力).相關物理量.功能問題.數理問題(圓心.半徑.臨界問題).
⒑"全過程"模型:勻變速運動的整體性.保守力與耗散力.動量守恆定律.動能定理.全過程整體法.
⒒"人船"模型:動量守恆定律.能量守恆定律.數理問題.
⒓"子彈打木塊"模型:三大定律.摩擦生熱.臨界問題.數理問題.
⒔"爆炸"模型:動量守恆定律.能量守恆定律.
⒕"單擺"模型:簡諧運動.圓周運動中的力和能問題.對稱法.圖象法.
⒖"限流與分壓器"模型:電路設計.串並聯電路規律及閉合電路的歐姆定律.電能.電功率.實際應用.
⒗"電路的動態變化"模型:閉合電路的歐姆定律.判斷方法和變壓器的三個制約問題.
⒘"磁流發電機"模型:平衡與偏轉.力和能問題.
⒙"迴旋加速器"模型:加速模型(力能規律).迴旋模型(圓周運動).數理問題.
⒚"對稱"模型:簡諧運動(波動).電場.磁場.光學問題中的對稱性.多解性.對稱性.
⒛電磁場中的單桿模型:棒與電阻.棒與電容.棒與電感.棒與彈簧組合.平面導軌.豎直導軌等,處理角度為力電角度.電學角度.力能角度.
21.電磁場中的"雙電源"模型:順接與反接.力學中的三大定律.閉合電路的歐姆定律.電磁感應定律.
22.交流電有效值相關模型:圖像法.焦耳定律.閉合電路的歐姆定律.能量問題.
23."能級"模型:能級圖.躍遷規律.光電效應等光的本質綜合問題.
24.遠距離輸電升壓降壓的變壓器模型.