㈠ 牛頓構建了物理學體系建立了什麼定律
牛頓是萬有引力定律的發現者
牛頓在伽利略等人工作的基礎上進行深入研究,總結出了物體運動的三個基本定律(牛頓三定律):
第一定律(即慣性定律)
任何一個物體在不受任何外力或受到的力平衡時(Fnet=0),總保持勻速直線運動或靜止狀態,直到有作用在它上面的外力迫使它改變這種狀態為止。
第二定律
①牛頓第二定律是力的瞬時作用規律。力和加速度同時產生、同時變化、同時消逝。②F=ma是一個矢量方程,應用時應規定正方向,凡與正方向相同的力或加速度均取正值,反之取負值,一般常取加速度的方向為正方向。③根據力的獨立作用原理,用牛頓第二定律處理物體在一個平面內運動的問題時,可將物體所受各力正交分解,在兩個互相垂直的方向上分別應用牛頓第二定律的分量形式:Fx=max,Fy=may列方程。
牛頓第二定律的六個性質:①因果性:力是產生加速度的原因。②同體性:F合、m、a對應於同一物體。③矢量性:力和加速度都是矢量,物體加速度方向由物體所受合外力的方向決定。牛頓第二定律數學表達式∑F = ma中,等號不僅表示左右兩邊數值相等,也表示方向一致,即物體加速度方向與所受合外力方向相同。④瞬時性:當物體(質量一定)所受外力發生突然變化時,作為由力決定的加速度的大小和方向也要同時發生突變;當合外力為零時,加速度同時為零,加速度與合外力保持一一對應關系。牛頓第二定律是一個瞬時對應的規律,表明了力的瞬間效應。⑤相對性:自然界中存在著一種坐標系,在這種坐標系中,當物體不受力時將保持勻速直線運動或靜止狀態,這樣的坐標系叫慣性參照系。地面和相對於地面靜止或作勻速直線運動的物體可以看作是慣性參照系,牛頓定律只在慣性參照系中才成立。⑥獨立性:作用在物體上的各個力,都能各自獨立產生一個加速度,各個力產生的加速度的失量和等於合外力產生的加速度。
適用范圍:①只適用於低速運動的物體(與光速比速度較低)。②只適用於宏觀物體,牛頓第二定律不適用於微觀原子。③參照系應為慣性系。兩個物體之間的作用力和反作用力,在同一直線上,大小相等,方向相反。(詳見牛頓第三運動定律)
第三定律
表達式F=-F'(F表示作用力,F'表示反作用力,負號表示反作用力F'與作用力F的方向相反)
這三個非常簡單的物體運動定律,為力學奠定了堅實的基礎,並對其他學科的發展產生了巨大影響。第一定律的內容伽利略曾提出過,後來R.笛卡兒作過形式上的改進,伽利略也曾非正式地提到第二定律的內容。第三定律的內容則是牛頓在總結C·雷恩、J·沃利斯和C·惠更斯等人的結果之後得出的。
牛頓是萬有引力定律的發現者。他在1665~1666年開始考慮這個問題。萬有引力定律(Law of universal gravitation)是艾薩克·牛頓在1687年於《自然哲學的數學原理》上發表的。1679年,R·胡克在寫給他的信中提出,引力應與距離平方成反比,地球高處拋體的軌道為橢圓,假設地球有縫,拋體將回到原處,而不是像牛頓所設想的軌道是趨向地心的螺旋線。牛頓沒有回信,但採用了胡克的見解。在開普勒行星運動定律以及其他人的研究成果上,他用數學方法導出了萬有引力定律。
牛頓把地球上物體的力學和天體力學統一到一個基本的力學體系中,創立了經典力學理論體系。正確地反映了宏觀物體低速運動的宏觀運動規律,實現了自然科學的第一次大統一。這是人類對自然界認識的一次飛躍。
㈡ 牛頓發明了什麼東西
牛頓發明了:牛頓三大運動定律、反射式望遠鏡、牛頓軌道大炮、牛頓貓洞、製造彩虹等。
一:牛頓三大運動定律
在1704年,牛頓寫了一本關於光的折射的書。這本名為「光學」的著作改變了我們對光和顏色的認知。當代科學家知道當光在雨滴中發生折射和反射時形成了彩虹,但他們卻不知道為什麼彩虹是如此的五彩繽紛。當牛頓在劍橋第一次開始研究時,普遍的理論就是水以某種方式把太陽光染成不同的顏色。牛頓使用一個燈和一個三棱鏡,通過一個三棱鏡把白色光分離成彩虹的顏色。不管怎樣,反射光線到另一個棱鏡後,牛頓又把他們恢復成白色光,證明了顏色是光本身的一個特性。
㈢ 初二物理牛頓第一定律概念
牛頓第一定律:一切物體在不受任何外力的作用下,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止。
由於物體保持運動狀態不變的特性叫做慣性,所以牛頓第一定律也叫慣性定律。
該定律說明力並不是維持物體運動的條件,而是改變物體運動狀態的原因。牛頓第一定律又稱慣性定律,它科學地闡明了力和慣性這兩個物理概念,正確地解釋了力和運動狀態的關系,並提出了一切物體都具有保持其運動狀態不變的屬性——慣性,它是物理學中一條基本定律。上述定律主要是從天文觀察中,間接推導而來,是抽象概括的結論,不能單純按字面定義而用實驗直接驗證。和實際情況較接近的說法是:任何物體在所受外力的合力為零時,都保持原有的運動狀態不變。即原來靜止的繼續靜止,原來運動的繼續作勻速直線運動。物體的慣性實質是物體相對於平動運動的慣性,其大小即為慣性質量。物體相對於轉動也有慣性,但它跟第一定律所說的慣性不是一回事,它的大小為轉動慣量。慣性質量和轉動慣量都用來表示慣性,但它們是不同的物理量,中學物理不出現轉動慣量的名詞,可不必提兩者的區別。物體在沒有受到外力作用或所受合外力為零的情況下,究竟是靜止還是作勻速直線運動,這除了和參考系有關外,還要看初始時的運動狀態。
牛頓第一定律說明了兩個問題:⑴它明確了力和運動的關系。物體的運動並不是需要力來維持,只有當物體的運動狀態發生變化,即產生加速度時,才需要力的作用。在牛頓第一定律的基礎上得出力的定性定義:力是一個物體對另一個物體的作用,它使受力物體改變運動狀態。⑵它提出了慣性的概念。物體之所以保持靜止或勻速直線運動,是在不受力的條件下,由物體本身的特性來決定的。物體所固有的、保持原來運動狀態不變的特性叫慣性。物體不受力時所作的勻速直線運動也叫慣性運動。牛頓在第一定律中沒有說明靜止或運動狀態是相對於什麼參照系說的,然而,按牛頓的本意,這里所指的運動是在絕對時間過程中的相對於絕對空間的某一絕對運動。牛頓第一定律成立於這樣的參照系。通常把牛頓第一定律成立的參照系成為慣性參照系,因此這一定律在實際上定義了慣性參照系這一重要概念。牛頓第一定律是作為牛頓力學體系一條規律,它具有特殊意義,是三大定律中不可缺少的獨立定律。不能將第一定律看作牛頓第二定律的特例。注意:力不是產生速度的原因,而是產生加速度的原因!
㈣ 英國物理學家牛頓建立了牛頓什麼體系至今仍是發射衛星和宇宙飛船的重要科學依
屠呦呦水瓶座(1.20--2.18)看看水瓶座的這些牛人,居然一下子就有四個人「以父為名」,即使沒被公認為爹的,也牛得讓人想喊句爸啊。有錢學森堂侄、諾貝爾獎得主錢永健(2月1日)獲得諾貝爾獎的華人科學家丁肇中(1月27日)第一位獲得諾貝爾獎的日本科學家湯川秀樹(1月23日)英國數學家哈代(2月7日)流體力學之父德國物理學家普朗特(2月4日);初高中作文高頻主人公愛迪生(2月11日)探索進化足跡的巨人生物學之父達爾文(2月12日)電動力學之父法國物理學家安培(1月22日)第四個以父為名的大神,就是近代科學之父伽利略(2月15日)了。他是義大利數學家、物理學家、天文學家,科學革命的先驅。伽利略發明了擺針和溫度計,在科學上為人類作出過巨大貢獻,是近代實驗科學的奠基人之一。歷史上他首先在科學實驗的基礎上融匯貫通了數學、物理學和天文學三門知識,擴大、加深並改變了人類對物質運動和宇宙的認識。伽利略從實驗中總結出自由落體定律、慣性定律和伽利略相對性原理等。從而推翻了亞里士多德物理學的許多臆斷,奠定了經典力學的基礎,反駁了托勒密的地心體系,有力地支持了哥白尼的日心學說。他以系統的實驗和觀察推翻了純屬思辨傳統的自然觀,開創了以實驗事實為根據並具有嚴密邏輯體系的近代科學。因此被譽為「近代力學之父」、「現代科學之父」。其工作為牛頓的理論體系的建立奠定了基礎。
㈤ 牛頓的主要貢獻是什麼
牛頓的主要貢獻:
1,以牛頓三大運動定律為基礎建立牛頓力學。
2,發現萬有引力定律。
3,建立行星定律理論的基礎。
4,致力於三菱鏡色散之研究並發明反射式望遠鏡。
5,發現數學的二項式定理及微積分法等。
在牛頓所處的時代,哥白尼提出了日心說,開普勒從第谷的觀測資料中總結了經驗的行星運動三定律,伽利略又給出了力、加速度等概念並發現了慣性定律和自由落體定律。正是在這個時候,牛頓對行星及地面上的物體運動作了整體的考察,他用數學方法,使物理學成為能夠表述因果性的一個完整體系。這就是我們今天所說的經典力學體系。
艾薩克·牛頓(1643年1月4日—1727年3月31日)爵士,英國皇家學會會長,英國著名的物理學家,網路全書式的「全才」,著有《自然哲學的數學原理》、《光學》。
他在1687年發表的論文《自然定律》里,對萬有引力和三大運動定律進行了描述。這些描述奠定了此後三個世紀里物理世界的科學觀點,並成為了現代工程學的基礎。他通過論證開普勒行星運動定律與他的引力理論間的一致性,展示了地面物體與天體的運動都遵循著相同的自然定律;為太陽中心說提供了強有力的理論支持,並推動了科學革命。
在力學上,牛頓闡明了動量和角動量守恆的原理,提出牛頓運動定律[1]。在光學上,他發明了反射望遠鏡,並基於對三棱鏡將白光發散成可見光譜的觀察,發展出了顏色理論。他還系統地表述了冷卻定律,並研究了音速。
在數學上,牛頓與戈特弗里德·威廉·萊布尼茨分享了發展出微積分學的榮譽。他也證明了廣義二項式定理,提出了「牛頓法」以趨近函數的零點,並為冪級數的研究做出了貢獻。
在經濟學上,牛頓提出金本位制度。
㈥ 牛頓的物理學成就及影響
萬惡的數學:牛頓和萊布尼茨同時獨立建立微積分。
力學:萬有引力定律牛頓力學三大定律(經典力學基礎) 在《自然哲學的數學原理》提出,以及闡述了除能量守恆定律外的兩大守恆定律
光學:發明了反射式望遠鏡,並基於對三棱鏡將白光發散成可見光譜的觀察,發展出了顏色理論。他支持光的微粒說。
..............太多了。
還有,他把被蘋果砸中的權力轉交給了Steve Jobs
㈦ 牛頓有什麼成就
家世和生平
《光學》和反射式望遠鏡的發明,光學和力學一樣,在古希臘時代就受到注意。用於天文觀測的需要,光學儀器的製作很早就得到了發展,光的反射定律早在歐幾里得時代已經聞名,但折射定律直到牛頓出生之前不久才為荷蘭科學家W.斯涅耳所發現。玻璃的製作早已從阿拉伯輾轉傳入西歐。16世紀荷蘭磨製透鏡的手工業大興。把透鏡適當組合成一個系統就可成為顯微鏡或望遠鏡。這兩種儀器的發明對科學發展起了重大作用。在牛頓之前,伽利略首先把他所製作的望遠鏡用在天象觀測上。枷利略式的望遠鏡是以一片會聚透鏡為目鏡、一片發散透鏡為物鏡的望遠鏡。還有當時盛行的由兩片會聚透鏡組成的開普勒望遠鏡。兩種望遠鏡都無法消除物鏡的色散。牛頓發明以金屬磨成的反射鏡代替會聚透鏡作為物鏡,這樣就避免了物鏡的色散。當時牛頓製成的望遠鏡長6英寸,直徑1英寸,放大率為30~40倍。經過改進,1671年他製作了第二架更大的反射式望遠鏡,並送到皇家學會評審。這台望遠鏡被皇家學會作為珍貴科學文物收藏起來。為了製造反射式望遠鏡,牛頓親自冶煉合金和研磨鏡面。牛頓自幼愛好動手制模型,做試驗,這對他在光學實驗上的成功有極大幫助。光的顏色問題早在公元前就有人在作猜測,把虹的光色和玻璃片的邊緣形成的顏色聯系起來。從亞里士多德以來到笛卡兒都認為白光是純潔的、均勻的,是光的本質,而色光只是光的變種。他們都沒像牛頓那樣認真做過實驗。
大約在1663年,牛頓即開始熱衷於光學研究,磨玻璃、製作望遠鏡也在這個時期。1666年,他購得一塊玻璃三棱鏡,開始研究色散現象。為了這個目的,牛頓在他的《光學》一書中寫道:「把我的房間弄暗,在我的窗板上開一個小孔,以便適量的太陽光射入室內,就在入口處安置我的棱鏡,光通過棱鏡折射達到對面的牆上。」牛頓看到牆上有彩色的光帶,光帶之長數倍於原來的白光點,他意識到這些彩色就是組成白色太陽光的原始光色。為了證明這一點,牛頓進一步做實驗。在光帶投射的屏上也打一個小孔,讓光帶中彩色的一部分穿過第二個小孔,經過放在屏後的第二個棱鏡折射投到第二個屏上,又讓第一棱鏡繞它的軸緩慢轉動,只見穿出第二個小孔落在第二屏上的像隨著第一棱鏡轉動而上下移動。於是看到,為第一棱鏡折射最大的藍光,經過第二棱鏡也是折射得最大;反之,紅光被前後兩個棱鏡折射得最小。於是牛頓作出結論:「經過第一棱鏡折射後所得長方形的彩色光帶不是別的,正是由不同的彩色光所組成的白色光經折射而形成的。」也就是說:「白光本身是由折射程度不同的各種彩色光所組成的非均勻的混合體。」這就是牛頓的光色理論。它是通過實驗建立起來的,牛頓自稱這個實驗為「關鍵性實驗」。這個實驗可說是一個半世紀後 J.von夫琅和費建立光譜術的基礎。事實上牛頓在他的《光學》第 1卷命題4問題1中用過1~2英寸長、寬僅1/10或1/20英寸的長方形的孔代替小圓孔,他說所得結果較前更清晰,但沒有夫琅和費線的記載。牛頓在這方面做了大量的實驗之後,於1672年把他的結論用書信形式送交皇家學會評審。不料竟引起一場尖銳的論戰。當時惠更斯反對他,胡克攻擊他尤甚。早在1665年胡克就在英國提出光的波動理論,這只是一個假說。惠更斯則把它完整起來,認為空間的以太是無所不在的,他把以太作為振動的媒質,把媒質的每一個質點都看成一個中心,在中心的周圍形成一個波,惠更斯成功地用這個物理圖像來解釋光的反、折射、還以此來研究冰洲石的雙折射(但是光的波動學說的確立還有待於一個半世紀之後由英國的T.楊的干涉實驗來證明)。牛頓則持光的微粒說,他認為波動說的最大障礙是不能解釋光的直線進行。他提出發光物體發射出以直線運動的微粒子、微粒子流沖擊視網膜就引起視覺。它也能解釋光的折射與反射,甚至經過修改也能解釋F.M.格里馬爾迪發現的「衍射」現象。但對薄膜形成的彩色,牛頓則承認微粒說不如波動說解釋得明快。微粒說與波動說之爭在當時是十分激烈的,雙方爭論持續多年。當年光的微粒說與波動說之爭,現在可以引用E.T.惠特克的話來結束這樁公案:「當A.愛因斯坦以M.普朗克的量子原理來解釋光電效應,光的微粒思想經過一個世紀的沉寂而在1905年又獲得了新生,並因此而導致光量子存在的基本原理。他的思想為實驗所充分肯定,特別是光子與電子碰撞所產生的康普頓效應服從經典的碰撞力學定律。而同時,關於光的波動性的實驗並沒有失效,於是我們不得不承認波動說和微粒假說都是正確的。」無疑,牛頓的《光學》(Opticks)是和他的《原理》同為物理學的巨著,也是科學界的經典著作。《光學》第一版印於1704年,在胡克逝世之後問世。《光學》最後部分以獨特的形式附上一份著名的「問題」表,共提出31個「問題」(第一版提出16個「問題」)。在「問題」中所談到的不僅是光的折射、反射等,還涉及光與真空,甚至重力、天體等問題。在多處談到光的波動,涉及太陽光與物質的相互作用等問題,這些問題涉及物理學的諸多方面,富有啟發性,後人評價這些「問題」是《光學》中最重要的部分,並非虛語。牛頓在《光學》一書中憑借實驗的結果與分析,建立了光的理論。但在全書中沒有提起不同玻璃具有不同折射率,在全書中也沒有做消色差的實驗,這或許是由於他當時還沒有獲得不同質玻璃的三棱鏡的緣故。但是牛頓製造反射式望遠鏡來避免物鏡的色散,卻是個妙法,迄今大型望遠鏡的製造還遵從此法。牛頓死後3年(1730)出版了經牛頓生前訂校過的《光學》第 4版。現在流行的1931年版本就是根據第4版重印的。
愛因斯坦在為牛頓《光學》1931年重印本所作的序中說:「牛頓的時代早已被淡忘了……牛頓的各種發現已進入公認的知識寶庫,盡管如此,他的光學著作的這個新版本還是應當受到我們懷著衷心感激的心情去歡迎的,因為只有這本書才能使我們有幸看到這位偉大人物本人的活動。」
萬有引力定律和《自然哲學的數學原理》,16世紀丹麥天文學家第谷對行星繞日運行作了長年累月的觀測,他死後德國天文學家開普勒整理並分析了第谷的20年的觀測記錄,總結出行星運動的著名開普勒三定律。這個發現不僅為經典天文學奠定了基礎,更重要的是導致了其後萬有引力定律的發現。開普勒在得出行星運動三定律之前,1596年曾提出關於太陽行星間的吸引作用的思想;隨之提出物體作圓周運動時出現離心力問題。一般認為伽利略已領悟到離心力,但對它作進一步的認識和計算則有待於牛頓。1664年 1月20日牛頓在他的《算草本》上已提出如何計算物體作圓周運動時的向心力的具體方法。牛頓把推導、計算方法詳盡地寫入他的《原理》(第 3版)第一編第二章命題4定理4下面推論1中,明確地指出:「因此,由於這些圓弧代表運動物體的速度,向心力就是這個速度的平方除以圓周半徑。」從這里可以看出,向心力的求得對於距離平方反比定律的推導是不可少的。順便提一下,惠更斯從不同途徑推導得離心力方程和牛頓的相似,結果於1673年發表。牛頓雖在早年的《算草本》上提出求向心力的方法,但他自己說「惠更斯先生後來所發表的離心力理論,我相信在我之前」。引人注意的是,在《原理》第一編和第三編中,凡提到軌道運行時,牛頓都沒有提及離心力一詞,總是強調拉向軌道中心的向心力。
關於引力反比於距離平方定律,歷史上記載了當時對此發明權的爭論,有人以為距離平方反比定律可以從開普勒第三定律直接推出,但缺乏向心力的概念和運動,不可能推出這定律。而向心力的概念與運算都是牛頓最早做出來的。長牛頓7歲的胡克當年就宣稱他早已知道引力反比於距離平方定律,但提不出證據來。當《原理》第1版在印刷時,胡克通過哈雷向牛頓要求分享此定律的發明權。牛頓加以拒。在《原理》(第 3版)上述命題 4下的注釋中提到距離平方反比定律適用於天體運動時,牛頓說:「雷恩爵士、胡克博士和哈雷博士曾分別注意過。」同時也提及「惠更斯先生在他的出色著作《鍾擺的振盪》中曾把重力比之於旋轉體的離心力」。這樣,人們對距離平方反比定律的發明權就有所了解了。有人認為,1666年牛頓在烏爾斯索普家中試圖以地球表面大圓弧上 1度的長度為60英里來計算月地之間的引力;通過實際計算,月球繞地球的周期與實際不能符合,算稿便棄置一旁。1682年牛頓獲悉J.皮卡德的地球經度 1度之長為69.1英里的數據,便重行計算,才使計算與實際觀測相吻合。牛頓把日常所見的重力和天體運動的引力統一起來,在科學史上有特別重要的意義。行星繞日運動的軌道究竟是什麼樣?這是當時科學界所關心的問題。這問題答案的公開和《原理》的出版密切相關,科學史上已有生動的記載。1684年1月C.雷恩、哈雷和胡克 3位英國當時科學界著名人士在倫敦相敘討論行星運動軌道問題。胡克雖說他已通曉,但拿不出計算結果。於是牛頓的好友哈雷專程去劍橋請教牛頓。牛頓告訴哈雷他自己已計算過了,肯定地說,行星繞日軌道是橢圓;但手稿壓置多年一時找不到,應允重行計算,約期3個月後交稿。哈雷如約再度訪劍橋,牛頓交給一份手稿《論運動》,哈雷大為贊賞。牛頓在此稿基礎上另寫一書《論物體運動》,1684年12月送交英國皇家學會。此書第一部分主要相當於後來的《原理》第一編及第二編;而其餘部分成為《原理》的第三編。哈雷慫恿牛頓寫成《原理》全書公開出版,由他出資印刷,並親自督校。 1687年7月《自然哲學的數學原理》(Philosophiae Naturaalis Principia Мathematica)第1版問世, 時距1664年牛頓開始思考並進行草算已23年。《原理》第2版於1713年出版,第3版於1725年出版(見彩圖牛頓名著《原理》(1686)扉頁)。《原理》原用拉丁文寫成。牛頓逝世後2年由A.莫特譯成英文付印,即今所見的流行的《原理》英文本。《原理》第一編之前有兩部分重要的論述。第一部分為定義。定義共8條,其中有關向心力的有5條。他說,施加於物體的力有不同來源,例如撞擊、壓力和向心力。向心力一詞是牛頓創造的(在另一場合即惠更斯稱之為離心力的補充詞)。牛頓在定義一章中有長篇詮釋,其中提到了一個假想實驗:「在高山上發射炮彈、炮力不足,炮彈飛了一陣便以弧形曲線下落地面。假如炮力足夠大,炮彈將繞地球面周行,這是向心力的表演。」今日人造衛星的設想在那時牛頓的腦子里已浮現出來了。在定義一章中牛頓盡情闡述了他的時空絕對性概念。他對人們熟知的空間與時間,擇名絕對空間和絕對時間。牛頓認為,只有在絕對空間中絕對運動才可以覺察,特別是在物體旋轉時。當時惠更斯和英國大主教G.貝克萊對此表示疑問。無論如何,這短短一章定義表達了牛頓對力與時空的基本觀點,是研究牛頓的重要原始文獻。
在第一編之前,除定義一章外,還有公理或稱運動定理一章。在這章里牛頓闡述著名的運動三定律(見牛頓運動定律)。第一運動定律一般稱作慣性定律,通常認為已由伽利略和笛卡兒所道出。為了要變更物體運動方向(或稱變更運動速度)必須有外力作用,這其間必然會產生質量的概念。質量(原文物質的量)這個基本概念是由牛頓在《原理》第一編定義章中首先提出的,成為物理學中最基本概念之一。他清楚地把質量和重量區分開來,闡明了在各種不同環境中兩個量的相互關系。在力學中牛頓用質量表示物體的特徵。愛因斯坦指出:「只有引進質量這一新概念之,他(牛頓)才能把力和加速度聯系起來。」動量一詞牛頓也作了定義。牛頓指出,動量是衡量物質運動的量,它聯系物質與運動兩個量;物質加倍,動量加倍;物質與運動都加倍;動量即為原來的4倍。隨後闡述動量守恆。牛頓在運動三定律之後有7個推論,其中論述到兩力同時作用一物體上,則物體加速度方向和力的合成都在兩力平行四邊形的對角線上。此後還有一段很長的詮釋,總論運動三定律的聯系性,還用兩擺的彈性碰撞和非彈性碰撞實驗來闡述運動守恆並說明第二定律和第三定律之間的關系。從上面看,牛頓運動三定律不是分立的,而是相關的。牛頓早年在《算草本》中以碰撞實驗研究力,在《原理》中他強調以「沖量」作為力的概念。隨後發展這個概念,說無限短促間隙的相關系列沖量就成為連續作用力。這句話就包含以微分形式表達力的定義。牛頓設想,一質點在直線上作慣性運動,這質點和線外某一定點相聯,在相等時間內這聯線掃過的面積必然相等;如果在線上某點遇到一個外力,則質點要偏向質點原運動方向與外力方向之間的某一方向上運動。牛頓用他創造的無限小概念極限的方法最終證明了:一個運動著的質點,受到某個定點的外力作用,如果這個外力在質點和定點的聯線上,而且力的強度反比於距離二次方,那麼這質點運動軌跡很可能是個橢圓,這定點就是橢圓的焦點。於此,牛頓得出行星與太陽之間聯線所掃過的面積必然和時間成比例。牛頓又設想,質點在橢圓上從一點經過無限短時間運行,這質點在短暫時間運行所到之處偏離切線的距離反比於從焦點到該點的距離平方。而當橢圓上兩點相接近時,牛頓得出,在這極限情況下開普勒的面積定律是關鍵條件。總之,牛頓得到如下結論:假如面積定律有效,橢圓形軌道意味著指向焦點的力必然反比於距離平方。牛頓於是著意證明,面積定律是作用在運動物體的力指向中心的充分和必要條件。這揭示了開普勒的第一、第二兩定律的重要性。《原理》第二編論述在有阻力媒質(氣體、液體)內的質點運動。牛頓在這里用了更多的數學方法,而物理涵義較前為少。在第一編里牛頓費盡心力用各種方法證明宇宙間引力(向心力)之存在;而在第二編里,牛頓設想,在媒質中阻力與物體運行速度成正比;又設想與速度平方成正比;甚至認為一部分為速度之比,另一部分為速度平方之比。他還論證過一些其他的問題。在這些工作中牛頓以數學技巧來處理一些看來無實際物理意義的問題。他還研究了氣體的彈性和可壓縮性。在《原理》第二編中,牛頓用擺在流體中的運動實驗測定重量(即地球引)和慣性大小的關系。在經典物理學中這兩個量只能由實驗來測定。關於聲學的研究,《原理》第二編中記載了牛頓從理論上研究聲速(見定理48、49、50),所得結果比實測低16%。他認為聲速正比於所謂「彈性力」的方根而反比於媒質密度方根。牛頓又研究了聲傳播的形式,他說聲的傳播是空氣的脈動所致,指出波的脈動只是媒質中質點上下交替運動,與擺的運動無異。在第二編最後文字中牛頓澄清了渦旋假設與天體運動無關。牛頓原想把《原理》第三編寫成一般性的總結。但後來改變了計劃,標題為「宇宙體系」。在這編里討論了太陽系的行星、行星的衛星、彗星的運行,以及海洋潮汐的產生。他把這些作用的力叫做引力,即今所謂萬有引力。他解釋引力是兩物體間相互作用的力,太陽對行星有引力使之在軌道上運行,同時行星對太陽也有作用力,這是運動第三定律規定的。只是太陽與行星的質量懸殊太大,太陽的運動微乎其微。行星之間運動相互受到引力干擾,所謂多體問題中的攝動,牛頓在第三編中闡述了太陽對月亮的攝動,土星對木星的攝動。在第三編中還計算了木星衛星的距離與衛星運轉周期,作為開普勒第三定律的實例。
1680年11月與1681年 3月大彗星兩度出現。牛頓開始以為是在直線上運動的兩個不同的彗星,只是方向相反。夫拉姆斯蒂德通過觀察提醒牛頓,這只是同一個彗星,繞著太陽運動。於是牛頓通過計算得出,1680年的彗星是以太陽為焦點作拋物線運動,它對太陽的向心力也是服從距離平方反比定律的。1695年哈雷假定這顆1680年彗星的軌道是繞著太陽運行的一個扁而長的橢圓形。哈雷與牛頓對此重作計算。在《原理》第2版和第3版的第三編中有詳細的觀測記錄和推算,預言這顆彗星約以75年繞日運動一周,即今日所知著名的哈雷彗星(中國最早對此彗星的記錄在公元前1057年)。最後牛頓在結論中說,「彗星是行星之一種,它繞太陽運行具有極大的偏心率」但他又說「三次觀測數據即可定出彗星在拋物線上運動軌道」。
談牛頓的物理學,不能不提及他在數學上的偉大貢獻。《原理》的全名是《自然哲學的數學原理》。所謂自然哲學在那時的含義包括物理、化學等,而主要是物理學。上面提過第一、第二兩編的中心是借數學方法來闡明物體運動的規律,因此可以看出數學在《原理》中的重要地位。讀者初讀《原理》往往以為是作者寫作時崇尚古希臘歐幾里得的幾何的規范。但細讀就可發現作者取幾何學的形式而實質賦有嶄新的內涵。作者在建立幾何條件之後,立即引入某種經過精心下定義的所謂極限法。這種方法基於極限術的一組普遍原理,有別於經典式的古希臘幾何學。極限學說詳述在《原理》第一編第一章11個引理和詮釋之中。在那裡詳細說明了極限的意義:有兩個相互依賴的物理量,當兩個量逐漸變小時,牛頓稱它為流數,它的比率也在逐漸變化,而自變數達到無限小時比率達到一個極限定值,牛頓叫它流率。即今稱導數或微商。牛頓發現他的流變術非常有用,反過來此術可以求曲線包圍的面,即今所稱積分。第一編第八章命題41即為積分術的應用。可以說,《原理》一書的中心內容是論述了牛頓在數學上的偉大創造即微積分術,並且應用這個創造去解決天體運動以及其他相關物理問題。微積分之發明,史家也歸功於萊布尼茲,對於這一數學上的偉大發明,牛頓與萊布尼茲孰先孰後,後世論者紛紛;即在當時兩方亦就此書信往來,已有爭議。試聽愛因斯坦如何贊美牛頓的微分發現。他說「只有微分定律的形式才能完全滿足近代物理學家對因果性的要求。微分定律的明晰概念是牛頓最偉大的理智成就之一」。
牛頓一生的重要貢獻是集16、17世紀科學先驅們成果的大成,建立起一個完整的力學理論體系,把天地間萬物的運動規律概括在一個嚴密的統一理論中。這是人類認識自然的歷史中第一次理論的大綜合。以牛頓命名的力學是經典物理學和天文學的基礎,也是現代工程力學以及與之有關的工程技術的理論基礎。這一成就,使以牛頓為代表的機械論的自然觀,在整個自然科學領域中取得了長達兩百年的統治地位。
哲學、宗教和其他
亞里士多德的哲學講求事物的和諧,求和諧思想是正確的,但亞里士多德認為天上的日、月、星辰的運行軌道是圓形,因為只有圓運動才是完美的、和諧的,而地上的運動,例如重物直線下落是凡俗的。古希臘哲學家的和諧思想不能在天與地之間連貫。到了17世紀,牛頓用引力理論和運動三定律把天上行星和它們的衛星運動規律,同地上重力下墜的現象統一起來,實現了天上人間的統一,這是牛頓在自然哲學上的偉大貢獻。眾所周知,牛頓在理解光的本質上持微粒說。但他在同胡、惠更斯等討論光的本質時,說光具有這種或那種本能激發以太的振動。這意味著以太是光振動的媒質(見以太論)。於此,似乎牛頓對光的雙重性有所理解;其實不然,他對以太媒質之存在極似空氣之無所不在,只是遠為稀薄、微細而具有強有力的彈。他又申說,就是由於以太的動物氣質才使肌肉收縮和伸長,動物得以運動。他又進一步以以太來解釋光的反射與折射,透明與不透明,以及顏色的產生,他甚至於設想地球的引力是由於有如以大氣質不斷凝聚使然。《原理》第二編第六章詮釋的結尾說,從記憶中他曾做實驗傾向於以太充斥於所有物體的空隙之中的說法,雖然以太對於引力沒有覺察的影響。14、15世紀以來歐洲的學者對以太著了迷,以太學說風靡一時。當時科學巨擘笛卡兒對以太存在深信不疑。他認為行星之運行可以以太旋渦來解釋。以太學說成為一時哲學思潮。尊重實驗的牛頓也不免捲入這股哲學思潮激流中去,傾向於它存在。當時人們對超距作用看法不一。牛頓曾經指出他的引力相互作用定律,並不認為是最終的解釋,而只是從實驗中歸納出來的一條規則。因此,牛頓並未就引力本質作出結論。
牛頓在科學上的成就須由他的哲學思想和科學方法來尋根求源。牛頓的學生R.科茨曾在《原理》第 2版序言中道出了其中的奧妙。古希臘、羅馬的哲學家憑著對自然現象的觀察和思考(中國先秦時代也有類似之處)總結出論斷,例如泰勒斯的學說:萬物的根源是水。即使像德謨克利特、盧克萊修的原子論,現在來評價還是很高的。但是他們的方法憑天才的臆測、思維與辯論,稱之為思辨哲學。到了中世,經院哲學統治著歐洲。科學、哲學淪為神學的奴婢。到15、16世紀,哥白尼、G.布魯諾、伽利略等人不畏坐牢、火刑等堅持不屈地向教會作斗爭,掙脫了侍奉上帝的桎梏。對自然現象的觀察、測量和實驗的風氣逐漸形成了。在物理學科中伽利略的實驗工作是實驗物理學的開端,牛頓深受其影響。隨後牛頓使作為實驗科學的物理學形成一個光輝體系,同時也使科學實驗方法闖入了哲學思想的殿堂。
牛頓認為從現象中可以得出科學原理,或者說科學基本原理可以從現象中導得或推出。牛頓在《原理》和《光學》兩書中明白表達他的做學問的方法,即要明白無誤地區別猜測、假設和實驗結果(及由此而歸納得出的結論),還有從某些假設條件下所得到數學推導。《原理》第一編十四章中處理細微粒子的運動和第二編命題23中設想氣體中有相互排斥質點的模型都是牛頓運用具有物理實質性的數學模型的例子,但是他對這些問題缺少實質性的實驗證據,未能寫出無可辯駁的論述。論者可能認為牛頓只注重從實驗運用歸納法得出定律,而無視演繹法的重要性。這是有違事實的。1713年牛頓在出版《原理》第 2版時在給他的學生科茨的信中提到運動定律是居於首位的定律或稱之為公理,並說它們都是從現象中推斷或稱演繹而來的,並運用歸納法使之普適化。牛頓說:「這是一個命題在哲學中所能達到最高境界的例證。」誠然,必須看到歸納與演繹不能人為地對立起來。恩格斯指出「歸納和演繹正如分析和綜合一樣,是必然相互聯系著的。不應當犧牲一個而把另一個捧到天上去」。牛頓在此早著先鞭。關於實驗與假設之間的關系,牛頓在各種場合都有論述。他在給奧爾登堡的信中說:「進行哲學研究的最好和最可靠的方法,看來第一是勤勤懇懇地探索事物的屬性並用實驗來證明這些屬性。然後進而建立一些假說,用以解釋這些事物的本性。」給科茨信中說:「任何不是從現象中推論出來的說法都應稱之為假說,而這樣一種假說無論是形而上學的還是物理學的,無論屬於隱蔽性質的還是力學性質的,在實驗哲學中都沒有它們的地位。」牛頓這些論述奠定了自然哲學的基礎,啟開了實驗科學的大門,300年來為自然科學的繁榮立下了不朽功勛。牛頓研究事物規律的方法不同於那些只從簡單的物理假設出發的人,而是通過邏輯的演繹法得到對事物現象的解釋。愛因斯坦指出:「牛頓才第一個成功地找到了一個用公式清楚表述的基礎,從這基礎出發他用數學的思維,邏輯地、定量地演繹出范圍很廣的現象並且同經驗相符合。」「在牛頓之前還沒有什麼實際的結果支持那種認為物理因果關系有完整鏈條的信念。」牛頓是完整的物理因果關系創始人;而因果關系正是經典物理學的基石。牛頓出身於篤信基督教的家庭。在劍橋求學時代,他就懷著宗教生活里亦如科學實驗一樣可以自由自在的幻想和工作。《原理》完成後,他便著手有關基督教《聖經》的研究,並開始寫這方面的著作,手稿達150萬字之多,絕大部分未發表。可見牛頓在宗教著述上浪費了大量時間的精力。關於牛頓在1692~1693年間答復本特萊大主教 4封信論造物主(上帝)之存在,最為後人所詬病。所謂神臂就是第一推動出於第四封信中。從現代宇宙學來說,第一推動完全可能在物理框架中解決,而無需「神助」。
牛頓反對那時英國的國教「英格蘭教」。他反對三一教義,但不鮮明表白自己的意志,只是隱蔽地表明不願擔任聖職。總之,在對於宗教問題上牛頓比之於他的先驅者如哥白尼、布魯諾、伽利略等赴湯蹈火而不辭的精神,則遜色多了。
1942年愛因斯坦為紀念牛頓誕生 300周年而寫的文章,對牛頓的一生作如下的評價「只有把他的一生看作為永恆真理而斗爭的舞台上一幕才能理解他」。此贊語最恰當不過的了。
㈧ 牛頓三大定律各是什麼
1、牛頓第一定律:任何物體都保持靜止或勻速直線運動的狀態,直到受到其它物體的作用力迫使它改變這種狀態為止。
2、牛頓第二定律:物體在受到合外力的作用會產生加速度,加速度的方向和合外力的方向相同,加速度的大小正比於合外力的大小與物體的慣性質量成反比。
3、牛頓第三定律:兩個物體之間的作用力和反作用力,在同一條直線上,大小相等,方向相反。
牛頓運動定律包括牛頓第一運動定律、牛頓第二運動定律和牛頓第三運動定律三條定律,由艾薩克·牛頓在1687年於《自然哲學的數學原理》一書中總結提出。 其中,第一定律說明了力的含義:力是改變物體運動狀態的原因;第二定律指出了力的作用效果:力使物體獲得加速度;第三定律揭示出力的本質:力是物體間的相互作用。
牛頓運動定律中的各定律互相獨立,且內在邏輯符合自洽一致性。其適用范圍是經典力學范圍,適用條件是質點、慣性參考系以及宏觀、低速運動問題。牛頓運動定律闡釋了牛頓力學的完整體系,闡述了經典力學中基本的運動規律,在各領域上應用廣泛。
(8)初二物理中牛頓建立了什麼擴展閱讀
牛頓運動定律是力學中重要的定律,是研究經典力學甚至物理學的基礎,闡述了經典力學中基本的運動規律。 該定律的適用范圍為由牛頓第一運動定律所給出慣性參考系,並使人們對物理問題的研究和物理量的測量有意義。
牛頓運動定律批駁了延續兩千多年的亞里士多德等人關於力的概念的錯誤觀點,為確立正確的力的概念奠定了基礎。 該定律最早科學地給出了慣性質量、力等經典力學中的幾個基本概念的定性定義,為由牛頓運動定律建立起來的質點力學體系原理奠定了概念基礎。
牛頓運動定律中的第一定律是其它原理的前提和基礎,奠定了經典力學的概念基礎,從而使它處於理論系統中第一個原理的前提地位。 第二定律和動量定理、功能原理等,確定了物體運動狀態的變化與外界作用的關系。 第三定律和動量守恆定律等,將有關物體的運動關聯起來;和萬有引力定律,開創了天體力學,使人們第一次對日、月、星辰的運行規律有了准確的了解;給出了對自然力的普遍陳述,揭示了兩物體相互作用的規律,為解決力學問題、轉換研究對象提供了理論基礎。
㈨ 牛頓發明了什麼
牛頓的相關發明有:
1、在力學上,牛頓闡明了角動量守恆的原理。
2、在光學上,牛頓發明了反射式望遠鏡,並基於對三棱鏡將白光發散成可見光譜的觀察,發展出了顏色理論。
3、牛頓系統地表述了冷卻定律,並研究了音速。
4、在數學上,牛頓與戈特弗里德·萊布尼茨分享了發展出微積分學的榮譽。
5、牛頓證明了廣義二項式定理,提出了「牛頓法」以趨近函數的零點,並為冪級數的研究作出了貢獻。
(9)初二物理中牛頓建立了什麼擴展閱讀:
1687年的巨作《自然哲學的數學原理》,開辟了大科學時代。牛頓是最有影響的科學家,被譽為「物理學之父」,他是經典力學基礎的牛頓運動定律的建立者。他發現的運動三定律和萬有引力定律,為近代物理學和力學奠定了基礎,他的萬有引力定律和哥白尼的日心說奠定了現代天文學的理論基礎。