A. 葯物中的物理常數都有哪些
物理常數包括相對密度、餾程、熔點、凝點、比旋度、折光率、黏度、吸收系數、碘值、皂化值和酸值等;測定結果不僅對葯品具有鑒別意義,也反映葯品的純度,是檢定葯品質量的主要指標之一。
B. 葯物分析物理常數的符號是ka么
Ka 體現出一種酸給出 H+ 的能力.
也就相當於酸鹼的強度.
酸給出H+的能力越強,酸性越強;反之酸給出H+的能力越弱,酸性越弱.
一對共軛酸鹼的 Ka ,Kb 之間有如下關系:
Ka · Kb = Kw ,Ka 和 Kb 之積為常數.
一對共軛酸鹼中,酸的 Ka 越大,則其共軛鹼的 Kb 越小,所以從酸性的次序也就可以推出其共軛鹼的強度次序.
C. 常用物理常數有哪些
真空中光速: c=299792458 米·秒-1
真空中磁導率: μ0= 4π×10-7 牛頓·安培-2
真空中介電常數: ε0= 8.854187817×10-12法拉·米-1
引力牛頓常數: G = 6.67259×10-11米3千克-1秒-2 普朗克常數: h=6.6260755×10-34焦耳·秒 ===電磁常數===
基本電荷量: e =1.60217733×10-19庫侖
量子磁通量: Φ0 =2.06783461×10-19韋伯
波爾磁子: μE=9.2740154×10-24焦耳·特斯拉-1
核磁子: μN=5.0507866×10-27焦耳·特斯拉-1
=== 物理化學常數 ===
阿伏加德羅常數: NA=6.021367×1023摩爾-1
原子質量常數: AMU=1.6605402×10-27千克
法拉第常數: 96485.309庫侖·摩爾-1
普適氣體常數: 8.314510焦耳·摩爾-1K-1
玻爾茲曼常數 : kE=1.380658×10-23焦耳·K-1
理想氣體摩爾體積:22.41410升·摩爾-1
斯特凡玻耳茲曼常數:σ=5.67051×10-8瓦特·米-2·K-4
第一輻射常數: 3.7417749×10-16瓦特·米2
第二輻射常數: 0.01438769米·K
===原子常數===
精細結構常數: α=7.29735308×10-3
里德伯常數: R=10973731.534 米-1
波爾半徑: a0=0.529177249×10-10米
哈特里能量: Eh=4.3597482×10-18焦耳
繞行量子: 3.63694807×10-4米2秒-1 ===電子常數, μ介子===
電子靜止質量: me=9.1093897×10-31千克
電子荷質比: e/me= -1.75881962×1011庫侖·千克-1
電子康普頓波長: 2.42631058×10-12米
經典電子半徑: re=2.81794092×10-15米
電子磁矩: μe=928.47701×10-26 焦耳·特斯拉-1
μ子靜止質量: μm=1.8835327×10-28千克
=== 質子常數 ===
質子靜止質量: mP=1.6726231×10-27千克
質子電子質量比: mP/me=1836.152701
質子康普頓波長: 1.32141002×10-15米
質子磁矩: μP=1.41060761×10-26 焦耳·特斯拉-1
質子回轉磁半徑: 26751.5255×104 弧度·秒-1特斯拉-1
=== 中子常數 ===
中子靜止質量: mn=1.6749286×10-27千克
中子康普頓波長: 1.31959110×10-15米
D. 什麼是基本物理常數
基本物理常數是物理領域的一些普適常數,主要是指原子物理學中常用的一些常數。最基本的有真空中光速с,普朗克常數h、基本電荷e、電子靜止質量me和阿伏伽德羅常數NA等。基本物理常數共有30多個,加上其組合量則有40—50個,它們之間有著深刻的聯系,並不是彼此獨立的。例如,電子的發現是通過對電子的荷質比e/m的測定獲得的;M.普朗克建立量子論的同時,發現了普朗克常數等。由此可見,基本物理常數出現於許多不同的物理現象之中,每一種物理現象的規律都同一種確定的常數有關。
物理學是一門實驗科學,它的理論和定律是建立在實驗測量的基礎上的。物理定律中各個物理量之間的關系,需要對每個物理量進行准確的測量。為此,物理學建立了嚴密的單位制體系,其中包括基本單位和導出單位。基本單位有嚴格的定義、科學的復現方法,並且在國際上可以進行彼此間的國際比對。上述物理量單位的定義、研究、保持、復現和比對均由各國的計量研究機構承擔,以保證物理量的精密測量在國際范圍內的統一。基本常數與微觀粒子有密切的關系。如基本電荷(e)、電子和質子的質量(me和mp)、里德伯常數(R∞)和精細結構常數(α)等,它們在基本常數的有關方程中是相互關聯的。
基本物理常數有很好的恆定性使其可以用於定義基本單位。長度和電單位已採用基本物理常數來重新定義或復現。隨著科學技術的迅速發展,將來會有更多的基本單位採用這種方法來重新定義或復現,即用相應的確定頻率和基本物理常數作為不變數來定義和復現基本單位。
物理學家和計量學家的目標是不斷探索新的更完善的不變數作為基本單位的定義。不變數越是恆定,才能覺察和探索自然界任何細微變化的規律。
E. 物理常數有哪些
引力常數 G = 6.672×10-11牛頓·米2/千克2 單元電荷 e = 1.602189×10-19庫侖
阿伏加德羅常數N0= 6.02204×1023個粒子數/摩爾 法拉第常數 F = 96484.6庫侖/摩爾
斯忒藩―玻爾茲曼常數σ= 5.6703×10-8瓦·米2/K4 氣體常數 R =8.3144焦耳/摩爾·K
真空的電容率庫侖/焦耳·米 光速 c = 2.99792458 ×108米/秒
真空的磁導率 牛頓/安2 精細結構常數α=7.297351×10-3=1/137
電子康普頓波長米 里德伯常數 R∞=1.096737318×107米-1
質子康普頓波長米 里德伯頻率 cR∞=3.2898420×1015赫茲
質子電子質量比值 里德伯能量 hcR∞=13.60580電子伏
玻爾茲曼常數 k = 1.38066×10-23 焦耳/K = 8.6174×10-5電子伏/K
庫侖常數 k = 1/ (4πε0) = 8.98755179×109牛頓·米2/庫侖2
電子靜質量 me=9.10953×10-31千克 =5.485802×10-4u(原子單位)=0.511003兆電子伏/c2
質子靜質量 mp=1.672648×10-27千克 = 1.00727674u = 938.280兆電子伏/c2
中子靜質量 mn=1.674954×10-27千克 = 1.00866501u = 939.573兆電子伏/c2
統一質量單位(原子單位)u =1.660566×10-27千克 =931.502兆電子伏/c2
玻爾半徑 a0=5.291771×10-11米
玻爾磁子 焦耳/特斯拉 = 5.788378×10-9電子伏/高斯
核磁子 焦耳/特斯拉 = 3.152452×10-12電子伏/高斯
普朗克常數 h = 6.62818×10-34 焦耳·秒 = 4.13570×10-15 電子伏·秒
1焦耳·秒 = 6.58217×10-16 電子伏·秒
F. 物理常數是指什麼
基本物理常數(fundamental constants of physics)是物理領域的一些普適常數。這些常數的准確數值,由於從理論上說與測量地點、測量時間及所用的測量儀器及材料均無關聯,因此稱為基本物理常數。
基本物理常數的發現和測量,在物理學的發展中起了很大的作用。縱觀物理學史可以看到,一些重大的物理理論常常與基本物理常數的發現或准確測定有著密切的聯系。如在經典理論或定律中的基本物理常數有:牛頓引力常數、法拉第常數、阿伏伽德羅常數等,它們與經典宏觀理論密切相關;當物理學從宏觀世界的研究步入微觀世界的探索時,仍然離不開基本物理常數。量子理論的建立開辟了微觀物理的新紀元,普朗克常數伴隨問世。隨著對原子和分子光譜的研究,出現了精細結構常數和里德伯常數。愛因斯坦相對論的出現,伴隨著一個十分重要的基本物理常數,即真空中的光速。光速不變原理是狹義相對論的兩個基本原理之一。在量子理論和相對論建立的過程中,所確立的基本物理常數的數目已遠大於原來經典物理中出現的常數。這充分說明,在微觀和近代物理學中,基本物理常數具有更加重要的作用
G. 物理常數包括哪些
物理常數有很多。
比如阿伏加德羅常數。法拉第常數。重力加速度。萬有引力常數。普朗克常數。中子靜止質量。等等
望採納,謝謝。
H. 葯品質量標准中的物理常數測定項目有哪些
葯物的物理常數是其固有的物理特性,其測定結果對葯品具有鑒別意義,同時也可反映葯品的純度。葯品質量標准「性狀」項下收載的物理常數包括:熔點、相對密度、比旋度、折光率、黏度、吸收系數、凝點、餾程、碘值、皂化值和酸值等。
I. 常用的葯物分析方法有哪些
1、重量分析法
重量分析法是葯物分析檢測中化學分析的基礎方法,指的是稱取一定重量的試樣,用適當的方法將被測組分與試樣中其他組分分離後,轉化成一定的稱量形式,稱重,從而求得該組分含量的方法。根據分離方法的不同,重量分析法通常分為沉澱重量法、揮發重量法、提取重量法和電解重量法,其優點是直接採用分析天平稱量的數據來獲得分析結果,在分析過程中不需要標准溶液和基準物質,也就不需要容量器皿引入數據,這樣引入的誤差較小,因此分析結果准確度較高。
2、酸鹼滴定法
酸鹼滴定法在葯品分析檢測中的應用十分廣泛,是將一種已知其准確濃度的試劑溶液滴加到被測物質的溶液中,直到化學反應完全時為止,然後根據所用試劑溶液的濃度和體積可以求得被測組分的含量。作為一種化學分析方法,酸鹼滴定法在生產實際中應用非常廣泛。許多工業品如燒鹼、純鹼、硫酸銨和碳酸氫銨等,一般都採用酸鹼滴定法測定其主要成分的含量。食品工業中的原料、中間產品和成品的分析等也常用到酸鹼滴定法。