『壹』 gps用了哪些物理學成果
電磁學 通信 信號 相對論 計算機技術(數字電路 集成電路)。。。
『貳』 GPS導航的原理是什麼
GPS導航的基本原理是根據高速運動的衛星瞬間位置作為已知的起算數據,採用空間距離後方交會的方法,確定待測點的位置。
GPS導航儀的運行依賴全球定位系統,簡稱GPS,它是由空間衛星、地面監控和用戶接收等三大部分組成,能夠幫助用戶准確定位當前位置,並且根據既定的目的地計算行程,GPS導航儀通過地圖顯示和語音提示兩種方式引導用戶行至目的地的儀器,廣泛用於交通,旅遊等方面。
(2)gps什麼物理成果擴展閱讀:
GPS導航的功能
1、空間部分
GPS的空間部分是由24顆衛星組成,它位於距地表20200km的上空,運行周期為12h。衛星均勻分布在6個軌道面上,軌道傾角為55°。衛星的分布使得在全球任何地方、任何時間都可觀測到4顆以上的衛星,並能在衛星中預存導航信息,GPS的衛星因為大氣摩擦等問題,隨著時間的推移,導航精度會逐漸降低。
2、轉向語音提示
車輛只要遇到前方路口或者轉彎,車載GPS語音系統提示用戶轉向等語音提示。這樣可以避免車主走彎路。它能夠提供全程語音提示,駕車者無需觀察起顯示界面就能實現導航的全過程,使得行車更加安全舒適。
3、顯示航跡
GPS帶有航跡記錄功能,可以記錄下用戶您車輛行駛經過的路線,小於10米的精度,甚至能顯示兩個車道的區別。用戶可以啟動它的返程功能,找到路線回家。
4、測速
通過GPS對衛星信號的接收計算,可以測算出行駛的具體速度,比一般的里程錶准確很多。
『叄』 GPS工作原理是什麼啊
GPS的工作原理,簡單地說來,是利用我們熟知的幾何與物理上一些基本原理。首先我們假定衛星的位置為已知,而我們又能准確測定我們所在地點A至衛星之間的距離,那麼A點一定是位於以衛星為中心、所測得距離為半徑的圓球上。進一步,我們又測得點A至另一衛星的距離,則A點一定處在前後兩個圓球相交的圓環上。我們還可測得與第三個衛星的距離,就可以確定A點只能是在三個圓球相交的兩個點上。根據一些地理知識,可以很容易排除其中一個不合理的位置。當然也可以再測量A點至另一個衛星的距離,也能精確進行定位。 以上所說,要實現精確定位,要解決兩個問題:
其一是要確知衛星的准確位置;
其二是要准確測定衛星至地球上我們所在地點的距離。下面我們看看怎樣來做到這點。如何測定衛星至用戶的距離我們過去都學過這樣的公式:時間X速度=距離。我們也從物理學中知道,電波傳播的速度是每秒鍾三十萬公里,所以我們只要知道衛星信號傳到我們這里的時間,就能利用速度乘時間等於距離這個公式,來求得距離。所以,問題就歸結為測定信號傳播的時間。要准確測定信號傳播時間,要解決兩方面的問題。一個是時間基準問題。就是說要有一個精確的時鍾。就好比我們日常量一張桌子的長度,要用一把尺子。假如尺子本身就不標准,那量出來的長度就不準。另一個就是要解決測量的方法問題。時間基準問題 GPS系統在每顆衛星上裝置有十分精密的原子鍾,並由監測站經常進行校準。衛星發送導航信息,同時也發送精確時間信息。GPS接收機接收此信息,使與自身的時鍾同步,就可獲得准確的時間。所以,GPS接收機除了能准確定位之外,還可產生精確的時間信息。測定衛星信號傳輸時間的方法 為了避免採用過多的技術術語,我們先作一個不太恰當的比喻。我們在所處的地點和衛星上同時啟動錄音機來播放「東方紅」樂曲,那麼,我們應該能聽到一先一後兩支「東方紅」的曲子(實際上,衛星上播放的曲子,我們不可能聽見,只是假想能夠聽到),但一定是不合拍的。為了使兩者合拍,我們延遲啟動地上錄音機的時間。當我們聽到兩支曲子合拍時,啟動錄音機所延遲的時間就等於曲子從衛星傳送到地上的時間。當然,電波比聲波速度高得多,電波也不能用耳朵來接收。所以,實際上我們播送的不是「東方紅」樂曲,而是一段叫做偽隨機碼的二進制電碼。延遲GPS接收機產生的偽隨機碼,使與接收到衛星傳來的碼字同步,測得的延遲時間就是衛星信號傳到GPS接收機的時間。至此,我們也就解決了測定衛星至用戶的距離。當然,上面說的都還是十分理想的情況。實際情況比上面說的要復雜得多,所以我們還要採取一些對策。例如:電波傳播的速度,並不總是一個常數。在通過電離層中電離子和對流層中水氣的時候,會產生一定的延遲。一般我們這可以根據監測站收集的氣象數據,再利用典型的電離層和對流層模型來進行修正。還有,在電波傳送到接收機天線之前,還會產生由於各種障礙物與地面折射和反射產生的多徑效應。這在設計GPS接收機時,要採取相應措施。當然,這要以提高GPS接收機的成本為代價。 原子鍾雖然十分精確,但也不是一點誤差也沒有。GPS接收機中的時鍾,不可能象在衛星上那樣,設置昂貴的原子鍾,所以就利用測定第四顆衛星,來校準GPS接收機的時鍾。我們前面提到,每測量三顆衛星可以定位一個點。利用第四顆衛星和前面三顆衛星的組合,可以測得另一些點。理想情況下,所有測得的點,都應該重合。但實際上,並不完全重合。利用這一點,反過來可以校準GPS接收機的時鍾。測定距離時選用衛星的相互幾何位置,對測定的誤差也不同。為了精確的定位,可以多測一些衛星,選取幾何位置相距較遠的衛星組合,測得誤差要小。在我們提到測量誤差時,還有一點要提到,就是美國的SA政策。美國政府在GPS設計中,計劃提供兩種服務。一種為標準定位服務(SPS),利用粗碼(C/A)定位,精度約為100m,提供給民用。另一種為精密定位服務(PPS),利用精碼(P碼)定位,精度達到10m,提供給軍方和特許民間用戶使用。由於多次試驗表明,SPS的定位精度已高於原設計,美國政府出於對自身安全的考慮,對民用碼進行了一種稱為「選擇可用性SA(Selective Availability)」的干擾,以確保其軍用系統具有最佳的有效性。由於SA通過衛星在導航電文中隨機加入了誤差信息,使得民用信號C/A碼的定位精度降至二維均方根誤差在100米左右。採用差分GPS技術(DGPS),可消除以上所提到大部分誤差,以及由於SA所造成的干擾,從而提高衛星導航定位的總體精度,使系統誤差達到10到15米之內。GPS技術的錯差在GPS定位過程中,存在三部分誤差。一部分是對每一個用戶接收機所共有的,例如:衛星鍾誤差、星歷誤差、電離層誤差、對流層誤差等;第二部分為不能由用戶測量或由校正模型來計算的傳播延遲誤差;第三部分為各用戶接收機所固有的誤差,例如內部雜訊、通道延遲、多徑效應等。利用差分技術第一部分誤差可完全消除,第二部分誤差大部分可以消除,這和基準接收機至用戶接收機的距離有關。第三部分誤差則無法消除,只能靠提高GPS接收機本身的技術指標。對美國SA政策帶來的誤差,實質上它是人為地增大前兩部分誤差,所以差分技術也相應克服SA政策帶來的影響。差分GPS技術消除公共誤差原理假如在距離用戶500公里之內,設置一部基準接收機。它和用戶接收機同時接收某一衛星的信號,那麼我們可以認為信號傳至兩部接收機所途經電離層和對流層的情況基本是相同,故所產生的延遲也相同。由於接收同一顆衛星,故星歷誤差、衛星時鍾誤差也相同。若我們通過其它方法確知所處的三維座標(也可以用精度很高的GPS接收機來實現,其價格比一般GPS接收機高得多),那就可從測得偽距中,推算其中的誤差。將此誤差數據傳送給用戶,用戶就可從測量所得的偽距中扣除誤差,就能達到更精確的定位。
『肆』 GPS的工作原理是
原理:
GPS導航系統的基本原理是測量出已知位置的衛星到用戶接收機之間的距離,然後綜合多顆衛星的數據就可知道接收機的具體位置。要達到這一目的,衛星的位置可以根據星載時鍾所記錄的時間在衛星星歷中查出。
而用戶到衛星的距離則通過記錄衛星信號傳播到用戶所經歷的時間,再將其乘以光速得到(由於大氣層電離層的干擾,這一距離並不是用戶與衛星之間的真實距離,而是偽距(PR,):當GPS衛星正常工作時,會不斷地用1和0二進制碼元組成的偽隨機碼(簡稱偽碼)發射導航電文。
GPS系統使用的偽碼一共有兩種,分別是民用的C/A碼和軍用的P(Y)碼。C/A碼頻率1.023MHz,重復周期一毫秒,碼間距1微秒,相當於300m;
P碼頻率10.23MHz,重復周期266.4天,碼間距0.1微秒,相當於30m。而Y碼是在P碼的基礎上形成的,保密性能更佳。導航電文包括衛星星歷、工作狀況、時鍾改正、電離層時延修正、大氣折射修正等信息。
它是從衛星信號中解調制出來,以50b/s調制在載頻上發射的。導航電文每個主幀中包含5個子幀每幀長6s。前三幀各10個字碼;每三十秒重復一次,每小時更新一次。
後兩幀共15000b。導航電文中的內容主要有遙測碼、轉換碼、第1、2、3數據塊,其中最重要的則為星歷數據。
當用戶接受到導航電文時,提取出衛星時間並將其與自己的時鍾做對比便可得知衛星與用戶的距離,再利用導航電文中的衛星星歷數據推算出衛星發射電文時所處位置,用戶在WGS-84大地坐標系中的位置速度等信息便可得知。
可見GPS導航系統衛星部分的作用就是不斷地發射導航電文。然而,由於用戶接受機使用的時鍾與衛星星載時鍾不可能總是同步,所以除了用戶的三維坐標x、y、z外,還要引進一個Δt即衛星與接收機之間的時間差作為未知數,然後用4個方程將這4個未知數解出來。
所以如果想知道接收機所處的位置,至少要能接收到4個衛星的信號。GPS接收機可接收到可用於授時的准確至納秒級的時間信息;
用於預報未來幾個月內衛星所處概略位置的預報星歷;用於計算定位時所需衛星坐標的廣播星歷,精度為幾米至幾十米(各個衛星不同,隨時變化);以及GPS系統信息,如衛星狀況等。
GPS接收機對碼的量測就可得到衛星到接收機的距離,由於含有接收機衛星鍾的誤差及大氣傳播誤差,故稱為偽距。對 CA碼測得的偽距稱為CA碼偽距,精度約為20米左右,對P碼測得的偽距稱為P碼偽距,精度約為2米左右。
GPS接收機對收到的衛星信號,進行解碼或採用其它技術,將調制在載波上的信息去掉後,就可以恢復載波。嚴格而言,載波相位應被稱為載波拍頻相位,它是收到的受多普勒頻 移影響的衛星信號載波相位與接收機本機振盪產生信號相位之差。
一般在接收機鍾確定的歷元時刻量測,保持對衛星信號的跟蹤,就可記錄下相位的變化值,但開始觀測時的接收機和衛星振盪器的相位初值是不知道的,起始歷元的相位整數也是不知道的,即整周模糊度,只能在數據處理中作為參數解算。
相位觀測值的精度高至毫米,但前提是解出整周模糊度,因此只有在相對定位、並有一段連續觀測值時才能使用相位觀測值,而要達到優於米級的定位 精度也只能採用相位觀測值。
按定位方式,GPS定位分為單點定位和相對定位(差分定位)。單點定位就是根據一台接收機的觀測數據來確定接收機位置的方式,它只能採用偽距觀測量,可用於車船等的概略導航定位。
相對定位(差分定位)是根據兩台以上接收機的觀測數據來確定觀測點之間的相對位置的方法,它既可採用偽距觀測量也可採用相位觀測量,大地測量或工程測量均應採用相位觀測值進行相對定位。
在GPS觀測量中包含了衛星和接收機的鍾差、大氣傳播延遲、多路徑效應等誤差,在定位計算時還要受到衛星廣播星歷誤差的影響,在進行相對定位時大部分公共誤差被抵消或削弱,因此定位精度將大大提高,雙頻接收機可以根據兩個頻率的觀測量抵消大氣中電離層誤差的主要部分,在精度要求高,接收機間距離較遠時(大氣有明顯差別),應選用雙頻接收機。
GPS定位的基本原理是根據高速運動的衛星瞬間位置作為已知的起算數據,採用空間距離後方交會的方法,確定待測點的位置。
假設t時刻在地面待測點上安置GPS接收機,可以測定GPS信號到達接收機的時間△t,再加上接收機所接收到的衛星星歷等其它數據可以確定以下四個方程式。
(4)gps什麼物理成果擴展閱讀:
GPS 設置
GPS 拿到手,如果是新機器要定位,已經提到了。另外,還有一些設置,常用的有坐標系、地圖基準、參考方位、公制/英制、數據介面格式什麼的。
坐標系:常用的是 LAT/LON 和 UTM。LAT/LON 就是經緯度表示,UTM 在這里就不管他了。
地圖基準:一般用 WGS84。
參考方位:實際上有兩個北,磁北和真北呀(簡稱 CB 和 ZBY)。指南針指的北就是磁北,北斗星指的北就是真北。兩者在不同地區相差的角度不一樣的,地圖上的北是真北。
公制/英制:自選。
數據介面格式:這得細談談。GPS
可以輸出實時定位數據讓其他的設備使用,這就牽扯到了數據交換協議。
幾乎所有的 GPS 接收機都遵循美國國家海洋電子協會(National
Marine Electronics
Association)所指定的標准規格,這一標准制訂所有航海電子儀器間的通訊標准,其中包含傳輸資料的格式以及傳輸資料的通訊協議。N
MEA
協議有 0180、0182 和 0183 三種,0183 可以認為是前兩種的超集,現在正廣泛的使用。
經緯度的表示
再講講數據表示。一般從 GPS 得到的數據是經緯度。經緯度有多種表示方法。
1.)ddd.ddddd, 度.度的十進制小數部分(5 位)
2.)ddd.mm.mmm,度.分.分的十進制小數部分(3 位)
3.) ddd.mm.ss, 度.分.秒
不是所有的 GPS 都有這幾種顯示, GPS315 只能選擇第二種和第三種。
在 LAT/LON 坐標系裡,緯度是平均分配的,從南極到北極一共 180 個緯度。地球直徑 12756KM,周長就是12756*PI,一個緯度是 12756×PI /360 = 111.133 KM (不精確)。
經度就不是這樣,只有在緯度為零的時候,就是在赤道上,一個經度之間的距離是 111.319KM,經線隨著緯度的增加,距離越來越近,最後交匯於南北極。所以經度的單位距離和確定經度所在的緯度是密切相關的,簡單的公式是:
經度 1°長度=111.413cosφ,在緯度φ處。 (公式不精確)
參考資料:網路----GPS
『伍』 衛星定位是依據什麼原理設計出來的成果如何實現技術落實成真 數學方面怎麼和物理聯系整合在一起
衛星定位是依據什麼原理設計出來的成果?如何實現技術落實成真? 數學方面怎麼和物理聯系整合在一起?
衛星定位系統是一種使用衛星對某物進行准確定位的技術,它從最初的定位精度低、不能實時定位、難以提供及時的導航服務,發展到現如今的高精度GPS全球定位系統,實現了在任意時刻、地球上任意一點都可以同時觀測到4顆衛星,以便實現導航、定位、授時等功能。
衛星定位可以用來引導飛機、船舶、車輛、以及個人,安全、准確地沿著選定的路線,准時到達目的地。衛星定位還可以應用到手機追尋等功能中。
『陸』 GPS是什麼
GPS是英文Global Positioning System(全球定位系統)的簡稱。
全球定位系統由三部分構成:(1)地面控制部分,由主控站(負責管理、協調整個地面控制系統的 工作)、地面天線(在主控站的控制下,向衛星注入尋電文)、監測站(數據自動收集中心)和通訊輔助系統(數據傳輸)組成;(2)空間部分,由24顆衛星組成,分布在6個道平面上;(3)用戶裝置部分, 主要由GPS接收機和衛星天線組成。
全球定位系統的主要特點:(1)全天候;(2) 全球覆蓋;(3)三維定速定時高精度;(4)快速省時高效率:(5)應用廣泛多功能。
全球定位系統的主要用途:(1)陸地應用,主要包括車輛導航、應急反應、大氣物理觀測、地球物理資源勘探、工程測量、變形監測、地殼運動監測、 市政規劃控制等;(2)海洋應用,包括遠洋船最佳航程航線測定、船隻實時調度與導航、海洋救援、海洋探寶、水文地質測量以及海洋平台定位、海平面升降監測等;(3)航空航天應用,包括飛機導航、航空遙 感姿態控制、低軌衛星定軌、導彈制導、航空救援和載人航天器防護探測等。
GPS衛星接收機種類很多,根據型號分為測地型、全站型、定時型、手持型、集成型;根據用途分為車載式、船載式、機載式、星載式、彈載式。
經過20餘年的實踐證明,GPS系統是一個高精度、全天候和全球性的無線電導航、定位和定時的多功能系統。 GPS技術已經發展成為多領域、多模式、多用途、多機型的國際性高新技術產業。
GPS原理
24顆GPS衛星在離地面1萬2千公里的高空上,以12小時的周期環繞地球運行,使得在任意時刻,在地面上的任意一點都可以同時觀測到4顆以上的衛星。
由於衛星的位置精確可知,在GPS觀測中,我們可得到衛星到接收機的距離,利用三維坐標中的距離公式,利用3顆衛星,就可以組成3個方程式,解出觀測點的位置(X,Y,Z)。考慮到衛星的時鍾與接收機時鍾之間的誤差,實際上有4個未知數,X、Y、Z和鍾差,因而需要引入第4顆衛星,形成4個方程式進行求解,從而得到觀測點的經緯度和高程。
事實上,接收機往往可以鎖住4顆以上的衛星,這時,接收機可按衛星的星座分布分成若干組,每組4顆,然後通過演算法挑選出誤差最小的一組用作定位,從而提高精度。
舉個例子,當我們和小夥伴約好去某個地點玩的時候,熟悉的地方,直接開車過去就行了,但是如果那個地點你不知道怎麼過去,就可以通過嵌入了GPS定位模塊SKG12BL的車載導航來實現定位和導航。
『柒』 手機中常用的GPS定位用到了下列哪項物理學成果
相對論,全球定位系統(GPS)利用衛星可以確定接收者的位置,准確度可達2m以內。在定位過程中,狹義相對論的時鍾延緩效應、廣義相對論的引力效應是必須加以考慮的。
『捌』 GPS的定義是什麼
GPS衛星導航
(Global Positioning System)全球定位系統(GPS)是20世紀70年代由美國陸海空三軍聯合研製的新一代空間衛星導航定位系統 。其主要目的是為陸、海、空三大領域提供實時、 全天候和全球性的導航服務,並用於情報收集、核爆監測和應急通訊等一些軍事目的,是美國獨霸全球戰略的重要組成。經過20餘年的研究實驗,耗資300億美元,到1994年3月,全球覆蓋率高達98%的24顆GPS衛星星座己布設完成。
全球定位系統由三部分構成:(1)地面控制部分,由主控站(負責管理、協調整個地面控制系統的 工作)、地面天線(在主控站的控制下,向衛星注入尋電文)、監測站(數據自動收集中心)和通訊輔助系統(數據傳輸)組成;(2)空間部分,由24顆衛星組成,分布在6個道平面上;(3)用戶裝置部分, 主要由GPS接收機和衛星天線組成。
全球定位系統的主要特點:(1)全天候;(2) 全球覆蓋;(3)三維定速定時高精度;(4)快速省時高效率:(5)應用廣泛多功能。
全球定位系統的主要用途:(1)陸地應用,主要包括車輛導航、應急反應、大氣物理觀測、地球物理資源勘探、工程測量、變形監測、地殼運動監測、 市政規劃控制等;(2)海洋應用,包括遠洋船最佳航程航線測定、船隻實時調度與導航、海洋救援、海洋探寶、水文地質測量以及海洋平台定位、海平面升降監測等;(3)航空航天應用,包括飛機導航、航空遙 感姿態控制、低軌衛星定軌、導彈制導、航空救援和載人航天器防護探測等。
GPS衛星接收機種類很多,根據型號分為測地型、全站型、定時型、手持型、集成型;根據用途分為車載式、船載式、機載式、星載式、彈載式。
經過20餘年的實踐證明,GPS系統是一個高精度、全天候和全球性的無線電導航、定位和定時的多功能系統。 GPS技術已經發展成為多領域、多模式、多用途、多機型的國際性高新技術產業。
GPS原理
24顆GPS衛星在離地面1萬2千公里的高空上,以12小時的周期環繞地球運行,使得在任意時刻,在地面上的任意一點都可以同時觀測到4顆以上的衛星。
由於衛星的位置精確可知,在GPS觀測中,我們可得到衛星到接收機的距離,利用三維坐標中的距離公式,利用3顆衛星,就可以組成3個方程式,解出觀測點的位置(X,Y,Z)。考慮到衛星的時鍾與接收機時鍾之間的誤差,實際上有4個未知數,X、Y、Z和鍾差,因而需要引入第4顆衛星,形成4個方程式進行求解,從而得到觀測點的經緯度和高程。
事實上,接收機往往可以鎖住4顆以上的衛星,這時,接收機可按衛星的星座分布分成若干組,每組4顆,然後通過演算法挑選出誤差最小的一組用作定位,從而提高精度。
由於衛星運行軌道、衛星時鍾存在誤差,大氣對流層、電離層對信號的影響,以及人為的SA保護政策,使得民用GPS的定位精度只有100米。為提高定位精度,普遍採用差分GPS(DGPS)技術,建立基準站(差分台)進行GPS觀測,利用已知的基準站精確坐標,與觀測值進行比較,從而得出一修正數,並對外發布。接收機收到該修正數後,與自身的觀測值進行比較,消去大部分誤差,得到一個比較准確的位置。實驗表明,利用差分GPS,定位精度可提高到5米。
GPS前景
由於GPS技術所具有的全天候、高精度和自動測量的特點,作為先進的測量手段和新的生產力,已經融入了國民經濟建設、國防建設和社會發展的各個應用領域。
隨著冷戰結束和全球經濟的蓬勃發展,美國政府宣布2000年至2006期間,在保證美國國家安全不受威脅的前提下,取消SA政策,GPS民用信號精度在全球范圍內得到改善,利用C/A碼進行單點定位的精度由100米提高到20米,這將進一步推動GPS技術的應用,提高生產力、作業效率、科學水平以及人們的生活質量,刺激GPS市場的增長。據有關專家預測,在美國,單單是汽車GPS導航系統,2000年後的市場將達到30億美元,而在我國,汽車導航的市場也將達到50億元人民幣。可見,GPS技術市場的應用前景非常可觀。
『玖』 GPS的原理是什麼如何能夠探測和干擾它的信號
GPS的工作原理,簡單地說來,是利用我們熟知的幾何與物理上一些基本原理。首先我們假定衛星的位置為已知,而我們又能准確測定我們所在地點A至衛星之間的距離,那麼A點一定是位於以衛星為中心、所測得距離為半徑的圓球上。進一步,我們又測得點A至另一衛星的距離,則A點一定處在前後兩個圓球相交的圓環上。我們還可測得與第三個衛星的距離,就可以確定A點只能是在三個圓球相交的兩個點上。根據一些地理知識,可以很容易排除其中一個不合理的位置。當然也可以再測量A點至另一個衛星的距離,也能精確進行定位。 以上所說,要實現精確定位,要解決兩個問題:
其一是要確知衛星的准確位置;
其二是要准確測定衛星至地球上我們所在地點的距離。下面我們看看怎樣來做到這點。
GPS導航示意圖
怎樣確知衛星的准確位置
要確知衛星所處的准確位置。首先,要通過深思熟慮,優化設計衛星運行軌道,而且,要由監測站通過各種手段,連續不斷監測衛星的運行狀態,適時發送控制指令,使衛星保持在正確的運行軌道。將正確的運行軌跡編成星歷,注入衛星,且經由衛星發送給GPS接收機。正確接收每個衛星的星歷,就可確知衛星的准確位置。
這個問題解決了,接下來就要解決准確測定地球上某用戶至衛星的距離。衛星是遠在地球上層空間,又是處在運動之中,我們不可能象在地上量東西那樣用尺子來量,那麼又是如何來做的呢?
如何測定衛星至用戶的距離
我們過去都學過這樣的公式:時間X速度=距離。我們也從物理學中知道,電波傳播的速度是每秒鍾三十萬公里,所以我們只要知道衛星信號傳到我們這里的時間,就能利用速度乘時間等於距離這個公式,來求得距離。所以,問題就歸結為測定信號傳播的時間。
要准確測定信號傳播時間,要解決兩方面的問題。一個是時間基準問題。就是說要有一個精確的時鍾。就好比我們日常量一張桌子的長度,要用一把尺子。假如尺子本身就不標准,那量出來的長度就不準。另一個就是要解決測量的方法問題。
時間基準問題
GPS系統在每顆衛星上裝置有十分精密的原子鍾,並由監測站經常進行校準。衛星發送導航信息,同時也發送精確時間信息。GPS接收機接收此信息,使與自身的時鍾同步,就可獲得准確的時間。所以,GPS接收機除了能准確定位之外,還可產生精確的時間信息。
測定衛星信號傳輸時間的方法
為了避免採用過多的技術術語,我們先作一個不太恰當的比喻。我們在所處的地點和衛星上同時啟動錄音機來播放「東方紅」樂曲,那麼,我們應該能聽到一先一後兩支「東方紅」的曲子(實際上,衛星上播放的曲子,我們不可能聽見,只是假想能夠聽到),但一定是不合拍的。為了使兩者合拍,我們延遲啟動地上錄音機的時間。當我們聽到兩支曲子合拍時,啟動錄音機所延遲的時間就等於曲子從衛星傳送到地上的時間。當然,電波比聲波速度高得多,電波也不能用耳朵來接收。所以,實際上我們播送的不是「東方紅」樂曲,而是一段叫做偽隨機碼的二進制電碼。延遲GPS接收機產生的偽隨機碼,使與接收到衛星傳來的碼字同步,測得的延遲時間就是衛星信號傳到GPS接收機的時間。至此,我們也就解決了測定衛星至用戶的距離。當然,上面說的都還是十分理想的情況。實際情況比上面說的要復雜得多,所以我們還要採取一些對策。例如:電波傳播的速度,並不總是一個常數。在通過電離層中電離子和對流層中水氣的時候,會產生一定的延遲。一般我們這可以根據監測站收集的氣象數據,再利用典型的電離層和對流層模型來進行修正。還有,在電波傳送到接收機天線之前,還會產生由於各種障礙物與地面折射和反射產生的多徑效應。這在設計GPS接收機時,要採取相應措施。當然,這要以提高GPS接收機的成本為代價。 原子鍾雖然十分精確,但也不是一點誤差也沒有。GPS接收機中的時鍾,不可能象在衛星上那樣,設置昂貴的原子鍾,所以就利用測定第四顆衛星,來校準GPS接收機的時鍾。我們前面提到,每測量三顆衛星可以定位一個點。利用第四顆衛星和前面三顆衛星的組合,可以測得另一些點。理想情況下,所有測得的點,都應該重合。但實際上,並不完全重合。利用這一點,反過來可以校準GPS接收機的時鍾。測定距離時選用衛星的相互幾何位置,對測定的誤差也不同。為了精確的定位,可以多測一些衛星,選取幾何位置相距較遠的衛星組合,測得誤差要小。在我們提到測量誤差時,還有一點要提到,就是美國的SA政策。美國政府在GPS設計中,計劃提供兩種服務。一種為標準定位服務(SPS),利用粗碼(C/A)定位,精度約為100m,提供給民用。另一種為精密定位服務(PPS),利用精碼(P碼)定位,精度達到10m,提供給軍方和特許民間用戶使用。由於多次試驗表明,SPS的定位精度已高於原設計,美國政府出於對自身安全的考慮,對民用碼進行了一種稱為「選擇可用性SA(Selective Availability)」的干擾,以確保其軍用系統具有最佳的有效性。由於SA通過衛星在導航電文中隨機加入了誤差信息,使得民用信號C/A碼的定位精度降至二維均方根誤差在100米左右。
採用差分GPS技術(DGPS),可消除以上所提到大部分誤差,以及由於SA所造成的干擾,從而提高衛星導航定位的總體精度,使系統誤差達到10到15米之內。
GPS技術的錯差
在GPS定位過程中,存在三部分誤差。一部分是對每一個用戶接收機所共有的,例如:衛星鍾誤差、星歷誤差、電離層誤差、對流層誤差等;第二部分為不能由用戶測量或由校正模型來計算的傳播延遲誤差;第三部分為各用戶接收機所固有的誤差,例如內部雜訊、通道延遲、多徑效應等。利用差分技術第一部分誤差可完全消除,第二部分誤差大部分可以消除,這和基準接收機至用戶接收機的距離有關。第三部分誤差則無法消除,只能靠提高GPS接收機本身的技術指標。對美國SA政策帶來的誤差,實質上它是人為地增大前兩部分誤差,所以差分技術也相應克服SA政策帶來的影響。
差分GPS技術消除公共誤差原理
假如在距離用戶500公里之內,設置一部基準接收機。它和用戶接收機同時接收某一衛星的信號,那麼我們可以認為信號傳至兩部接收機所途經電離層和對流層的情況基本是相同,故所產生的延遲也相同。由於接收同一顆衛星,故星歷誤差、衛星時鍾誤差也相同。若我們通過其它方法確知所處的三維座標(也可以用精度很高的GPS接收機來實現,其價格比一般GPS接收機高得多),那就可從測得偽距中,推算其中的誤差。將此誤差數據傳送給用戶,用戶就可從測量所得的偽距中扣除誤差,就能達到更精確的定位。
GPS數據處理軟體是GPS用戶系統的重要部分,其主要功能是對GPS接收機獲取的衛星測量記錄數據進行「粗加工」、「預處理」,並對處理結果進行平差計算、坐標轉換及分析綜合處理。解得測站的三維坐標,測體的坐標、運動速度、方向及精確時刻。
GPS定位技術是正在發展中的高新技術,數據處理技術也處在不斷更新之中,各系列GPS接收機製造廠家研製的處理軟體也各具特色。 全球定位系統GPS是近年來開發的最具有開創意義的高新技術之一,其全球性、全能性、全天候性的導航定位、定時、測速優勢必然會在諸多領域中得到越來越廣泛的應用。在發達國家,GPS技術已經開始應用於交通運輸和道路工程之中。目前,GPS技術在我國道路工程和交通管理中的應用還剛剛起步,相信隨著我國經濟的發展,高等級公路的快速修建和GPS技術應用研究的逐步深入,其在道路工程中的應用也會更加廣泛和深入,並發揮更大的作用。 GPS導航系統與電子地圖、無線電通信網路及計算機車輛管理信息系統相結合,可以實現車輛跟蹤和交通管理等許多功能,這些功能包括: 車輛跟蹤 利用GPS和電子地圖可以實時顯示出車輛的實際位置,並任意放大、縮小、還原、換圖;可以隨目標移動,使目標始終保持在屏幕上;還可實現多窗口、多車輛、多屏幕同時跟蹤。利用該功能可對重要車輛和貨物進行跟蹤運輸。
提供出行路線規劃和導航 提供出行路線規劃是汽車導航系統的一項重要輔助功能,它包括自動線路規劃和人工線路設計。自動線路規劃是由駕駛者確定起點和目的地,由計算機軟體按要求自動設計最佳行駛路線,包括最快的路線、最簡單的路線、通過高速公路路段次數最少的路線等的計算。人工線路設計是由駕駛者根據自己的目的地設計起點、終點和途經點等,自動建立線路庫。線路規劃完畢後,顯示器能夠在電子地圖上顯示設計線路,並同時顯示汽車運行路徑和運行方法。
信息查詢 為用戶提供主要物標,如旅遊景點、賓館、醫院等資料庫,用戶能夠在電子地圖上根據需要進行查詢。查詢資料可以文字、語言及圖象的形式顯示,並在電子地圖上顯示其位置。同時,監測中心可以利用監測控制台對區域內的任意目標所在位置進行查詢,車輛信息將以數字形式在控制中心的電子地圖上顯示出來。
(4)話務指揮
指揮中心可以監測區域內車輛運行狀況,對被監控車輛進行合理調度。指揮中心也可隨時與被跟蹤目標通話,實行管理。
(5)緊急援助
通過GPS定位和監控管理系統可以對遇有險情或發生事故的車輛進行緊急援助。監控台的電子地圖顯示求助信息和報警目標,規劃最優援助方案,並以報警聲光提醒值班人員進行應急處理。
GPS技術在汽車導航和交通管理工程中的研究與應用目前在中國剛剛起步,而國外在這方面的研究早已開始並已取得了一定的成果。加拿大卡爾加里大學設計了一種動態定位系統,該系統包括一台捷聯式慣性系統,兩台GPS接收機和一台微機,可測定已有道路的線形參數,為道路管理系統服務。美國研製了應用於城市的道路交通管理系統,該系統利用GPS和GIS建立道路資料庫,在資料庫中包含有各種現時的數據資料,如道路的准確位置、路面狀況、沿路設施等,該系統於1995年正式運行,為城市道路交通管理起到重要作用。近些年來國外研製了各種用於車輛誘導的系統,其中車輛位置的實時確定以往主要依據慣性測量系統以及車輪感測器,隨著GPS的發展和所顯示出的優越性,有取代前兩種方法的趨勢。用於城市車輛誘導的GPS定位一般是在城市中設立一個基準站,車載GPS實時接收 基準站發射的信息,經過差分處理便可計算出實時位置,把目前所處位置與所要到達的目標在道路網中進行優化計算,便可在道路電子地圖上顯示出到達目標的最優化路線,為公安、消防、搶修、急救等車輛服務