導航:首頁 > 物理學科 > 什麼是生態物理學

什麼是生態物理學

發布時間:2022-08-02 11:44:05

① 什麼是生態系統

生態系統的概念是由英國生態學家坦斯利(A.G.Tansley, 1871—1955)在1935年提出來的,他認為,「生態系統的基本概念是物理學上使用的『系統』整體。這個系統不僅包括有機復合體,而且包括形成環境的整個物理因子復合體」。「我們對生物體的基本看法是,必須從根本上認識到,有機體不能與它們的環境分開,而是與它們的環境形成一個自然系統。」「這種系統是地球表面上自然界的基本單位,它們有各種大小和種類。」

隨著生態學的發展,人們對生態系統的認識不斷深入。20世紀40年代,美國生態學家林德曼(R.L.Lindeman)在研究湖泊生態系統時,受到我國「大魚吃小魚,小魚吃蝦米,蝦米吃泥巴」這一諺語的啟發,提出了食物鏈的概念。他又受到「一山不能存二虎的啟發,提出了生態金字塔的理論,使人們認識到生態系統的營養結構和能量流動的特點。今天,人們對生態系統這一概念的理解是:生態系統是在一定的空間和時間范圍內,在各種生物之間以及生物群落與其無機環境之間,通過能量流動和物質循環而相互作用的一個統一整體。生態系統是生物與環境之間進行能量轉換和物質循環的基本功能單位。

為了生存和繁衍,每一種生物都要從周圍的環境中吸取空氣、水分、陽光、熱量和營養物質;生物生長、繁育和活動過程中又不斷向周圍的環境釋放和排泄各種物質,死亡後的殘體也復歸環境。對任何一種生物來說,周圍的環境也包括其他生物。例如,綠色植物利用微生物活動從土壤中釋放出來的氮、磷、鉀等營養元素,食草動物以綠色植物為食物,肉食性動物又以食草動物為食物,各種動植物的殘體則既是昆蟲等小動物的食物,又是微生物的營養來源。微生物活動的結果又釋放出植物生長所需要的營養物質。經過長期的自然演化,每個區域的生物和環境之間、生物與生物之間,都形成了一種相對穩定的結構,具有相應的功能,這就是人們常說的生態系統。

1. 生態系統的概念

生態系統(ecosystem)是英國生態學家Tansley於1935年首先提上來的,指在一定的空間內生物成分和非生物成分通過物質循環和能量流動相互作用、相互依存而構成的一個生態學功能單位。它把生物及其非生物環境看成是互相影響、彼此依存的統一整體。生態系統不論是自然的還是人工的,都具下列共同特性:(1)生態系統是生態學上的一個主要結構和功能單位,屬於生態學研究的最高層次。(2)生態系統內部具有自我調節能力。其結構越復雜,物種數越多,自我調節能力越強。(3)能量流動、物質循環是生態系統的兩大功能。(4)生態系統營養級的數目因生產者固定能值所限及能流過程中能量的損失,一般不超過5~6個。(5)生態系統是一個動態系統,要經歷一個從簡單到復雜、從不成熟到成熟的發育過程。

生態系統概念的提出為生態學的研究和發展奠定了新的基礎,極大地推動了生態學的發展。生態系統生態學是當代生態學研究的前沿。

2. 生態系統的組成成分

生態系統有四個主要的組成成分。即非生物環境、生產者、消費者和分解者。

(1)非生物環境 包括:氣候因子,如光、溫度、濕度、風、雨雪等;無機物質,如C、H、O、N、CO2及各種無機鹽等。有機物質,如蛋白質、碳水化合物、脂類和腐殖質等。

(2)生產者(procers) 主要指綠色植物,也包括藍綠藻和一些光合細菌,是能利用簡單的無機物質製造食物的自養生物。在生態系統中起主導作用。

(3)消費者(consumers) 異養生物,主要指以其他生物為食的各種動物,包括植食動物、肉食動物、雜食動物和寄生動物等。

(4)分解者(decomposers) 異養生物,主要是細菌和真菌,也包括某些原生動物和蚯蚓、白蟻、禿鷲等大型腐食性動物。它們分解動植物的殘體、糞便和各種復雜的有機化合物,吸收某些分解產物,最終能將有機物分解為簡單的無機物,而這些無機物參與物質循環後可被自養生物重新利用。

3. 生態系統的結構

生態系統的結構可以從兩個方面理解。其一是形態結構,如生物種類,種群數量,種群的空間格局,種群的時間變化,以及群落的垂直和水平結構等。形態結構與植物群落的結構特徵相一致,外加土壤、大氣中非生物成分以及消費者、分解者的形態結構。其二為營養結構,營養結構是以營養為紐帶,把生物和非生物緊密結合起來的功能單位,構成以生產者、消費者和分解者為中心的三大功能類群,它們與環境之間發生密切的物質循環和能量流動。

4. 生態系統的初級生產和次級生產

生態系統中的能量流動開始於綠色植物的光合作用。光合作用積累的能量是進入生態系統的初級能量,這種能量的積累過程就是初級生產。初級生產積累能量的速率稱為初級生產力(primary proctivity),所製造的有機物質則稱為初級生產量或第一性生產量(primary proction)。

在初級生產量中,有一部分被植物自己的呼吸所消耗,剩下的部分才以可見有機物質的形式用於植物的生長和生殖,我們稱這部分生產量為凈初級生產量(net primary proction, NPP),而包括呼吸消耗的能量(R)在內的全部生產量稱為總初級生產量(gross primary proction, GPP)。它們三者之間的關系是GPP=NPP+R。GPP和NPP通常用每年每平方米所生產的有機物質乾重(g/m2.a)或固定的能量值(J/m2.a)來表示,此時它們稱為總(凈)初級生產力,生產力是率的概念,而生產量是量的概念。

某一特定時刻生態系統單位面積內所積存的生活有機物質量叫生物量(biomass)。生物量是凈生產量的積累量,某一時刻的生物量就是以往生態系統所累積下來的活有機物質總量。生物量通常用平均每平方米生物體的乾重(g/m2)或能值(J/m2)來表示。生物量和生產量是兩個不同的概念,前者是生態系統結構的概念,而後者則是功能上的概念。如果GP-R>O,生物量增加;GP-R<O,生物量減少;GP=R,則生物量不變,其中的GP代表某一營養級的生產量。某一時期內某一營養級生物量的變化(dB/dt)可用下式推算:dB/dt=GP-R-H-D,式中H代表被下一營養級所取食的生物量,D為死亡所損失的生物量。生物量在生態系統中具明顯的垂直分布現象。

次級生產是除生產者外的其它有機體的生產,即消費者和分解者利用初級生產量進行同化作用,表現為動物和其它異養生物生長、繁殖和營養物質的貯存。動物和其它異養生物靠消耗植物的初級生產量製造的有機物質或固定的能量,稱為次級生產量或第二性生產量(secondary proction),其生產或固定率稱次級(第二性)生產力(secondary proctivity)。動物的次級生產量可由下一公式表示:P=C-FU-R,式中,P為次級生產量,C代表動物從外界攝取的能量,FU代表以糞、尿形式損失的能量,R代表呼吸過程中損失的能量。

5. 生態系統中的分解

生態系統的分解(或稱分解作用)(decomposition)是指死有機物質的逐步降解過程。分解時,無機元素從有機物質中釋放出來,得到礦化,與光合作用時無機元素的固定正好是相反的過程。從能量的角度看,前者是放能,後者是貯能。從物質的角度看,它們均是物質循環的調節器,分解的過程其實十分復雜,它包括物理粉碎、碎化、化學和生物降解、淋失、動物採食、風的轉移及有時的人類干擾等幾乎同步的各種作用。將之簡單化,可看作是碎裂、異化和淋溶三個過程的綜合。由於物理的和生物的作用,把死殘落物分解為顆粒狀的碎屑稱為碎裂;有機物質在酶的作用下分解,從聚合體變成單體,例如由纖維素變成葡萄糖,進而成為礦物成分,稱為異化;淋溶則是可溶性物質被水淋洗出來,是一種純物理過程。分解過程中,這三個過程是交叉進行、相互影響的。

分解過程的速率和特點,決定於資源的質量、分解者種類和理化環境條件三方面。資源質量包括物理性質和化學性質,物理性質包括表面特性和機械結構,化學性質如C:N比、木質素、纖維素含量等,它們在分解過程中均起重要作用。分解者則包括細菌、真菌和土壤動物(水生態系統中為水生小型動物)。理化環境主要指溫度、濕度等。

6. 生態系統中的能量流動

能量是生態系統的基礎,一切生命都存在著能量的流動和轉化。沒有能量的流動,就沒有生命和生態系統。流量流動是生態系統的重要功能之一,能量的流動和轉化是服從於熱力學第一定律和第二定律的,因為熱力學就是研究能量傳遞規律和能量形式轉換規律的科學。

能量流動可在生態系統、食物鏈和種群三個水平上進行分析。生態系統水平上的能流分析,是以同一營養級上各個種群的總量來估計,即把每個種群都歸屬於一個特定的營養級中(依據其主要食性),然後精確地測定每個營養級能量的輸入和輸出值。這種分析多見於水生生態系統,因其邊界明確、封閉性較強、內環境較穩定。食物鏈層次上的能流分析是把每個種群作為能量從生產者到頂極消費者移動過程中的一個環節,當能量沿著一個食物鏈在幾個物種間流動時,測定食物鏈每一個環節上的能量值,就可提供生態系統內一系列特定點上能流的詳細和准確資料。實驗種群層次上的能流分析,則是在實驗室內控制各種無關變數,以研究能流過程中影響能量損失和能量儲存的各種重要環境因子。

在這里我們還介紹一下食物鏈、食物網、營養級、生態金字塔等概念。植物所固定的能量通過一系列的取食和被取食關系在生態系統中的傳遞,這種生物之間的傳遞關系稱為食物鏈(food chains)。一般食物鏈是由4~5環節構成的,如草→昆蟲→鳥→蛇→鷹。但在生態系統中生物之間的取食和被取食的關系錯綜復雜,這種聯系象是一個無形的網把所有生物都包括在內,使它們彼此之間都有著某種直接或間接的關系,這就是食物網(food web)。一般而言,食物網越復雜,生態系統抵抗外力干擾的能力就越強,反之亦然。在任何生態系統中都存在著兩種最主要的食物鏈,即捕食食物鏈(grazing food chain)和碎屑食物鏈(detrital food chain),前者是以活的動植物為起點的食物鏈,後者則以死生物或腐屑為起點。在大多數陸地和淺水生態系統中,腐屑食物鏈是最主要的,如一個楊樹林的植物生物量除6%是被動物取食處,其餘94%都是在枯死凋落後被分解者所分解。一個營養級(trophic levels)是指處於食物鏈某一環節上的所有生物種群的總和,在對生態系統的能流進行分析時,為了方便,常把每一生物種群置於一個確定的營養級上。生產者屬第一營養級,植食動物屬第二營養級,第三營養級包括所有以植食動物為食的肉食動物,一般一個生態系統的營養級數目為3~5個。生態金字塔(ecological pyramids)是指各個營養級之間的數量關系,這種數量關系可採用生物量單位、能量單位和個體數量單位,分別構成生物量金字塔、能量金字塔和數量金字塔。

7. 生態系統中的物質循環

生態系統的物質循環(circulation of materials)又稱為生物地球化學循環(biogeochemical cycle),是指地球上各種化學元素,從周圍的環境到生物體,再從生物體回到周圍環境的周期性循環。能量流動和物質循環是生態系統的兩個基本過程,它們使生態系統各個營養級之間和各種組成成分之間組織為一個完整的功能單位。但是能量流動和物質循環的性質不同,能量流經生態系統最終以熱的形式消散,能量流動是單方向的,因此生態系統必須不斷地從外界獲得能量;而物質的流動是循環式的,各種物質都能以可被植物利用的形式重返環境。同時兩者又是密切相關不可分割的。

生物地球化學循環可以用庫和流通率兩個概念加以描述。庫(pools)是由存在於生態系統某些生物或非生物成分中一定數量的某種化學物質所構成的。這些庫藉助於有關物質在庫與庫之間的轉移而彼此相互聯系,物質在生態系統單位面積(或體積)和單位時間的移動量就稱為流通率(flux rates)。一個庫的流通率(單位/天)和該庫中的營養物質總量之比即周轉率(turnover rates),周轉率的倒數為周轉時間(turnover times)。

生物地球化學循環可分為三大類型,即水循環(water cycles)、氣體型循環(gaseous cycles)和沉積型循環(sedimentary cycles)。水循環的主要路線是從地球表面通過蒸發進入大氣圈,同時又不斷從大氣圈通過降水而回到地球表面,H和O主要通過水循環參與生物地化循環。在氣體型循環中,物質的主要儲存庫是大氣和海洋,其循環與大氣和海洋密切相關,具有明顯的全球性,循環性能最為完善。屬於氣體型循環的物質有O2、CO2、N、Cl、Br、F等。參與沉積型循環的物質,主要是通過岩石風化和沉積物的分解轉變為可被生態系統利用的物質,它們的主要儲存庫是土壤、沉積物和岩石,循環的全球性不如氣體型循環明顯,循環性能一般也很不完善。屬於沉積性循環的物質有P、K、Na、Ca、Ng、Fe、Mn、I、Cu、Si、Zn、Mo等,其中P是較典型的沉積型循環元素。氣體型循環和沉積型循環都受到能流的驅動,並都依賴於水循環。

生物地化循環是一種開放的循環,其時間跨度較大。對生態系統來說,還有一種在系統內部土壤、空氣和生物之間進行的元素的周期性循環,稱生物循環(biocycles)。養分元素的生物循環又稱為養分循環(nutrient cycling),它一般包括以下幾個過程:吸收(absorption),即養分從土壤轉移至植被;存留(retention),指養分在動植物群落中的滯留;歸還(return),即養分從動植物群落回歸至地表的過程,主要以死殘落物、降水淋溶、根系分泌物等形式完成;釋放(release),指養分通過分解過程釋放出來,同時在地表有一積累(accumulation)過程;儲存(reserve),即養分在土壤中的貯存,土壤是養分庫,除N外的養分元素均來自土壤。其中,吸收量=存留量+歸還量。
生物圈的相關知識
生物圈的概念,以下幾點是公認的:①地球上凡是生物分布的區域都屬於生物圈;②生物圈是由生物與非生物環境組成的具有一定結構和功能的統一整體,是高度復雜而有序的系統,而不是鬆散無序的集合;③由於生物種類的遷移性與無機環境的連續性使其結構和功能不斷變化,並且不斷趨於相對穩定的狀態。地球上最大的生態系統是生物圈,陸地上最大的生態系統是森林生態系統,我國最大的生態系統是草原生態系統。

森林生態系統的作用 森林覆蓋率是衡量一個國家和地區生態環境的重要指標。如果一個地區的森林覆蓋率達到30%,並且分布比較均勻,就能夠有效地調節氣候,減少自然災害的發生。森林的具體作用有以下幾個方面:
①調節生物圈中O2和CO2的相對平衡 處於生長季節的每公頃闊葉林一天可吸收1000 kg的CO2,放出730 kg的O2。平均每人擁有10 m2的森林,即可以滿足多氧環境的需要。
②凈化空氣 植物的枝葉能吸附煙塵、粉塵等污染物和SO2等有毒氣體,如夾竹桃、梧桐、柳杉、槐樹能吸收SO2,松樹的針葉分泌物能殺死結核桿菌和白喉桿菌等。
③消除噪音 30 m寬的林帶便可以吸收和降低噪音6~8分貝。
④涵養水源、保持水土、防風固沙。
⑤調節氣候、增加降水、美化環境。
我國古代森林覆蓋率高達60%以上,現在我國的森林覆蓋率僅16.55%,人工造林面積居世界第一。
農業生態系統的原理
首先是生態系統中能量的多級利用和物質循環再生。食物鏈是生態系統能量流動和物質循環的主渠道,它既是一條能量轉換鏈,也是一條物質傳遞鏈,還是一條增值鏈。其次農業生態系統的各種生物之間遵循相互依存、相互制約的原理。在農業生態系統中,人們利用生物種群之間的關系.對生物種群進行人為調節,增加有害生物的天敵種群,可以減輕有害生物的危害。如放養赤眼蜂防治稻縱卷葉螟,防止農葯的污染。
生態農業的設計和布局主要從平面、垂直、時間、食物鏈等方面著手。平面設汁是在一定區域內.確定各種作物的種類和各種農業產業所佔的比例及分布區域,即農業區劃或農業規劃布局。垂直設計是運用生態學的原理.將各種不同的種群組合在合理的復合生產系統,達到最充分、最合理地利用環境資源的目的。垂直結構包括地上和地下兩部分,地上部分包括不同作物在不同層次空間上的莖、葉的合理配置,以便最大限度地利用光、熱、水,氣等自然資源。地下部分是復合作物的根系在不同土層中的分布,以更好地利用土壤中的水分和礦質元素。時間上的設計是根據各種農業資源的時間節律,設計出有效利用農業資源的生產格局。主要包括各種作物種群的嵌合設計,如套種、復種、育苗移栽,改變作物生長期的調控設計。食物鏈的設計是根據生態學的原理和當地的實際情況科學地設計農業生態系統內的食物鏈結構.實現對物質和能量的多級利用,提高整體經濟效益。其重點是在原有的食物鏈中引入或增加新的環節。例如,引進天敵動物以控制有害昆蟲的數量.增加新的生產環節將人們不能直接利用的有機物轉化為可以直接利用的農副業產品等。
生態系統中某種生物減少引起其他物種變動情況。
處於食物鏈中第一營養級的生物減少而導致的其他物種變動:在某食物鏈中,若處於第一營養級的生物減少,則該食物鏈中的其它生物都減少。這是因為第一營養級是其它各種生物賴以生存的直接或間接的食物來源,這一營養級生物的減少必會引起連鎖反應,致使以下營養級依次減少。
「天敵」一方減少,對被食者數量變動的影響:若一條食物鏈中處於「天敵」地位的生物數量減少,則被食者數量因此而迅速增加,但這種增加並不是無限的。而是隨著數量的增加,種群密度加大,種內斗爭勢必加劇,再加上沒有了天敵的「壓力」,被捕食者自身素質(如奔跑速度、警惕性、靈敏性等)必會下降,導致流行病蔓延,老弱病殘者增多,最終造成密度減小,直至相對穩定,即天敵減少,造成被食方先增加後減少,最後趨向穩定。
若處於「中間」營養級的生物減少,另一種生物的變化情況應視具體食物鏈確定。研究時,按照從高營養級到低營養級的方向和順序考慮。

② 到底什麼是生態學

生態學
生態學是研究生物與環境,及生物與生物之間相互關系的生物學分支學科。

生物的生存、活動、繁殖需要一定的空間、物質與能量。生物在長期進化過程中,逐漸形成對周圍環境某些物理條件和化學成分,如空氣、光照、水分、熱量和無機鹽類等的特殊需要。各種生物所需要的物質、能量以及它們所適應的理化條件是不同的,這種特性稱為物種的生態特性。

任何生物的生存都不是孤立的:同種個體之間有互助有競爭;植物、動物、微生物之間也存在復雜的相生相剋關系。人類為滿足自身的需要,不斷改造環境,環境反過來又影響人類。

隨著人類活動范圍的擴大與多樣化,人類與環境的關系問題越來越突出。因此近代生態學研究的范圍,除生物個體、種群和生物群落外,已擴大到包括人類社會在內的多種類型生態系統的復合系統。人類面臨的人口、資源。環境等幾大問題都是生態學的研究內容。

生態學的淵源

「生態學」一詞是德國生物學家海克爾1869年提出的。海克爾在其動物學著作中定義生態學是:研究動物與其有機及無機環境之間相互關系的科學,特別是動物與其他生物之間的有益和有害關系。

其後,有些博物學家認為生態學與普通博物學不同,具有定量的和動態的特點,他們把生態學視為博物學的理論科學;持生理學觀點的生態學家認為生態學是普通生理學的分支,它與一般器官系統生理學不同,側重在整體水平上探討生命過程與環境條件的關系;從事植物群落和動物行為工作的學者分別把生態學理解為生物群落的科學和環境條件影響下的動物行為科學;側重進化觀點的學者則把生態學解釋為研究環境與生物進化關系的科學。

後來,在生態學定義中又增加了生態系統的觀點,把生物與環境的關系歸納為物質流動及能量交換;20世紀70年代以來則進一步概括為物,質流、能量流及信息流。

生態學的發展大致可分為萌芽期、形成期和發展期三個階段。

萌芽期 古人在長期的農牧漁貓生產中積累了樸素的生態學知識,諸如作物生長與季節氣候及土壤水分的關系、常見動物的物候習性等。如公元前4世紀希臘學者亞里士多德曾粗略描述動物的不同類型的棲居地,還按動物活動的環境類型將其分為陸棲和水棲兩類,按其食性分為肉食、草食、雜食和特殊食性等類。

亞里士多德的學生、公元前三世紀的雅典學派首領賽奧夫拉斯圖斯在其植物地理學著作中已提出類似今日植物群落的概念。公元前後出現的介紹農牧漁獵知識的專著,如古羅馬公元1世紀老普林尼的《博物志》、6世紀中國農學家賈思勰的《齊民要求》等均記述了素樸的生態學觀點。

形成期 大約從15世紀到20世紀40年代。

15世紀以後,許多科學家通過科學考察積累了不少宏觀生態學資料。19世紀初葉,現代生態學的輪廓開始出現。如雷奧米爾的6卷昆蟲學著作中就有許多昆蟲生態學方面的記述。瑞典博物學家林奈首先把物候學、生態學和地理學觀點結合起來,綜合描述外界環境條件對動物和植物的影響。法國博物學家布豐強調生物變異基於環境的影響。德國植物地理學家人洪堡)創造性地結合氣候與地理因子的影響來描述物種的分布規律。

19世紀,生態學進一步發展。這一方面是由於農牧業的發展促使人們開展了環境因子對作物和家畜生理影響的實驗研究。例如,在這一時期中確定了五攝氏度為一般植物的發育起點溫度,繪制了動物的溫度發育曲線,提出了用光照時間與平均溫度的乘積作為比較光化作用的「光時度」指標以及植物營養的最低量律和光譜結構對於動植物發育的效應等。

另一方面,馬爾薩斯於1798年發表的《人口論》一書造成了廣泛的影響。費爾許爾斯特1833年以其著名的邏輯斯諦曲線描述人口增長速度與人口密度的關系,把數學分析方法引入生態學。19世紀後期開展的對植物群落的定量描述也已經以統計學原理為基礎。1851年達爾文在《物種起源》一書中提出自然選擇學說,強調生物進化是生物與環境交互作用的產物,引起了人們對生物與環境的相互關系的重視,更促進了生態學的發展。

19世紀中葉到20世紀初葉,人類所關心的農業、漁貓和直接與人類健康有關的環境衛生等問題,推動了農業生態學、野生動物種群生態學和媒介昆蟲傳病行為的研究。由於當時組織的遠洋考察中都重視了對生物資源的調查,從而也豐富了水生生物學和水域生態學的內容。

到20世紀30年代,已有不少生態學著作和教科書闡述了一些生態學的基本概念和論點,如食物鏈、生態位、生物量、生態系統等。至此,生態學已基本成為具有特定研究對象、研究方法和理論體系的獨立學科。

發展期 20世紀50年代以來,生態學吸收了數學、物理、化學工程技術科學的研究成果,向精確定量方向前進並形成了自己的理論體系:

數理化方法、精密靈敏的儀器和電了計算機的應用,使生態學工作者有可能更廣泛、深入地探索生物與環境之間相互作用的物質基礎,對復雜的生態現象進行定量分析;整體概念的發展,產生出系統生態學等若干新分支,初步建立了生態學理論體系。

由於世界上的生態系統大都受人類活動的影響,社會經濟生產系統與生態系統相互交織,實際形成了龐大的復合系統。隨著社會經濟和現代工業化的高速度發展,自然資源、人口、糧食和環境等一系列影響社會生產和生活的問題日益突出。

為了尋找解決這些問題的科學依據和有效措施,國際生物科學聯合會(IUBS)制定了「國際生物計劃」(IBP),對陸地和水域生物群系進行生態學研究。1972年聯合國教科文組織等繼IBP之後,設立了人與生物圈(MAB)國際組織,制定「人與生物圈」規劃,組織各參加國開展森林、草原。海洋、湖泊等生態系統與人類活動關系以及農業、城市、污染等有關的科學研究。許多國家都設立了生態學和環境科學的研究機構。

和許多自然科學一樣,生態學的發展趨勢是:由定性研究趨向定量研究,由靜態描述趨向動態分析;逐漸向多層次的綜合研究發展;與其他某些學科的交叉研究日益顯著。

由人類活動對環境的影響來看,生態學是自然科學與社會科學的交匯點;在方法學方面,研究環境因素的作用機制高不開生理學方法,離不開物理學和化學技術,而且群體調查和系統分析更高不開數學的方法和技術;在理論方面,生態系統的代謝和自穩態等概念基本是引自生理學,而由物質流、能量流和信息流的角度來研究生物與環境的相互作用則可說是由物理學、化學、生理學、生態學和社會經濟學等共同發展出的研究體系。

生態學的基本內容

按所研究的生物類別分,有微生物生態學、植物生態學、動物生態學、人類生態學等;還可細分,如昆蟲生態學、魚類生態學等。

按生物系統的結構層次分,有個體生態學、種群生態學、群落生態學生態系統生態學等。

按生物棲居的環境類別分,有陸地生態學和水域生態學;前者又可分為森林生態學、草原生態學、荒漠生態學等,後者可分為海洋生態學、湖沼生態學、河流生態學等;還有更細的劃分,如植物根際生態學、腸道生態學等。

生態學與非生命科學相結合的,有數學生態學、化學生態學、物理生態學、地理生態學、經濟生態學等;與生命科學其他分支相結合的有生理生態學、行為生態學、遺傳生態學、進化生態學古生態學等。

應用性分支學科有:農業生態學、醫學生態學、工業資源生態學、環境保護生態學、城市生態學等。

生態學的一般規律大致可從種群、群落、生態系統和人與環境的關系四個方面說明。

在環境無明顯變化的條件下,種群數量有保持穩定的趨勢。一個種群所棲環境的空間和資源是有限的,只能承載一定數量的生物,承載量接近飽和時,如果種群數量(密度)再增加,增長率則會下降乃至出現負值,使種群數量減少;而當種群數量(密度)減少到一定限度時,增長率會再度上升,最終使種群數量達到該環境允許的穩定水平。對種群自然調節規律的研究可以指導生產實踐。例如,制定合理的漁業捕撈量和林業採伐量,可保證在不傷及生物資源再生能力的前提下取得最佳產量。

一個生物群落中的任何物種都與其他物種存在著相互依賴和相互制約的關系。常見的有:

食物鏈,居於相鄰環節的兩物種的數量比例有保持相對穩定的趨勢。如捕食者的生存依賴於被捕食者,其數量也受被捕食者的制約;而被捕食者的生存和數量也同樣受捕食者的制約。兩者間的數量保持相對穩定;

競爭,物種間常因利用同一資源而發生競爭:如植物間爭光、爭空間、爭水、爭土壤養分;動物間爭食物、爭棲居地等。在長期進化中、競爭促進了物種的生態特性的分化,結果使競爭關系得到緩和,並使生物群落產生出一定的結構。例如森林中既有高大喜陽的喬木,又有矮小耐陰的灌木,各得其所;林中動物或有晝出夜出之分,或有食性差異,互不相擾;

互利共生。如地衣中菌藻相依為生,大型草食動物依賴胃腸道中寄生的微生物幫助消化,以及蟻和蚜蟲的共生關系等,都表現了物種間的相互依賴的關系。以上幾種關系使生物群落表現出復雜而穩定的結構,即生態平衡,平衡的破壞常可能導致某種生物資源的永久性喪失。

生態系統的代謝功能就是保持生命所需的物質不斷地循環再生。陽光提供的能量驅動著物質在生態系統中不停地循環流動,既包括環境中的物質循環、生物間的營養傳遞和生物與環境間的物質交換,也包括生命物質的合成與分解等物質形式的轉換。

物質循環的正常運行,要求一定的生態系統結構。隨著生物的進化和擴散,環境中大量無機物質被合成為生命物質形成了廣袤的森林、草原以及生息其中的飛禽走獸。一般說,發展中的生物群落的物質代謝是進多出少,而當群落成熟後代謝趨於平衡,進出大致相當。

人們在改造自然的過程中須注意到物質代謝的規律。一方面,在生產中只能因勢利導,合理開發生物資源,而不可只顧一時,竭澤而漁。目前世界上已有大面積農田因肥力減退未得到及時補償而減產。另一方面,還應控制環境污染,由於大量有毒的工業廢物進入環境,超越了生態系統和生物圈的降解和自凈能力,因而造成毒物積累,損害了人類與其他生物的生活環境。

生物進化就是生物與環境交互作用的產物。生物在生活過程中不斷地由環境輸入並向其輸出物質,而被生物改變的物質環境反過來又影響或選擇生物,二者總是朝著相互適應的協同方向發展,即通常所說的正常的自然演替。隨著人類活動領域的擴展,對環境的影響也越加明顯。

在改造自然的話動中,人類自覺或不自覺地做了不少違背自然規律的事,損害了自身利益。如對某些自然資源的長期濫伐、濫捕、濫采造成資源短缺和枯竭,從而不能滿足人類自身需要;大量的工業污染直接危害人類自身健康等,這些都是人與環境交互作用的結果,是大自然受破壞後所產生的一種反作用。

③ 生態學又是什麼科學

生態學(Ecology)是研究有機體及其周圍環境相互關系的科學。
生物的生存、活動、繁殖需要一定的空間、物質與能量。生物在長期進化過程中,逐漸形成對周圍環境某些物理條件和化學成分,如空氣、光照、水分、熱量和無機鹽類等的特殊需要。各種生物所需要的物質、能量以及它們所適應的理化條件是不同的,這種特性稱為物種的生態特性。
任何生物的生存都不是孤立的:同種個體之間有互助有競爭;植物、動物、微生物之間也存在復雜的相生相剋關系。人類為滿足自身的需要,不斷改造環境,環境反過來又影響人類。
隨著人類活動范圍的擴大與多樣化,人類與環境的關系問題越來越突出。因此近代生態學研究的范圍,除生物個體、種群和生物群落外,已擴大到包括人類社會在內的多種類型生態系統的復合系統。人類面臨的人口、資源。環境等幾大問題都是生態學的研究內容。
[編輯本段]生態學的淵源
「生態學」一詞是德國生物學家海克爾1866年提出的。海克爾在其動物學著作中定義生態學是:研究動物與其有機及無機環境之間相互關系的科學,特別是動物與其他生物之間的有益和有害關系。
其後,有些博物學家認為生態學與普通博物學不同,具有定量的和動態的特點,他們把生態學視為博物學的理論科學;持生理學觀點的生態學家認為生態學是普通生理學的分支,它與一般器官系統生理學不同,側重在整體水平上探討生命過程與環境條件的關系;從事植物群落和動物行為工作的學者分別把生態學理解為生物群落的科學和環境條件影響下的動物行為科學;側重進化觀點的學者則把生態學解釋為研究環境與生物進化關系的科學。
後來,在生態學定義中又增加了生態系統的觀點,把生物與環境的關系歸納為物質流動及能量交換;20世紀70年代以來則進一步概括為物質流、能量流及信息流。
[編輯本段]生態學的發展
生態學的發展大致可分為萌芽期、形成期和發展期三個階段。
萌芽期 古人在長期的農牧漁貓生產中積累了樸素的生態學知識,諸如作物生長與季節氣候及土壤水分的關系、常見動物的物候習性等。如公元前4世紀希臘學者亞里士多德曾粗略描述動物的不同類型的棲居地,還按動物活動的環境類型將其分為陸棲和水棲兩類,按其食性分為肉食、草食、雜食和特殊食性等類。
亞里士多德的學生、公元前三世紀的雅典學派首領賽奧夫拉斯圖斯在其植物地理學著作中已提出類似今日植物群落的概念。公元前後出現的介紹農牧漁獵知識的專著,如古羅馬公元1世紀老普林尼的《博物志》、6世紀中國農學家賈思勰的《齊民要術》等均記述了素樸的生態學觀點。
形成期 大約從15世紀到20世紀40年代。
15世紀以後,許多科學家通過科學考察積累了不少宏觀生態學資料。19世紀初葉,現代生態學的輪廓開始出現。如雷奧米爾的6卷昆蟲學著作中就有許多昆蟲生態學方面的記述。瑞典博物學家林奈首先把物候學、生態學和地理學觀點結合起來,綜合描述外界環境條件對動物和植物的影響。法國博物學家布豐強調生物變異基於環境的影響。德國植物地理學家人洪堡)創造性地結合氣候與地理因子的影響來描述物種的分布規律。
19世紀,生態學進一步發展。這一方面是由於農牧業的發展促使人們開展了環境因子對作物和家畜生理影響的實驗研究。例如,在這一時期中確定了五攝氏度為一般植物的發育起點溫度,繪制了動物的溫度發育曲線,提出了用光照時間與平均溫度的乘積作為比較光化作用的「光時度」指標以及植物營養的最低量律和光譜結構對於動植物發育的效應等。
另一方面,馬爾薩斯於1798年發表的《人口論》一書造成了廣泛的影響。費爾許爾斯特1833年以其著名的邏輯斯諦曲線描述人口增長速度與人口密度的關系,把數學分析方法引入生態學。19世紀後期開展的對植物群落的定量描述也已經以統計學原理為基礎。1851年達爾文在《物種起源》一書中提出自然選擇學說,強調生物進化是生物與環境交互作用的產物,引起了人們對生物與環境的相互關系的重視,更促進了生態學的發展。
19世紀中葉到20世紀初葉,人類所關心的農業、漁貓和直接與人類健康有關的環境衛生等問題,推動了農業生態學、野生動物種群生態學和媒介昆蟲傳病行為的研究。由於當時組織的遠洋考察中都重視了對生物資源的調查,從而也豐富了水生生物學和水域生態學的內容。
到20世紀30年代,已有不少生態學著作和教科書闡述了一些生態學的基本概念和論點,如食物鏈、生態位、生物量、生態系統等。至此,生態學已基本成為具有特定研究對象、研究方法和理論體系的獨立學科。
發展期 20世紀50年代以來,生態學吸收了數學、物理、化學工程技術科學的研究成果,向精確定量方向前進並形成了自己的理論體系:
數理化方法、精密靈敏的儀器和電了計算機的應用,使生態學工作者有可能更廣泛、深入地探索生物與環境之間相互作用的物質基礎,對復雜的生態現象進行定量分析;整體概念的發展,產生出系統生態學等若干新分支,初步建立了生態學理論體系。
由於世界上的生態系統大都受人類活動的影響,社會經濟生產系統與生態系統相互交織,實際形成了龐大的復合系統。隨著社會經濟和現代工業化的高速度發展,自然資源、人口、糧食和環境等一系列影響社會生產和生活的問題日益突出。
為了尋找解決這些問題的科學依據和有效措施,國際生物科學聯合會(IUBS)制定了「國際生物計劃」(IBP),對陸地和水域生物群系進行生態學研究。1972年聯合國教科文組織等繼IBP之後,設立了人與生物圈(MAB)國際組織,制定「人與生物圈」規劃,組織各參加國開展森林、草原。海洋、湖泊等生態系統與人類活動關系以及農業、城市、污染等有關的科學研究。許多國家都設立了生態學和環境科學的研究機構。
和許多自然科學一樣,生態學的發展趨勢是:由定性研究趨向定量研究,由靜態描述趨向動態分析;逐漸向多層次的綜合研究發展;與其他某些學科的交叉研究日益顯著。
由人類活動對環境的影響來看,生態學是自然科學與社會科學的交匯點;在方法學方面,研究環境因素的作用機制高不開生理學方法,離不開物理學和化學技術,而且群體調查和系統分析更高不開數學的方法和技術;在理論方面,生態系統的代謝和自穩態等概念基本是引自生理學,而由物質流、能量流和信息流的角度來研究生物與環境的相互作用則可說是由物理學、化學、生理學、生態學和社會經濟學等共同發展出的研究體系。
[編輯本段]生態學的基本內容
按所研究的生物類別分,有微生物生態學、植物生態學、動物生態學、人類生態學等;還可細分,如昆蟲生態學、魚類生態學等。
按生物系統的結構層次分,有個體生態學、種群生態學、群落生態學生態系統生態學等。
按生物棲居的環境類別分,有陸地生態學和水域生態學;前者又可分為森林生態學、草原生態學、荒漠生態學、土壤生態學等,後者可分為海洋生態學、湖沼生態學、流域生態學等;還有更細的劃分,如植物根際生態學、腸道生態學等。
生態學與非生命科學相結合的,有數學生態學、化學生態學、物理生態學、地理生態學、經濟生態學、生態經濟學、森林生態會計等;與生命科學其他分支相結合的有生理生態學、行為生態學、遺傳生態學、進化生態學古生態學等。
應用性分支學科有:農業生態學、醫學生態學、工業資源生態學、環境保護生態學、環境生態學、生態保育、生態信息學、城市生態學、生態系統服務、景觀生態學等。
生態學的一般規律大致可從種群、群落、生態系統和人與環境的關系四個方面說明。
在環境無明顯變化的條件下,種群數量有保持穩定的趨勢。一個種群所棲環境的空間和資源是有限的,只能承載一定數量的生物,承載量接近飽和時,如果種群數量(密度)再增加,增長率則會下降乃至出現負值,使種群數量減少;而當種群數量(密度)減少到一定限度時,增長率會再度上升,最終使種群數量達到該環境允許的穩定水平。對種群自然調節規律的研究可以指導生產實踐。例如,制定合理的漁業捕撈量和林業採伐量,可保證在不傷及生物資源再生能力的前提下取得最佳產量。
一個生物群落中的任何物種都與其他物種存在著相互依賴和相互制約的關系。常見的有:
食物鏈,居於相鄰環節的兩物種的數量比例有保持相對穩定的趨勢。如捕食者的生存依賴於被捕食者,其數量也受被捕食者的制約;而被捕食者的生存和數量也同樣受捕食者的制約。兩者間的數量保持相對穩定;
競爭,物種間常因利用同一資源而發生競爭:如植物間爭光、爭空間、爭水、爭土壤養分;動物間爭食物、爭棲居地等。在長期進化中、競爭促進了物種的生態特性的分化,結果使競爭關系得到緩和,並使生物群落產生出一定的結構。例如森林中既有高大喜陽的喬木,又有矮小耐陰的灌木,各得其所;林中動物或有晝出夜出之分,或有食性差異,互不相擾;
互利共生。如地衣中菌藻相依為生,大型草食動物依賴胃腸道中寄生的微生物幫助消化,以及蟻和蚜蟲的共生關系等,都表現了物種間的相互依賴的關系。以上幾種關系使生物群落表現出復雜而穩定的結構,即生態平衡,平衡的破壞常可能導致某種生物資源的永久性喪失。
生態系統的代謝功能就是保持生命所需的物質不斷地循環再生。陽光提供的能量驅動著物質在生態系統中不停地循環流動,既包括環境中的物質循環、生物間的營養傳遞和生物與環境間的物質交換,也包括生命物質的合成與分解等物質形式的轉換。
物質循環的正常運行,要求一定的生態系統結構。隨著生物的進化和擴散,環境中大量無機物質被合成為生命物質形成了廣袤的森林、草原以及生息其中的飛禽走獸。一般說,發展中的生物群落的物質代謝是進多出少,而當群落成熟後代謝趨於平衡,進出大致相當。
人們在改造自然的過程中須注意到物質代謝的規律。一方面,在生產中只能因勢利導,合理開發生物資源,而不可只顧一時,竭澤而漁。目前世界上已有大面積農田因肥力減退未得到及時補償而減產。另一方面,還應控制環境污染,由於大量有毒的工業廢物進入環境,超越了生態系統和生物圈的降解和自凈能力,因而造成毒物積累,損害了人類與其他生物的生活環境。
生物進化就是生物與環境交互作用的產物。生物在生活過程中不斷地由環境輸入並向其輸出物質,而被生物改變的物質環境反過來又影響或選擇生物,二者總是朝著相互適應的協同方向發展,即通常所說的正常的自然演替。隨著人類活動領域的擴展,對環境的影響也越加明顯。
在改造自然的話動中,人類自覺或不自覺地做了不少違背自然規律的事,損害了自身利益。如對某些自然資源的長期濫伐、濫捕、濫采造成資源短缺和枯竭,從而不能滿足人類自身需要;大量的工業污染直接危害人類自身健康等,這些都是人與環境交互作用的結果,是大自然受破壞後所產生的一種反作用。
[編輯本段]生態學的一般規律
美國科學家小米勒總結出的生態學三定律如下:
生態學第一定律:我們的任何行動都不是孤立的,對自然界的任何侵犯都具有無數的效
應,其中許多是不可預料的。這一定律是G.哈定(G.Hardin)提出的,可稱為多效應原理。
生態學第二定律:每一事物無不與其他事物相互聯系和相互交融。此定律又稱相互聯系原理。
生態學第三定律:我們所生產的任何物質均不應對地球上自然的生物地球化學循環有任何干擾。此定律可稱為勿干擾原理。
正文:
大致可從種群、群落、生態系統和人與環境的關系4方面說明。
● 種群的自然調節 在環境無明顯變化的條件下,種群數量有保持穩定的趨勢。一個種群所棲環境的空間和資源是有限的,只能承載一定數量的生物,承載量接近飽和時,如果種群數量(密度)再增加,增長率則會下降乃至出現負值,使種群數量減少;而當種群數量(密度)減少到一定限度時,增長率會再度上升,最終使種群數量達到該環境允許的穩定水平。對種群自然調節規律的研究可以指導生產實踐。例如,制定合理的漁業捕撈量和林業採伐量,可保證在不傷及生物資源再生能力的前提下取得最佳產量。
● 物種間的相互依賴和相互制約 一個生物群落中的任何物種都與其他物種存在著相互依賴和相互制約的關系。常見的是:①食物鏈。在食物鏈中,居於相鄰環節的兩物種的數量比例有保持相對穩定的趨勢。如捕食者的生存依賴於被捕食者,其數量也受被捕食者的制約;而被捕食者的生存和數量也同樣受捕食者的制約。兩者間的數量保持相對穩定。②競爭。物種間常因利用同一資源而發生競爭:如植物間爭光、爭空間、爭水、爭土壤養分;動物間爭食物、爭棲居地等。在長期進化中、競爭促進了物種的生態特性的分化,結果使競爭關系得到緩和,並使生物群落產生出一定的結構。例如森林中既有高大喜陽的喬木,又有矮小耐陰的灌木,各得其所;林中動物或有晝出夜出之分,或有食性差異,互不相擾。③互利共生。如地衣中菌藻相依為生,大型草食動物依賴胃腸道中寄生的微生物幫助消化,以及蟻和蚜蟲的共生關系等,都表現了物種間的相互依賴的關系。以上幾種關系使生物群落表現出復雜而穩定的結構,即生態平衡,平衡的破壞常可能導致某種生物資源的永久性喪失。
● 物質的循環再生 生態系統的代謝功能就是保持生命所需的物質不斷地循環再生。陽光提供的能量驅動著物質在生態系統中不停地循環流動,既包括環境中的物質循環、生物間的營養傳遞和生物與環境間的物質交換,也包括生命物質的合成與分解等物質形式的轉換。物質循環的正常運行,要求一定的生態系統結構。隨著生物的進化和擴散,環境中大量無機物質被合成為生命物質,形成了廣袤的森林、草原以及生息其中的飛禽走獸。一般說,發展中的生物群落的物質代謝是進多出少,而當群落成熟後代謝趨於平衡,進出大致相當。人們在改造自然的過程中須注意到物質代謝的規律。一方面,在生產中只能因勢利導,合理開發生物資源,而不可只顧一時,竭澤而漁。目前世界上已有大面積農田因肥力減退未得到及時補償而減產。另一方面,還應控制環境污染。由於大量有毒的工業廢物進入環境,超越了生態系統和生物圈的降解和自凈能力,因而造成毒物積累,損害了人類與其他生物的生活環境。
● 生物與環境的交互作用 生物進化就是生物與環境交互作用的產物。生物在生活過程中不斷地由環境輸入並向其輸出物質,而被生物改變的物質環境反過來又影響或選擇生物,二者總是朝著相互適應的協同方向發展,即通常所說的正常的自然演替。隨著人類活動領域的擴展,對環境的影響也越加明顯。在改造自然的活動中,人類自覺或不自覺地做了不少違背自然規律的事,損害了自身利益。如對某些自然資源的長期濫伐、濫捕、濫采造成資源短缺和枯竭,從而不能滿足人類自身需要;大量的工業污染直接危害人類自身健康等,這些都是人與環境交互作用的結果,是大自然受破壞後所產生的一種反作用。
[編輯本段]分支學科
①按所研究的生物類別分,有微生物生態學、植物生態學、動物生態學、人類生態學等;還可細分,如昆蟲生態學、魚類生態學等。②按生物系統的結構層次分,有個體生態學、種群生態學、群落生態學、生態系統生態學等。③按生物棲居的環境類別分,有陸地生態學和水域生態學;前者又可分為森林生態學、草原生態學、荒漠生態學等,後者可分為海洋生態學、湖沼生態學、河流生態學等;還有更細的劃分,如植物根際生態學、腸道生態學等。④生態學與非生命科學相結合的,有數學生態學、化學生態學、物理生態學、地理生態學、經濟生態學等;與生命科學其他分支相結合的有生理生態學、行為生態學、遺傳生態學、進化生態學、古生態學等。⑤應用性分支學科有:農業生態學、醫學生態學、工業資源生態學、污染生態學(環境保護生態學)、城市生態學等。
[編輯本段]基本原理應用的思路
生態學的基本原理,通常包括四方面的內容:個體生態、種群生態、群落生態和生態系統生態。
一個健康的生態系統是穩定的和可持續的:在時間上能夠維持它的組織結構和自治,也能夠維持對脅迫的恢復力。健康的生態系統能夠維持它們的復雜性同時能滿足人類的需求。
生態學的基本原理的應用思路,我認為是模仿自然生態系統的生物生產、能量流動、物質循環和信息傳遞而建立起人類社會組織,以自然能流為主,盡量減少人工附加能源,尋求以盡量小的消耗產生最大的綜合效益,解決目前人類面臨的各種環境危機。
較為流行的幾種思路如下:
1、實施可持續發展
1987年世界環境與發展委員會提出「滿足當代人的需要,又不對後代滿足其發展需要的能力構成威脅的發展」。可持續發展觀念協調社會與人的發展之間的關系,包括生態環境、經濟、社會的可持續發展,但最根本的是生態環境的可持續發展。
2、注重人與自然和諧發展
事實上造成當代世界面臨的空前嚴重的生態危機的重要原因就是以往人類對自然的錯誤認識。工業文明以來,人類憑借自認為先進的「高科技」試圖主宰、征服自然,這種嚴重錯誤的觀念和行為雖然帶來了經濟的飛躍,但造成的環境問題卻是不可彌補的。人類是生物界中的一分子,因此必須與自然界和諧共生,共同發展。
3、生態倫理道德觀
大量而隨意地破壞環境、消耗資源的發展道路是一種對後代和其他生物不負責任和不道德的發展模式。新型的生態倫理道德觀應該是發展經濟的同時還要考慮這些人類行為不僅有利於當代人類生存發展,還要為後代留下足夠的發展空間。
從生態學中分化出來的產業生態學、恢復生態學以及生態工程、城市生態建設等等,都是生態學基本原理推廣的成果。
在計算經濟生產中,不應認為自然資源是沒有價值的或者無限的,而是用生態價值觀念,應考慮到經濟發展對環境的破壞影響,利用科技的進步,將破壞降低到最大限度,同時倡導一種有利於物質良性循環的消費方式,即適可而止、持續、健康的消費觀。
[編輯本段]其它定義
生態學的定義還有很多:
生態學是研究生物(包括動物和植物)怎樣生活和它們為什麼按照自己的生活方式生活的科學。(埃爾頓,1927)
生態學是研究有機體的分布和多度的科學。(Andrenathes,1954)
生態學是研究生態系統的結構與功能的科學。(E.P.Om,1956)
生態學是研究生命系統之間相互作用及其機理的科學。(馬世駿,1980)
生態學是綜合研究有機體、物理環境與人類社會的科學。(E.P.Om,1997)

④ 什麼是自然生態

生態系統的概念是由英國生態學家坦斯利(A.G.Tansley, 1871~1955年)在1935年提出來的,他認為,「生態系統的基本概念是物理學上使用的『系統』整體。這個系統不僅包括有機復合體,而且包括形成環境的整個物理因子復合體」。「我們對生物體的基本看法是,必須從根本上認識到,有機體不能與它們的環境分開,而是與它們的環境形成一個自然系統。」「這種系統是地球表面上自然界的基本單位,它們有各種大小和種類。」隨著生態學的發展,人們對生態系統的認識不斷深入。20世紀40年代,美國生態學家林德曼(R.L.Lindeman)在研究湖泊生態系統時,受到我國「大魚吃小魚,小魚吃蝦米,蝦米吃泥巴」這一諺語的啟發,提出了食物鏈的概念。他又受到「一山不能存二虎的啟發,提出了生態金字塔的理論,使人們認識到生態系統的營養結構和能量流動的特點。今天,人們對生態系統這一概念的理解是:生態系統是在一定的空間和時間范圍內,在各種生物之間以及生物群落與其無機環境之間,通過能量流動和物質循環而相互作用的一個統一整體。生態系統是生物與環境之間進行能量轉換和物質循環的基本功能單位。 為了生存和繁衍,每一種生物都要從周圍的環境中吸取空氣、水分、陽光、熱量和營養物質;生物生長、繁育和活動過程中又不斷向周圍的環境釋放和排泄各種物質,死亡後的殘體也復歸環境。對任何一種生物來說,周圍的環境也包括其他生物。例如,綠色植物利用微生物活動從土壤中釋放出來的氮、磷、鉀等營養元素,食草動物以綠色植物為食物,肉食性動物又以食草動物為食物,各種動植物的殘體則既是昆蟲等小動物的食物,又是微生物的營養來源。微生物活動的結果又釋放出植物生長所需要的營養物質。經過長期的自然演化,每個區域的生物和環境之間、生物與生物之間,都形成了一種相對穩定的結構,具有相應的功能,這就是人們常說的生態系統。
[編輯本段]1. 生態系統的概念
生態系統(ecosystem)是英國生態學家Tansley於1935年首先提上來的,指在一定的空間內生物成分和非生物成分通過物質循環和能量流動相互作用、相互依存而構成的一個生態學功能單位。它把生物及其非生物環境看成是互相影響、彼此依存的統一整體。生態系統不論是自然的還是人工的,都具下列共同特性:(1)生態系統是生態學上的一個主要結構和功能單位,屬於生態學研究的最高層次。(2)生態系統內部具有自我調節能力。其結構越復雜,物種數越多,自我調節能力越強。(3)能量流動、物質循環是生態系統的兩大功能。(4)生態系統營養級的數目因生產者固定能值所限及能流過程中能量的損失,一般不超過5~6個。(5)生態系統是一個動態系統,要經歷一個從簡單到復雜、從不成熟到成熟的發育過程。
簡而言之:生態系統是由生物群落和它的無機環境相互作用而形成的統一整體
生態系統概念的提出為生態學的研究和發展奠定了新的基礎,極大地推動了生態學的發展。生態系統生態學是當代生態學研究的前沿。

⑤ 什麼是生態科學和環境保護技術

生態科學是指運用數學,物理學,化學,力學,生物學,分子生物學,邏輯學等學科的知識和原理來研究有機體及其周圍環境相互關系的學科。

這里涉及有機體與有機體的相互關系,有機體與環境的相互關系,環境的變化情況等等。環境保護技術屬於生態學的范疇,它是指運用生態學的原理和方法來保護或是凈化水、土、空氣等的技術。

人是生活在環境中的人,環境的質量的好壞直接影響到人的生活和生存問題。到目前為止,世界人口已經超過60億,而中國的人口已經超過13億。水源污染、空氣污染、土壤污染已經成了迫在眉睫的事情。

2006年重慶因水源污染而死亡的人數達100多人,影響到的村落達20餘個,人們每天等著消防車送純凈水的情景至今還歷歷在目。

2007年12月200多個國家雲集巴厘島,參加聯合國全球氣候變暖會議。目的是討論如何給地球降溫,具體地說,是一群「窮人」要求一群「富人」挑起降溫的重責並在經濟和技術上給予援助。

以上事實說明,環境問題已經是一個全球性的問題,在一個世界最大的發展中國家裡,中國的環境問題顯得尤為重要。在這樣的背景下,環境保護技術的重要性躍然紙上,不需多言。看看兩會及國務院的報告就知道,我國現在發展方向是生態社會。因此,人們在努力的尋找生態環境的保護與經濟發展的平衡點。在這樣一種前提下,對環境保護技術的依賴非常多。如:工廠污水的處理技術,生活污水的處理技術,化工廠廢氣的處理技術等。

環境保護技術行業的現實意義和潛力是非常巨大的。如:1993年到『十五』末,滇池治理目前接受各項資金僅為47.62億,其中中央補助和國債資金12.4億,其中省政府安排資金6.65億,昆明市出資24.37億,其他投資4.2億,這樣算下來年平均僅有3.7億。看看這個數據,我想你應該更明白這個行業的前景了。

只要你能這在個行業里做一點點兒的事,你每年的收入就可以達上千萬!可以,環境保護技術行業是一個暴利的行業!它不會過時,也不會走入低谷,只會「天天向上。」人口在增加,污染就會增加,那麼就必須利用環境保護技術。你說,這個行業有潛力在哪兒呢?污水處理技術,空氣凈化技術和土壤污染的處理技術。 但是,要想賺到錢,你必須和政府建立密切的合作關系,因為,他們手裡的錢就像一座座的金山,不靠近它,你能有賺頭嗎?

⑥ 生態學是什麼

生態學(Ecology)是研究有機體及其周圍環境相互關系的科學。
生物的生存、活動、繁殖需要一定的空間、物質與能量。生物在長期進化過程中,逐漸形成對周圍環境某些物理條件和化學成分,如空氣、光照、水分、熱量和無機鹽類等的特殊需要。各種生物所需要的物質、能量以及它們所適應的理化條件是不同的,這種特性稱為物種的生態特性。
任何生物的生存都不是孤立的:同種個體之間有互助有競爭;植物、動物、微生物之間也存在復雜的相生相剋關系。人類為滿足自身的需要,不斷改造環境,環境反過來又影響人類。
隨著人類活動范圍的擴大與多樣化,人類與環境的關系問題越來越突出。因此近代生態學研究的范圍,除生物個體、種群和生物群落外,已擴大到包括人類社會在內的多種類型生態系統的復合系統。人類面臨的人口、資源。環境等幾大問題都是生態學的研究內容。

⑦ 生態學的五個原理是什麼

以下是生態學的五個原理。
1、物質循環再生原理。例如:無廢棄農業,沼氣利用。
2、物種多樣性原理。例如:
森林生態系統,草原生態系統。
3、協調與平衡原理。例如:
三北防護林,沙漠防護林,需適應當地地區情況。
4、整體性原理。例如:人類與自然整體性,動物與自然整體性。
5、系統學和工程學原理。例如:稻田養魚養鴨,草原放牧。
以下是生態學的概念。
一、生態學(Ecology)是研究生物與環境之間相互關系及其作用機理的科學。
1、生物的生存、活動、繁殖需要一定的空間、物質與能量。生物在長期進化過程中,逐漸形成對周圍環境某些物理條件和化學成分,如空氣、光照、水分、熱量和無機鹽類等的特殊需要。
2、各種生物所需要的物質、能量以及它們所適應的理化條件是不同的,這種特性稱為物種的生態特性。
二、由於人口的快速增長和人類活動干擾對環境與資源造成的極大壓力。
1、人類迫切需要掌握生態學理論來調整人與自然、資源以及環境的關系,協調社會經濟發展和生態環境的關系,促進可持續發展任何生物的生存都不是孤立的。
2、同種個體之間有互助有競爭;植物、動物、微生態學。
三、生物之間也存在復雜的相生相剋關系。
1、人類為滿足自身的需要,不斷改造環境,環境反過來又影響人類。隨著人類活動范圍的擴大與多樣化。人類與環境的關系問題越來越突出。
2、近代生態學研究的范圍,除生物個體、種群和生物群落外,已擴大到包括人類社會在內的多種類型生態系統的復合系統。人類面臨的人口、資源、環境等幾大問題都是生態學的研究內容。

⑧ 什麼是生物學特性,生態學特性

樹木對環境條件的要求和適應能力,稱為樹木的生態學特性即生態習性。生物學特性,生物與生俱來的特有的內在品質。

昆蟲的生物學特性一般來說,生物學特性包括了各蟲態生活習性,幼蟲齡期,生活史,發生規律,行為,等等。生態學特性一般就是說生態因子對個體的影響,溫度、濕度、光照、食物等等。

(8)什麼是生態物理學擴展閱讀:

園林樹木的個體生長發育規律及其生長周期各階段的性狀表現。具體包括:由種子萌發,經幼苗、幼樹逐漸發育到開花結果,直到最後衰老死亡的整個生命過程的發生發展規律。

生物不僅具有多樣性,而且還具有一些共同的特徵和屬性。人們對這些共同的特徵、屬性和規律的認識,使內容十分豐富的生物學成為統一的知識體系。

生物物理學是用物理學的概念和方法研究生物的結構和功能、研究生命活動的物理和物理化學過程的學科。

早期生物物理學的研究是從生物發光、生物電等問題開始的,此後隨著生物學的發展,物理學新概念,如量子物理、資訊理論等的介入和新技術如 X衍射、光譜、波譜等的使用,生物物理的研究范圍和水平不斷加寬加深。

一些重要的生命現象如光合作用的原初瞬間捕捉光能的反應,生物膜的結構及作用機制等都是生物物理學的研究課題。生物大分子晶體結構、量子生物學以及生物控制論等也都屬於生物物理學的范圍。

閱讀全文

與什麼是生態物理學相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069