導航:首頁 > 物理學科 > 物理是什麼形成的

物理是什麼形成的

發布時間:2022-08-07 04:46:42

㈠ 物理學的發展史

近代意義的物理學誕生於歐洲15—17世紀。人們一般將歐洲歷史作為物理學史的社會背景。從遠古到公元5世紀屬古代史時期;5—13世紀為中世紀時期;14—16世紀為文藝復興運動時期;16—17世紀為科學革命時期,以N.哥白尼、伽利略、牛頓為代表的近代科學在此時期產生。

從此之後,科學隨各個世紀的更替而發展。近半個世紀,人們按照物理學史特點,將其發展大致分期如下:從遠古到中世紀屬古代時期。從文藝復興到19世紀,是經典物理學時期。牛頓力學在此時期發展到頂峰,其時空觀、物質觀和因果關系影響了光、聲、熱、電磁的各學科。

甚而影響到物理學以外的自然科學和社會科學。隨著20世紀的到來,量子論和相對論相繼出現;新的時空觀、概率論和不確定度關系等在宇觀和微觀領域取代牛頓力學的相關概念,人們稱此時期為近代物理學時期。

(1)物理是什麼形成的擴展閱讀:

伽利略·伽利雷(1564~1642年)人類現代物理學的創始人,奠定了人類現代物理科學的發展基礎。1900~1926年 建立了量子力學。1926年 建立了費米狄拉克統計。1927年 建立了布洛赫波的理論。1928年 索末菲提出能帶的猜想。1929年 派爾斯提出禁帶、空穴的概念。

同年貝特提出了費米面的概念。1947年貝爾實驗室的巴丁、布拉頓和肖克萊發明了晶體管,標志著信息時代的開始。1957年 皮帕得測量了第一個費米面超晶格材料納米材料光子。1958年傑克.基爾比發明了集成電路。20世紀70年代出現了大規模集成電路。

發展前景:

應用物理學專業的畢業生主要在物理學或相關的科學技術領域中從事科研、教學、技術開發和相關的管理工作。科研工作包括物理前沿問題的研究和應用,技術開 發工作包括新特性物理應用材料如半導體等,應用儀器的研製如醫學儀器、生物儀器、科研儀器等。

應用物理專業的就業范圍涵蓋了整個物理和工程領域,融物理理 論和實踐於一體,並與多門學科相互滲透。應用物理學專業的學生如具有扎實的物理理論的功底和應用方面的經驗,能夠在很多工程技術領域成為專家。我國每年培養本科應用物理專業人才約12000人。

和該專業存在交叉的專業包括物理專業,工程物理專業,半導體和材料專業等。人才需求方面,我國對應用物理專業的人才需求仍舊是供不應求。

㈡ 什麼叫物理現象、光是怎樣形成的

物理現象是通過物質的外在結構性質(如高度,速度、溫度、電磁性質、外形)的改變表現出來的,但是本質變化(如分子結構,化學性質等)的改變除外的所有自然或人為現象。

光是一種電磁波,有很多種原因可以形成,廣義上的光可以由自由電子振盪形成(無線電波),原子外層電子受激輻射(紅外線,可見光,紫外線),原子內層電子受激輻射(x射線)原子核(y射線)這是遠離.生活中最常見光--陽光是由太陽內發生的核反應後釋放的能量直接間接的使周圍的原子或原子核由低能級到高能級後,再由高能級回到低能級釋放的。

㈢ 物理學發展史是怎樣的

從遠古到公元5世紀屬古代史時期;5—13世紀為中世紀時期;14—16世紀為文藝復興運動時期;16—17世紀為科學革命時期,以N.哥白尼、伽利略、牛頓為代表的近代科學在此時期產生,從此之後,科學隨各個世紀的更替而發展。近半個世紀,人們按照物理學史特點,將其發展大致分期如下:

①從遠古到中世紀屬古代時期。

②從文藝復興到19世紀,是經典物理學時期。牛頓力學在此時期發展到頂峰,其時空觀、物質觀和因果關系影響了光、聲、熱、電磁的各學科,甚而影響到物理學以外的自然科學和社會科學。

③隨著20世紀的到來,量子論和相對論相繼出現;新的時空觀、概率論和不確定度關系等在宇觀和微觀領域取代牛頓力學的相關概念,人們稱此時期為近代物理學時期。

(3)物理是什麼形成的擴展閱讀:

物理學來源於古希臘理性唯物思想。早期的哲學家提出了許多范圍廣泛的問題,諸如宇宙秩序的來源、世界多樣性和各類變種的起源、如何說明物質和形式、運動和變化之間的關系等。

尤其是,以留基波、德謨克利特為代表,後又被伊壁鳩魯和盧克萊修發展的原子論,以及以愛利亞的芝諾為代表的斯多阿學派主張自然界連續性的觀點,對自然界的結構和運動、變化等作出各自的說明。原子論曾對從18世紀起的化學和物理學起著相當大的影響。

經典物理學形成之初,磨鏡與制鏡工藝對物理學與天文學都有過幫助和促進。早先發明的眼鏡以及在1600年左右突然問世的望遠鏡、顯微鏡,為伽利略等物理學家觀測天體帶來方便,也促使菲涅耳、笛卡爾、牛頓等一大批光學家作出幾何光學的研究。

後者的成就又促成反射望遠鏡、折射望遠鏡和消色差折射望遠鏡在17—18世紀紛紛問世。各種望遠鏡的進步又推動物理學的發展,如用它觀察木衛蝕、發現光行差等。當牛頓建立起經典力學大廈時,現代一切機械、土木建築、交通運輸、航空航天等工程技術的理論基礎也得到初步確立。

18世紀60年代開始的工業革命,以蒸汽機的廣泛使用為標志。起初,蒸汽機的熱機效率僅為5%左右,為提高蒸汽機的效率,一大批物理學家進行熱力學研究。J.瓦特曾根據J.布萊克的「潛熱」理論在技術因素上(加入冷凝器)改進蒸汽機。

但是,當時尚未有人認識到汽缸的熱僅僅部分地轉化為機械功。此後,卡諾建立了熱功轉換的循環原理,從理論上為熱機效率的提高指明了方向,也因此在19世紀下半葉出現了N.奧托和R.狄塞爾的內燃機。

除了物理學與技術之關系外,在科學發展史上,物理學與鄰近的天文學、化學和礦物學是密切相關的,而物理學與數學的聯系更為密切。物理學的概念、理論和方法,也幫助其他學科的建立與發展,如氣象學、地球科學、生物學等。物理學與哲學的關系也十分特別。

㈣ 物理學是如何產生的呢

『物理』一詞的最先出自希臘文φυσικ,原意是指自然。古時歐洲人稱呼物理學作「自然哲學」。從最廣泛的意義上來說即是研究大自然現象及規律的學問。漢語、日語中「物理」一詞起自於明末清初科學家方以智的網路全書式著作《物理小識》。 在物理學的領域中,研究的是宇宙的基本組成要素:物質、能量、空間、時間及它們的相互作用;藉由被分析的基本定律與法則來完整了解這個系統。物理在經典時代是由與它極相像的自然哲學的研究所組成的,直到十九世紀物理才從哲學中分離出來成為一門實證科學。 物理學與其他許多自然科學息息相關,如數學、化學、生物和地理等。特別是數學、化學、地理學。化學與某些物理學領域的關系深遠,如量子力學、熱力學和電磁學,而數學是物理的基本工具,地理的地質學要用到物理的力學,氣象學和熱學有關。 「物理」二字出現在中文中,是取「格物致理」四字的簡稱,即考察事物的形態和變化,總結研究它們的規律的意思。我國的物理學知識,在早期文獻中記載於《天工開物》等書中。 日本學者指出:「特別值得大書一筆的是,近世中國的漢譯著述成為日本翻譯西洋科學譯字的依據.」日本早期物理學史研究者桑木或雄說:「在我國最初把Physics稱為窮理學.明崇禎年間一本名叫《物理小識》的書,闡述的內容包括天文、氣象、醫葯等方面。早在宋代,同樣內容包含在『物類志』和『物類感應』等著述中,這些都是中國物理著作的淵源。」 明代呂坤(1536—1618)著有《呻吟語》,其中卷六第二部分名為「物理」,大體是有關物性學的,並用以引申一些關於人文及世界的觀點.宋代朱熹(1130—1200)等人常用「物之至理」或「物理」一詞.當代著名物理學家李政道曾引用唐代杜甫《曲江二首》中的詩句「細推物理須行樂,何用浮名絆此身」來說明物理一詞在盛唐即已出現。其實在中科院哲學研究所和北大哲學系編著的《中國哲學史資料簡編》(中華書局)「兩漢—隋唐」部分中就記載了三國時吳人楊泉曾著書《物理論》,是研究和評論當時有關天文、地理、工藝、農業及醫學知識的著作.更久遠的,在約公元前二世紀成書的《淮南子·覽冥訓》中有:「夫燧之取火於日,慈石引鐵,葵之向日,雖有明智,弗能然也,故耳目之察,不足以分物理;心意之論,不足以定是非」之論述。中國古代的「物理」,應是泛指一切事物的道理。

㈤ 物理學的初步形成到現在的近代物理經過什麼發展,各個時期的代表人物是誰

物理學概況及發展史
研究物質世界最基本的結構、最普遍的相互作用、最一般的運動規律及所使用的實驗手段和思維方法的一門學科。實驗手段和思維方法是物理學中不可或缺和極其重要的內容,後者如相對性原理、隔離體(包括系統)法、理想模型法、微擾法、量綱分析法等,在古典和現代物理學中都有重要應用。物理學一詞,源自希臘文physikos,很長時期內,它和自然哲學(naturalphilosophy)同義,探究物質世界最基本的變化規律。隨著生產的發展。社會的進步和文化知識的擴展、深化,物理學以純思辨的哲學演變到以實驗為基礎的科學。研究內容從較簡單的機械運動擴及到較復雜的光、熱、電磁等的變化,從宏觀的現象剖析深入到微觀的本質探討,從低速的較穩定的物體運動進展到高速的迅變的粒子運動。新的研究領域不斷開辟,而發展成熟的分支又往往分離出去,成為工程技術或應用物理學的一個分支,因此物理學的研究領域並非是一成不變的,研究方法不論是邏輯推理、數學分析和實驗手段,也因不斷精密化而有所創新,也難以用一個固定模式來概括。在19世紀發行的《不列顛網路全書》中,早已陸續地把力學、光學、熱學理論和電學、磁學,列為專條,而物理學這一條卻要到1971~1973年發行的第十四版上才首次出現。為了全面、系統地理解物理學整體,與其從定義來推敲,不如循歷史源流,從物理學的發生和發展的過程來探索。

發展史西方的先哲一般都認為宇宙萬物由幾個簡單的基本元素構成;千姿百態的各種運動也只是這些元素的量和質的變化。這些先進思想和他們的嚴謹的思辨方式,為後世的自然科學所繼承和發揚。但由於他們的觀察比較粗糙,又缺乏嚴格的數學論證,不免帶有不少的空想和臆測的成分。例如亞里士多德在所著的《物理學》中就認為大地或月下區域內的物體是由土、水、氣、火四元素構成,它們在宇宙中的「天然位置」是土位於最底層(即地球或宇宙中心),其上順次為水、氣、火,任一物體的運動取決於該物體中占最大數量的元素,在該元素的天然位置的上下作直線運動;月球以上的天體則由截然不同的第五元素即由純凈的以太(ether,希臘文的原意是燃燒或發光)構成的,它們的天然運動是圓周運動。前一運動是有生有滅、永遠變化的,後一運動則是無始無終、永遠不變的。這樣,天、地及其運動之間就存在不可逾越的鴻溝,這觀點對後來的科學發展起了負面作用。在中國,以物理為書名的,見之於三國、西晉時代會稽郡(今紹興)處士楊泉的《物理論》,他認為氣是「自然之體」,天是迴旋運轉的「元氣」,萬物是陰陽二氣的「陶化、播流、氣積」而成。不少中國的先哲認為氣或元氣是構成萬物的原始物質,陰陽二氣的消長是事物運動變化的原因。也有將「道」視為宇宙的本原及其普遍規律。這些和西方的觀點頗多相似之處。也都認為天、地遵循不同的運動規律,如《淮南子·天文訓》就說:「道始於虛霩,虛霩生宇宙,宇宙生氣,氣有涯垠,清陽者薄靡而為天,重濁者凝滯而為地。」清者上浮,濁者下沉,形成天地之別。

經典物理學的發展古希臘時代的阿基米德已經在流體靜力學和固體的平衡方面取得輝煌成就,但當時將這些歸入應用數學,並沒有將他的成果特別是他的精確實驗和嚴格的數學論證方法汲入物理學中。從希臘、羅馬到漫長的中世紀,自然哲學始終是亞里士多德的一統天下。到了文藝復興時期,哥白尼、布魯諾、開普勒和伽利略不顧宗教的迫害,向舊傳統挑戰,其中伽利略把物理理論和定律建立在嚴格的實驗和科學的論證上,因此被尊稱為物理學或科學之父。

伽利略的成就是多方面的,僅就力學而言,他以物體從光滑斜面下滑將在另一斜面上升到同一高度,推論出如另一斜面的傾角極小,為達到同一高度,物體將以勻速運動趨於無限遠,從而得出如無外力作用,物體將運動不息的結論。他精確地測定不同重量的物體以同一加速度沿光滑斜面下滑,並推論出物體自由下落時的加速度及其運動方程,駁倒了亞里士多德重物下落比輕物快的結論,並綜合水平方向的勻速運動和垂直地面方向的勻加速運動得出拋物線軌跡和45°的最大射程角,伽利略還分析「地常動移而人不知」,提出著名的「伽利略相對性原理」(中國的成書於1800年前的《尚書考靈曜》有類似結論)。但他對力和運動變化關系的分析仍是錯誤的。全面、正確地概括力和運動關系的是牛頓的三條運動定律,牛頓還把地面上的重力外推到月球和整個太陽系,建立了萬有引力定律。牛頓以上述的四條定律並運用他創造的「流數法」(即今微積分初步),解決了太陽系中的二體問題,推導出開普勒三定律,從理論上解決了地球上的潮汐問題。史稱牛頓是第一個綜合天上和地上的機械運動並取得偉大成就的物理學家。與此同時,幾何光學也有很大發展,在16世紀末或17世紀初,先後發明了顯微鏡和望遠鏡,開普勒、伽利略和牛頓都對望遠鏡作很大的改進。

法國在大革命的前後,人才輩出,以P.S.M.拉普拉斯為首的法國科學家(史稱拉普拉斯學派)將牛頓的力學理論發揚光大,把偏微分方程運用於天體力學,求出了太陽系內三體和多體問題的近似解,初步探討並解決了太陽系的起源和穩定性問題,使天體力學達到相當完善的境界。在牛頓和拉普拉斯的太陽系內,主宰天體運動的已經不是造物主,而是萬有引力,難怪拿破崙在聽完拉普拉斯的太陽系介紹後就問:你把上帝放在什麼地位?無神論者拉普拉斯則直率地回答:我不需要這個假設。

拉普拉斯學派還將力學規律廣泛用於剛體、流體和固體,加上W.R.哈密頓、G.G.斯托克斯等的共同努力,完善了分析力學,把經典力學推進到更高階段。該學派還將各種物理現象如熱、光、電、磁甚至化學作用都歸於粒子間的吸引和排斥,例如用光子受物質的排斥解釋反射,光微粒受物質的吸引解釋折射和衍射,用光子具有不同的外形以解釋偏振,以及用熱質粒子相互排斥來解釋熱膨脹、蒸發等等,都一度取得成功,從而使機械的唯物世界觀統治了數十年。正當這學派聲勢煊赫、如日中天時,受到英國物理學家T.楊和這個學派的後院法蘭西科學院及科學界的挑戰,J.B.V.傅里葉從熱傳導方面,T.楊、D.F.J.阿拉戈、A.-J.菲涅耳從光學方面,特別是光的波動說和粒子說(見光的二象性)的論爭在物理史上是一個重大的事件。為了駁倒微粒說,年輕的土木工程師菲涅耳在阿拉戈的支持下,製成了多種後以他的姓命名的干涉和衍射設備,並將光波的干涉性引入惠更斯的波陣面在介質中傳播的理論,形成惠更斯-菲涅耳原理,還大膽地提出光是橫波的假設,並用以研究各種光的偏振及偏振光的干涉,他創造了「菲涅耳波帶」法,完滿地說明了球面波的衍射,並假設光是以太的機械橫波解決了光在不同介質界面上反射、折射的強度和偏振問題,從而完成了經典的波動光學理論。菲涅耳還提出地球自轉使表面上的部分以太漂移的假設並給出曳引系數。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐測定光速在水中確比空氣中為小,從而確定了波動說的勝利,史稱這個實驗為光的判決性實驗。此後,光的波動說及以太論統治了19世紀的後半世紀,著名物理學家如法拉第、麥克斯韋、開爾文等都對以太論堅信不疑。另一方面,利用干涉儀內干涉條紋的移動,可以精確地測定長度、速度、曲率的極微細的變化;利用棱鏡和衍射光柵產生的光譜,可以確定地上和天上的物質的成分及原子內部的變化。因此這些光學儀器已成為物理學、分析化學、物理化學和天體物理學中的重要實驗手段。

蒸汽機的發明推動了熱學的發展,18世紀60年代在J.瓦特改進蒸汽機的同時,他的摯友J.布萊克區分了溫度和熱量,建立了比熱容和潛熱概念,發展了量溫學和量熱學,所形成的熱質說和熱質守恆概念統治了80多年。在此期間,盡管發現了氣體定律,度量了不同物質的比熱容和各類潛熱,但對蒸汽機的改進幫助不大,蒸汽機始終以很低的效率運行。1755年法國科學院堅定地否決了永動機。1807年T.楊以「能」代替萊布尼茲的「活力」,1826年J.V.彭賽列創造了「功」這個詞。1798年和1799年,朗福德和H.戴維分析了摩擦生熱,向熱質說挑戰;J.P.焦耳從19世紀40年代起到1878年,花了近40年時間,用電熱和機械功等各種方法精確地測定了熱功當量;生理學家J.R.邁爾和H.von亥姆霍茲,更從機械能、電能、化學能、生物能和熱的轉換,全面地說明能量既不能產生也不會消失,確立了熱力學第一定律即能量守恆定律。在此前後,1824年,S.卡諾根據他對蒸汽機效率的調查,據熱質說推導出理想熱機效率由熱源和冷卻源的溫度確定的定律。文章發表後並未引起注意。後經R.克勞修斯和開爾文分別提出兩種表述後,才確認為熱力學第二定律。克勞修斯還引入新的態函數熵;以後,焓、亥姆霍茲函數、吉布斯函數等態函數相繼引入,開創了物理化學中的重要分支——熱化學。熱力學指明了發明新熱機、提高熱機效率等的方向,開創了熱工學;而且在物理學、化學、機械工程、化學工程、冶金學等方面也有廣泛的指向和推動作用。這些使物理化學開創人之一W.[[奧斯特瓦爾德]]曾一度否認原子和分子的存在,而宣揚「唯能論」,視能量為世界的最終存在。但另一方面,J.C.麥克斯韋的分子速度分布率(見麥克斯韋分布)和L.玻耳茲曼的[[能量均分定理]]把熱學和力學綜合起來,並將概率規律引入物理學,用以研究大量分子的運動,創建了氣體分子動力論(現稱氣體動理論),確立了氣體的壓強、內能、比熱容等的統計性質,得到了與熱力學協調一致的結論。玻耳茲曼還進一步認為熱力學第二定律是統計規律,把熵同狀態的概率聯系起來,建立了統計熱力學。任何實際物理現象都不可避免地涉及能量的轉換和熱量的傳遞,熱力學定律就成為綜合一切物理現象的基本規律。經過20世紀的物理學革命,這些定律仍然成立。而且平衡和不平衡、可逆和不可逆、有序和無序乃至漲落和混沌等概念,已經從有關的自然科學分支中移植到社會科學中。

在19世紀20年代以前,電和磁始終認為是兩種不同的物質,因此,盡管1600年W.吉伯發表《論磁性》,對磁和地磁現象有較深入的分析,1747年B.富蘭克林提出電的單流質理論,闡明了正電和負電,但電學和磁學的發展是緩慢的,1800年A.伏打發明伏打電堆,人類才有能長期供電的電源,電開始用於通信;但要使用一個電弧燈,就需聯接2千個伏打電池,所以電的應用並不普及。1920年H.C.奧斯特的電流磁效應實驗,開始了電和磁的綜合,電磁學就迅猛發展,幾個月內,通過實驗A.-M.安培建立平行電流間的安培定律,並提出磁分子學說,J.-B.畢奧和F.薩伐爾建立載流導線對磁極的作用力(後稱畢-薩-拉定律),阿拉戈發明電磁鐵並發現磁阻尼效應,這些成就奠定了電磁學的基礎。1831年M.法拉第發現電磁感應現象,磁的變化在閉合迴路中產生了電流,完成了電和磁的綜合,並使人類獲得新的電源。1867年W.von西門子發明自激發電機,又用變壓器完成長距離輸電,這些基於電磁感應的設備,改變了世界面貌,創建了新的學科——電工學和電機工程。法拉第還把場的概念引入電磁學;1864年麥克斯韋進一步把場的概念數學化,提出位移電流和有旋電場等假設,建立了麥克斯韋方程組,完善了電磁理論,並預言了存在以光速傳播的電磁波。但他的成就並沒有即時被理解,直到H.R.赫茲完成這組方程的微分形式,並用實驗證明麥克斯韋預言的電磁波,具有光波的傳播速度和反射、折射干涉、衍射、偏振等一切性質,從而完成了電磁學和光學的綜合,並使人類掌握了最快速的傳遞各種信息的工具,開創了電子學這門新學科。

直到19世紀後半葉,電荷的本質是什麼,仍沒有搞清楚,盛極一時的以太論,認為電荷不過是以太海洋中的渦元。H.A.洛倫茲首先把光的電磁理論與物質的分子論結合起來,認為分子是帶電的諧振子,1892年起,他陸續發表「電子論」的文章,認為1859年J.普呂克爾發現的陰極射線就是電子束;1895年提出洛倫茲力公式,它和麥克斯韋方程相結合,構成了經典電動力學的基礎;並用電子論解釋了正常色散、反常色散(見光的色散)和塞曼效應。1897年J.J.湯姆孫對不同稀薄氣體、不同材料電極製成的陰極射線管施加電場和磁場,精確測定構成陰極射線的粒子有同一的荷質比,為電子論提供了確切的實驗根據。電子就成了最先發現的亞原子粒子。1895年W.K.倫琴發現X射線,延伸了電磁波譜,它對物質的強穿透力,使它很快就成為診斷疾病和發現金屬內部缺陷的工具。1896年A.-H.貝可勒爾發現鈾的放射性,1898年居里夫婦發現了放射性更強的新元素——釙和鐳,但這些發現一時尚未引起物理學界的廣泛注意。

20世紀的物理學到19世紀末期,經典物理學已經發展到很完滿的階段,許多物理學家認為物理學已接近盡頭,以後的工作只是增加有效數字的位數。開爾文在19世紀最後一個除夕夜的新年祝詞中說:「物理大廈已經落成,……動力理論確定了熱和光是運動的兩種方式,現在它的美麗而晴朗的天空出現兩朵烏雲,一朵出現在光的波動理論,另一朵出現在麥克斯韋和玻耳茲曼的能量均分理論。」前者指的是以太漂移和邁克耳孫-莫雷測量地球對(絕對靜止的)以太速度的實驗,後者指用能量均分原理不能解釋黑體輻射譜和低溫下固體的比熱。恰恰是這兩個基本問題和開爾文所忽略的放射性,孕育了20世紀的物理學革命。

1905年A.愛因斯坦為了解決電動力學應用於動體的不對稱(後稱為電動力學與伽利略相對性原理的不協調),創建了狹義相對論,即適用於一切慣性參考系的相對論。他從真空光速不變性出發,即在一切慣性系中,運動光源所射出的光的速度都是同一值,推出了同時的相對性和動系中尺縮、鍾慢的結論,完滿地解釋了洛倫茲為說明邁克耳孫-莫雷實驗提出的洛倫茲變換公式,從而完成了力學和電動力學的綜合。另一方面,狹義相對論還否定了絕對的空間和時間,把時間和空間結合起來,提出統一的相對的時空觀構成了四度時空;並徹底否定以太的存在,從根本上動搖了經典力學和經典電磁學的哲學基礎,而把伽利略的相對性原理提高到新的階段,適用於一切動體的力學和電磁學現象。但在動體或動系的速度遠小於光速時,相對論力學就和經典力學相一致了。經典力學中的質量、能量和動量在相對論中也有新的定義,所導出的質能關系為核能的釋放和利用提供了理論准備。1915年,愛因斯坦又創建廣義相對論,把相對論推廣到非慣性系,認為引力場同具有相當加速度的非慣性系在物理上是完全等價的,而且在引力場中時空是彎曲的,其曲率取決於引力場的強度,革新了宇宙空間都是平直的歐幾里得空間的舊概念。但對於范圍和強度都不很大的引力場如地球引力場,可以完全不考慮空間的曲率,而對引力場較強的空間如太陽等恆星的周圍和范圍很大的空間如整個可觀測的宇宙空間,就必須考慮空間曲率。因此廣義相對論解釋了用牛頓引力理論不能解釋的一些天文現象,如水星近日點反常進動、光線的引力偏析等。以廣義相對論為基礎的宇宙學已成為天文學的發展最快的一個分支。

另一方面,1900年M.普朗克提出了符合全波長范圍的黑體輻射公式,並用能量量子化假設從理論上導出,首次提出物理量的不連續性。1905年愛因斯坦發表光量子假設,以光的波粒二象性,解釋了光電效應;1906年又發表固體熱容的量子理論;1913年N.玻爾(見玻爾父子)發表玻爾氫原子理論,用量子概念准確地地計算出氫原子光譜的巴耳末公式,並預言氫原子存在其他線光譜,後獲證實。1918年玻爾又提出對應原理,建立了經典理論通向量子理論的橋梁;1924年L.V.德布羅意提出微觀粒子具有波粒二象性的假設,預言電子束的衍射作用;1925年W.泡利發表泡利不相容原理,W.K.海森伯在M.玻恩和數學家E.P.約旦的幫助下創立矩陣力學,P.A.M.狄拉克提出非對易代數理論;1926年E.薛定諤根據波粒二象性發表波動力學的一系列論文,建立了波函數,並證明波動力學和矩陣力學是等價的,遂即統稱為量子力學。同年6月玻恩提出了波函數的統計解釋,表明單個粒子所遵循的是統計性規律而非經典的確定性規律;1927年海森伯發表不確定性關系;1928年發表相對論電子波動方程,奠定了相對論性量子理論的基礎。由於一切微觀粒子的運動都遵循量子力學規律,因此它成了研究粒子物理學、原子核物理學、原子物理學、分子物理學和固體物理學的理論基礎,也是研究分子結構的重要手段,從而發展了量子化學這個化學新分支。

差不多同時,研究由大量粒子組成的粒子系統的量子統計法也發展起來了,包括1924年建立的玻色-愛因斯坦分布和1926年建立的費米-狄拉克分布,它們分別適應於自旋為整數和半整數的粒子系統。稍後,量子場論也逐漸發展起來了。1927年,狄拉克首先提出將電磁場作為一個具有無窮維自由度的系統進行量子化的方案,以處理原子中光的自發輻射和吸收問題。1929年海森伯和泡利建立了量子場論的普遍形式,奠定了量子電動力學的基礎。通過重正化解決了發散困難,並計算各階的輻射修正,所得的電子磁矩數值與實驗值只相差2.5×10-10,其准確度在物理學中是空前的。量子場論還正向統一場論的方向發展,即把電磁相互作用、弱相互作用、強相互作用和引力相互作用統一在一個規范理論中,已取得若干成就的有電弱統一理論、量子色動力學和大統一理論等。

物理學實驗與理論相互推進,並廣泛應用於各部門,成為技術革命的重要動力,也是20世紀物理學的一個顯著特徵。其中開展得最迅速的領域則是原子核物理學和粒子物理學。1905年E.盧瑟福等發表元素的嬗變理論說明放射性元素因放射a和β粒子轉變為另一元素,打破元素萬古不變的舊觀念;1911年盧瑟福又利用a粒子的大角度散射,確立了原子核的概念;1919年,盧瑟福用a粒子實現人工核反應。鑒於天然核反應不受外界條件的控制,當時人工核反應所消耗的能量又遠大於所獲得的核能,因此盧瑟福曾斷言核能的利用是不可能的。1932年2月,J.查德威克在約里奧·居里夫婦(1932年1月)和W.博特的實驗基礎上發現了中子,既解決構成原子核的一個基本粒子(和質子並稱為核子),又因它對原子核只有引力而無庫侖斥力,中子特別是慢中子成為誘發核反應、產生人工放射性核素的重要工具。1938年發現核裂變反應,1942年建成第一座裂變反應堆,完成裂變鏈式反應,1945年爆炸了第一顆原子彈,1954年建成了第一個原子能發電站,至今核裂變能已成為重要的能源。物理學家還從核聚變方向探索新能源:1938年H.A.貝特提出碳氮循環假說以氫聚變解釋太陽的能源,成為分析太陽內部結構和恆星演化的重要理論依據;1952年爆炸了第一顆氫彈。許多國家都在慣性約束聚變和磁約束聚變等不同方面,探索自控核聚變反應,以解決日趨匱乏的能源問題。

對基本粒子的研究,最初是和研究原子和原子核結構在一起的,先後發現了電子、質子和中子。1931年泡利為了解釋β衰變的能量守恆,提出中微子假設,於1956年證實。1932年C.D.安德森發現第一個反粒子即正電子,證實了狄拉克於1928年作出的一切粒子都存在反粒子的預言。在研究核內部結構時,發現核子間普遍存在強相互作用,以克服質子間的電磁相互作用,還了解核內存在數值比電磁作用小的弱相互作用,它是引起β衰變的主要作用。1934年湯川秀樹用介子交換的假設解釋強相互作用,但當時所用的粒子加速器的能量不足以產生介子,因此要在宇宙射線中尋找。1937年C.D.安德森在宇宙線內果然找到了一種質量介乎電子和質子間的粒子(後稱μ子),一度被認為介子,但以後發現它並無強作用。1947年C.F.鮑威爾在高山頂上利用核乳膠發現π介子。從50年代起,各國都把高頻、微波和自動控制技術引入加速器,製成大型高能加速器及對撞機等,成為粒子物理學的主要實驗手段,發現了幾百種粒子:將參與電磁、強、弱相互作用的粒子稱為強子,如核子、介子和質量超過核子的重子;只參與電磁和弱相互作用的粒子如電子、μ子、τ子稱輕子,並開始按對稱性分類。1955年發現當時稱為θ介子和τ介子的兩種粒子,它們的質量、壽命相同應屬一種粒子,但在弱相互作用下卻有兩種不同衰變方式,一種衰變成偶宇稱,一種為奇宇稱,究竟是一種或兩種粒子,被稱為θ-τ之謎。李政道和楊振寧仔細檢查了以往的弱作用實驗,確認這些實驗並未證實弱作用中宇稱守恆,從而以弱作用中宇稱不守恆,確定θ和τ是一種粒子,合稱K粒子。這是首次發現的對稱性破缺。對粒子間相互作用的研究還促進了量子電動力學的發展。60年代中期起,進一步研究強子結構,提出帶色的誇克假設,並用對稱性及其破缺來分析誇克和粒子的各種性質及各種相互作用;建立了電弱統一理論和量子色動力學,並正在探索將電磁、弱、強三種相互作用統一起來的大統一理論。

此外,基於19世紀末熱電子發射現象,1906年發明了具有放大作用的三極電子管,各種電子管紛紛出現,並和基於陰極射線的攝像管相結合,使電子工業,電子技術和電子學都迅速發展。1912年M.von勞厄發現X射線通過晶體時的衍射現象,後布拉格父子發展了研究固體的X射線衍射技術,在發現電子和離子的衍射現象後,鑒於它們的波長可以較X射線更短,發展了各種電子顯微鏡,其中掃描透射電鏡的分辨本領達到3,可以觀察到輕元素支持膜上的重原子,這些都成為研究固體結構及其表面狀態的重要實驗工具。在引入量子理論後固體物理學及所屬的表面物理學迅速開展起來了。在固體的能帶理論指導下,對半導體的研究取得很大成功,1947年製成了具有放大作用的晶體三極體,以後又發明其他類型晶體管和集成電路等半導體器件,使電子設備小型化,促進了電子計算機的發展,並開創了半導體物理學新學科。此外,以愛因斯坦的受激輻射理論為基礎,發展了激光技術,由於激光的高定向性、高單色性、高相乾性和高亮度,得到了廣泛的應用;在低溫物理學方面,H.卡默林-昂內斯於1906和1908年相繼液化了氫氣和氦氣,1911年發現金屬在溫度4K左右時的超導電性,以後超導物質有所增加,超導溫度也漸提高。現已證實,超導轉變溫度可提高到100餘開,並已開始應用於超導加速器等。

學科特點物理學是實驗科學,「實踐是真理的唯一標准」,物理學也同樣遵循這一標准。一切假說都必須以實驗為基礎,必須經受住實驗的驗證。但物理學也是思辨性很強的科學,從誕生之日起就和哲學建立了不解之緣。無論是伽利略的相對性原理、牛頓運動定律、動量和能量守恆定律、麥克斯韋方程乃至相對論、量子力學,無不帶有強烈的、科學的思辨性。有些科學家例如在19世紀中主編《物理學與化學》雜志的J.C.波根多夫曾經想把思辨性逐出物理學,先後兩次以具有思辨性內容為由,拒絕刊登邁爾和亥姆霍茲的論能量守恆的文章,終為後世所詬病。要發現隱藏在實驗事實後面的規律,需要深刻的洞察力和豐富的想像力。多少物理學家關注θ-τ之謎,唯有華裔美國物理學家李政道和楊振寧,經過縝密的思辨,檢查大量文獻,發現謎後隱藏著未經實驗鑒定的弱相互作用的宇稱守恆的假設。而從物理學發展史來看,每一次大綜合都促使物理學本身和有關學科的很大發展,而每一次綜合既以建立在大量精確的觀察、實驗事實為基礎,也有深刻的思辨內容。因此一般的物理工作者和物理教師,為了更好地應用和傳授物理知識,也應從物理學的整個體系出發,理解其中的重要概念和規律。

應用物理學是廣泛應用於生產各部門的一門科學,有人曾經說過,優秀的工程師應是一位好物理學家。物理學某些方面的發展,確實是由生產和生活的需要推動的。在前幾個世紀中,卡諾因提高蒸汽機的效率而發現熱力學第二定律,阿貝為了改進顯微鏡而建立光學系統理論,開爾文為了更有效地使用大西洋電纜發明了許多靈敏電學儀器;在20世紀內,核物理學、電子學和半導體物理、等離子體物理乃至超聲學、水聲學、建築聲學、雜訊研究等的迅速發展,顯然和生產、生活的需要有關。因此,大力開展應用物理學的研究是十分必要的。另一方面,許多推動社會進步,大大促進生產的物理學成就卻肇始於基本理論的探求,例如:法拉第從電的磁效應得到啟發而研究磁的電效應,促進電的時代的誕生;麥克斯韋為了完善電磁場理論,預言了電磁波,帶來了電子學世紀;X射線、放射性乃至電子、中子的發現,都來自對物質的基本結構的研究。從重視知識、重視人才考慮,尤應注重基礎理論的研究。因此為使科學技術達到世界前列,基礎理論研究是絕不能忽視的。

展望21世紀的前夕,科學家將從本學科出發考慮百年前景。物理學是否將如前兩三個世紀那樣,處於領先地位,會有一番爭議,但不會再有一位科學家像開爾文那樣,斷言物理學已接近發展的終端了。能源和礦藏的日漸匱乏,環境的日漸惡化,向物理學提出解決新能源、新的材料加工、新的測試手段的物理原理和技術。對粒子的深層次探索,解決物質的最基本的結構和相互作用,將為人類提供新的認識和改造世界的手段,這需要有新的粒子加速原理,更高能量的加速器和更靈敏、更可靠的探測器。實現受控熱核聚變,需要綜合等離子體物理、激光物理、超導物理、表面物理、中子物理等方面知識,以解決有關的一系列理論技術問題。總之,隨著新的技術革命的深入發展,物理學也將無限延伸。

㈥ 經典的物理學形成的基礎是什麼

從古希臘的數學與哲學研究開始,到亞里士多德的理論,後來是伽利略的實驗性的研究方法為物理學的研究開拓了一個新領域,也為牛頓的力學體系提供了前提理論。
經典物理學應該包括兩個部分,經典力學和電磁學。 電磁學先由法拉弟等人的實驗形成一些零散的理論,後來麥克斯韋把這些實驗理論統一到一個方程組里,電磁學理論就此形成一個體系。

㈦ 物理的定義

物理指事物的內在規律或道理。也指一門自然學科。

物理學是研究物質運動最一般規律和物質基本結構的學科。作為自然科學的帶頭學科,物理學研究大至宇宙,小至基本粒子等一切物質最基本的運動形式和規律,因此成為其他各自然科學學科的研究基礎。

它的理論結構充分地運用數學作為自己的工作語言,以實驗作為檢驗理論正確性的唯一標准,它是當今最精密的一門自然科學學科。

(7)物理是什麼形成的擴展閱讀:

回顧了物理學發展的歷史,討論了二十一世紀物理學發展的方向。可能應該從兩方面去探尋現代物理學革命的突破口:

(1)發現客觀世界中已知的四種力以外的其他力;

(2)通過審思相對論和量子力學的理論基礎的不完善性,重新定義時間、空間,建立新的理論。

二十世紀即將結,二十一世紀即將來臨,二十世紀是光輝燦爛的一個世紀,是個令社會發展最迅速的一個世紀,是科學技術發展最迅速的一個世紀,也是物理學發展最迅速的一個世紀。在 這一百年中發生了物理學革命,建立了相對性質和量子力學,完成了從經典物理學到現代物理學的轉變。

在二十世紀二、三十年代以後,現代物理學在深度和廣度上有了進一步的蓬勃發展,產生了一系列的新學科的交叉學科、邊緣學科,人類對物質世界的規律有了更深刻的認識,物理學理論達到了一個新高度,現代物理學達到了成熟的階段。

物理學的性質:

1、簡潔性:物理規律的數學語言,體現了物理的簡潔明快性。如:牛頓第二定律,愛因斯坦的質能方程,法拉第電磁感應定律。

2、對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發展變化或客觀規律的對稱性。

如:物理學中各種晶體的空間點陣結構具有高度的對稱性。豎直上拋運動、簡諧運動、波動鏡像對稱、磁電對稱、作用力與反作用力對稱、正粒子和反粒子、正物質和反物質、正電和負電等。

㈧ 物理是怎麼樣形成的

穿物理裝備,可以達到最高抗75.幫派捐滿1350萬,選大力混亂,也就第一組守護神,可以增加30點,一共105點.如果你是魔的話每4級會多點物理抗性,或是
女魔
轉的盤滿多少就增加或多或少的抗性修正.

㈨ 物理學的初步形成到現在的近代物理經過什麼發展,各個

力學知識最早起源於對自然現象的觀察和在生產勞動中的經驗。人們在建築、灌溉等勞動中使用杠桿、斜面、汲水等器具,逐漸積累起對平衡物體受力情況的認識。古希臘的阿基米德對杠桿平衡、物體重心位置、物體在水中受到的浮力等作了系統研究,確定它們的基本規律,初步奠定了靜力學即平衡理論的基礎。 古代人還從對日、月運行的觀察和弓箭、車輪等的使用中,了解一些簡單的運動規律,如勻速的移動和轉動。但是對力和運動之間的關系,只是在歐洲文藝復興時期以後才逐漸有了正確的認識。 伽利略在實驗研究和理論分析的基礎上,最早闡明自由落體運動的規律,提出加速度的概念。牛頓繼承和發展前人的研究成果(特別是開普勒的行星運動三定律),提出物體運動三定律。伽利略、牛頓奠定了動力學的基礎。牛頓運動定律的建立標志著力學開始成為一門科學。 此後,力學的研究對象由單個的自由質點,轉向受約束的質點和受約束的質點系。這方面的標志是達朗貝爾提出的達朗貝爾原理,和拉格朗日建立的分析力學。其後,歐拉又進一步把牛頓運動定律用於剛體和理想流體的運動方程,這看作是連續介質力學的開端。 運動定律和物性定律這兩者的結合,促使彈性固體力學基本理論和粘性流體力學基本理論孿生於世,在這方面作出貢獻的是納維、柯西、泊松、斯托克斯等人。彈性力學和流體力學基本方程的建立,使得力學逐漸脫離物理學而成為獨立學科。 從牛頓到漢密爾頓的理論體系組成了物理學中的經典力學。在彈性和流體基本方程建立後,所給出的方程一時難於求解,工程技術中許多應用力學問題還須依靠經驗或半經驗的方法解決。這使得19世紀後半葉,在材料力學、結構力學同彈性力學之間,水力學和水動力學之間一直存在著風格上的顯著差別。 20世紀初,隨著新的數學理論和方法的出現,力學研究又蓬勃發展起來,創立了許多新的理論,同時也解決了工程技術中大量的關鍵性問題,如航空工程中的聲障問題和航天工程中的熱障問題等。 這時的先導者是普朗特和卡門,他們在力學研究工作中善於從復雜的現象中洞察事物本質,又能尋找合適的解決問題的數學途徑,逐漸形成一套特有的方法。從20世紀60年代起,計算機的應用日益廣泛,力學無論在應用上或理論上都有了新的進展。 力學在中國的發展經歷了一個特殊的過程。與古希臘幾乎同時,中國古代對平衡和簡單的運動形式就已具備相當水平的力學知識,所不同的是未建立起像阿基米德那樣的理論系統。 在文藝復興前的約一千年時間內,整個歐洲的科學技術進展緩慢,而中國科學技術的綜合性成果堪稱卓著,其中有些在當時世界居於領先地位。這些成果反映出豐富的力學知識,但終未形成系統的力學理論。到明末清初,中國科學技術已顯著落後於歐洲。

閱讀全文

與物理是什麼形成的相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:994
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1343
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069