導航:首頁 > 物理學科 > 物理中有哪些導數公式

物理中有哪些導數公式

發布時間:2022-08-16 01:21:27

⑴ 基本導數公式有哪些

常用導數公式表如下:

c'=0(c為常數)

(x^a)'=ax^(a-1),a為常數且a≠0

(a^x)'=a^xlna

(e^x)'=e^x

(logax)'=1/(xlna),a>0且 a≠1

(lnx)'=1/x

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=(secx)^2

(secx)'=secxtanx

導函數:

如果函數y=f(x)在開區間內每一點都可導,就稱函數f(x)在區間內可導。這時函數y=f(x)對於區間內的每一個確定的x值,都對應著一個確定的導數值,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y'、f'(x)、dy/dx或df(x)/dx,簡稱導數。

⑵ 常見導數公式有哪些

常見導數公式有:(lnx)'=1/x、(sinx)'=cosx、(cosx)'=-sinx。

c'=0(c為常數)

(x^a)'=ax^(a-1),a為常數且a≠0

(a^x)'=a^xlna

(e^x)'=e^x

(logax)'=1/(xlna),a>0且 a≠1

(lnx)'=1/x

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=(secx)^2

(secx)'=secxtanx

(cotx)'=-(cscx)^2

基本初等函數的導數表

1.y=c y'=0

2.y=α^μ y'=μα^(μ-1)

3.y=a^x y'=a^x lna

y=e^x y'=e^x

4.y=loga,x y'=loga,e/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=(secx)^2=1/(cosx)^2

8.y=cotx y'=-(cscx)^2=-1/(sinx)^2

⑶ 高中導函數公式八個公式是什麼

八個公式:

y=c(c為常數) y'=0

y=x^n y'=nx^(n-1)

y=a^x y'=a^xlna y=e^x y'=e^x

y=logax y'=logae/x y=lnx y'=1/x

y=sinx y'=cosx

y=cosx y'=-sinx

y=tanx y'=1/cos^2x

y=cotx y'=-1/sin^2x

含義

如果函數f(x)在(a,b)中每一點處都可導,則稱f(x)在(a,b)上可導,則可建立f(x)的導函數,簡稱導數,記為f'(x)如果f(x)在(a,b)內可導,且在區間端點a處的右導數和端點b處的左導數都存在,則稱f(x)在閉區間[a,b]上可導,f'(x)為區間[a,b]上的導函數,簡稱導數。

⑷ 導數的四則運演算法則公式是什麼

導數公式指的是基本初等函數的導數公式,導數運演算法則主要包括四則運演算法則、復合函數求導法則(又叫「鏈式法則」)。


復合函數導數公式


(2)根據「復合函數求導公式」可知,「y對x的導數,等於y對u的導數與u對x的導數的乘積」。



【例】求y=sin(2x)的導數。



解:y=sin(2x)可看成y=sinu與u=2x的復合函數。



因為(sinu)'=cosu,(2x)'=2,



所以,[sin(2x)]'=(sinu)'×(2x)'



=cosu×2=2cosu=2cos(2x)。



五、可導函數在一點處的導數值的物理意義和幾何意義



(1)物理意義:可導函數在該點處的瞬時變化率。



(2)幾何意義:可導函數在該點處的切線斜率值。



【注】一次函數「kx+b(k≠0)」的導數都等於斜率「k」,即(kx+b)'=k。

⑸ 常見導數有哪些呢

常見的導數公式有:

1、y=c(c為常數)y'=0。

2、y=xAn y'=nx^(n-1)。

3、y=aAx y'=aAxlna,y=eAxy'=eAx。

4、y=logax y'=logae/x,y=Inx y'=1/x。

5、y=sinx y'=cosx。

6、y=cosx y'=-sinx。

7、y=tanx y'=1/cos^2x。

8、y=cotx y'=-1/sin A2x。

9、y=arcsinx y'=1/V1-x^2。

10、y=arccosx y'=-1/V1-x^2。

11、y=arctanx y'=1/1+x^2。

12、y=arccotx y'=-1/1+xA2。

導數是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則來源於極限的四則運演算法則。

可以利用導數的性質對上述式子進行證明,導數即為函數在某點的切線的斜率,即為在該點附近函數值得增量與自變數的增量之比(當自變數增量趨近於0時)。

導數的性質:

奇函數求導不一定是偶函數,例如:令f(x)=x^2,(x0),f(x)在原點沒有定義,同時不是偶函數。但f'(x)=2x(x不等於0)是奇函數。

求導是數學計算中的一個計算方法,它的定義就是,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。求導是微積分的基礎。

同時也是微積分計算的一個重要的支柱。物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。

⑹ 16個基本導數公式讀法

十六個基本導數公式如下(y:原函數;y':導函數):

1、y=c,y'=0(c為常數)

2、y=x^μ,y'=μx^(μ-1)(μ為常數且μ≠0)。

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。

4、y=logax, y'=1/(xlna)(a>0且 a≠1);y=lnx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=-sinx。

7、y=tanx,y'=(secx)^2=1/(cosx)^2。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y'=1/√(1-x^2)。

10、y=arccosx,y'=-1/√(1-x^2)。

11、y=arctanx,y'=1/(1+x^2)。

12、y=arccotx,y'=-1/(1+x^2)。

13、y=shx,y'=ch x。

14、y=chx,y'=sh x。

15、y=thx,y'=1/(chx)^2。

16、y=arshx,y'=1/√(1+x^2)。

(a(x),b(x)為子函數)

⑺ 導數公式有哪些

函數導數公式
這里將列舉幾個基本的函數的導數以及它們的推導過程:
1.y=c(c為常數)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
在推導的過程中有這幾個常見的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]&8226;g'(x)『f'[g(x)]中g(x)看作整個變數,而g'(x)中把x看作變數』
2.y=u/v,y'=(u'v-uv')/v^2
3.y=f(x)的反函數是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到
y=e^x
y'=e^x和y=lnx
y'=1/x這兩個結果後能用復合函數的求導給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導出導函數的,必須設一個輔助的函數β=a^⊿x-1通過換元進行計算。由設的輔助函數可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當a=e時有y=e^x
y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當a=e時有y=lnx
y'=1/x。
這時可以進行y=x^n
y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx&8226;(nlnx)'=x^n&8226;n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導出y=cosx
y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結果。
參考資料:http://blog.163.com/kumeir____2006@126/blog/static/1927743220085111102993/

⑻ 函數求導公式是什麼

高數常見函數求導公式如下圖:

求導是數學計算中的一個計算方法,它的定義就是,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。

在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。

一階導數的變化

如果一個函數的定義域為全體實數,即函數在實數域上都有定義。函數在定義域中一點可導需要一定的條件。

首先,要使函數f在一點可導,那麼函數一定要在這一點處連續。換言之,函數若在某點可導,則必然在該點處連續。可導的函數一定連續,不連續的函數一定不可導。

⑼ 16個基本導數公式是什麼

16個基本導數公式(y:原函數;y':導函數):

1、y=c,y'=0(c為常數)。

2、y=x^μ,y'=μx^(μ-1)(μ為常數且μ≠0)。

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。

4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=-sinx。

7、y=tanx,y'=(secx)^2=1/(cosx)^2。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y'=1/√(1-x^2)。

10、y=arccosx,y'=-1/√(1-x^2)。

11、y=arctanx,y'=1/(1+x^2)。

12、y=arccotx,y'=-1/(1+x^2)。

13、y=shx,y'=ch x。

14、y=chx,y'=sh x。

15、y=thx,y'=1/(chx)^2。

16、y=arshx,y'=1/√(1+x^2)。

導數的性質:

1、單調性:

(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。

(2)若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。

2、凹凸性:

可導函數的凹凸性與其導數的單調性有關。如果函數的導函數在某個區間上單調遞增,那麼這個區間上函數是向下凹的,反之則是向上凸的。

如果二階導函數存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函數是向下凹的,反之這個區間上函數是向上凸的。曲線的凹凸分界點稱為曲線的拐點。

以上內容參考:網路-導數

⑽ 常用導數公式有哪些

基本初等函數導數公式主要有以下

f(x)=x^n (n不等於0) f'(x)=nx^(n-1) (x^n表示x的n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等於1,x>0)

f(x)=e^x f'(x)=e^x

導數運演算法則如下

(f(x)+/-g(x))'=f'(x)+/- g'(x)

(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2

導數

是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

閱讀全文

與物理中有哪些導數公式相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:744
乙酸乙酯化學式怎麼算 瀏覽:1409
沈陽初中的數學是什麼版本的 瀏覽:1360
華為手機家人共享如何查看地理位置 瀏覽:1051
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:891
數學c什麼意思是什麼意思是什麼 瀏覽:1418
中考初中地理如何補 瀏覽:1309
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:709
數學奧數卡怎麼辦 瀏覽:1398
如何回答地理是什麼 瀏覽:1032
win7如何刪除電腦文件瀏覽歷史 瀏覽:1061
大學物理實驗干什麼用的到 瀏覽:1491
二年級上冊數學框框怎麼填 瀏覽:1710
西安瑞禧生物科技有限公司怎麼樣 瀏覽:993
武大的分析化學怎麼樣 瀏覽:1253
ige電化學發光偏高怎麼辦 瀏覽:1342
學而思初中英語和語文怎麼樣 瀏覽:1662
下列哪個水飛薊素化學結構 瀏覽:1428
化學理學哪些專業好 瀏覽:1491
數學中的棱的意思是什麼 瀏覽:1068