Ⅰ 物理學科中的概念「定性成立」是什麼意思
1、物理概念的形成
物理概念是由三大要素組成的:一是概念形成的基礎(感知活動、觀察實驗、經驗事實);二是概念形成的形式(概念結構、數學結構、知識結構);三是概念形成的方法(問題解決、科學方法、觀察證實)。在中學物理教學中,使學生形成清晰的物理概念,並使他們的智力、能力得到充分的發展,是中學物理教學的核心問題。
2、物理概念的特點
(1)物理概念是觀察、實驗與科學思維相結合的產物
一個概念的建立常常需要在觀察和分析一系列事實或實驗的基礎上,抽象概括一系列具體現象的共同特徵,進而判斷哪些因素是相關因素,從而抓住共同的本質特徵。對於所做出的判斷是否正確還需要通過實驗來檢驗。在復雜概念的形成過程中往往還需要有一定的科學推理。因此,可以說物理概念是觀察、實驗與科學思維相結合的產物。
(2)物理概念具有定量的性質
物理概念除了具有反映物體的物理性質(即定性的概念)如機械運動、干涉、衍射等;許多物理概念還能反映物體性質改變的變化量,也就是說它還具有質的規定性,這些概念被稱做定量性物理量。如速度、溫度、質量、電流強度、電場強度等。這種能反映物理概念量的規定性的概念就是所說的物理量。物理概念大多具有定量的性質,它總是與數學和測量聯系在一起。
Ⅱ 在物理學計算中,常用的思想和方法有哪些
你真的沒有找到學習物理的竅門,物理的學習不強調死記硬背,要注重理解概念規律的內涵與外延,注重把握基本的物理模型,更特別注重掌握常用的物理思想方法,主要有:
一、逆向思維法
逆向思維是解答物理問題的一種科學思維方法,對於某些問題,運用常規的思維方法會十分繁瑣甚至解答不出,而採用逆向思維,即把運動過程的「末態」當成「初態」,反向研究問題,可使物理情景更簡單,物理公式也得以簡化,從而使問題易於解決,能收到事半功倍的效果.
二、對稱法
對稱性就是事物在變化時存在的某種不變性.自然界和自然科學中,普遍存在著優美和諧的對稱現象.利用對稱性解題時有時可能一眼就看出答案,大大簡化解題步驟.從科學思維方法的角度來講,對稱性最突出的功能是啟迪和培養學生的直覺思維能力.用對稱法解題的關鍵是敏銳地看出並抓住事物在某一方面的對稱性,這些對稱性往往就是通往答案的捷徑.
三、圖象法
圖象能直觀地描述物理過程,能形象地表達物理規律,能鮮明地表示物理量之間的關系,一直是物理學中常用的工具,圖象問題也是每年高考必考的一個知識點.運用物理圖象處理物理問題是識圖能力和作圖能力的綜合體現.它通常以定性作圖為基礎(有時也需要定量作出圖線),當某些物理問題分析難度太大時,用圖象法處理常有化繁為簡、化難為易的功效. 四、假設法
假設法是先假定某些條件,再進行推理,若結果與題設現象一致,則假設成立,反之,則假設不成立.求解物理試題常用的假設有假設物理情景,假設物理過程,假設物理量等,利用假設法處理某些物理問題,往往能突破思維障礙,找出新的解題途徑.在分析彈力或摩擦力的有無及方向時,常利用該法.
五、整體、隔離法
物理習題中,所涉及的往往不只是一個單獨的物體、一個孤立的過程或一個單一的題給條件.這時,可以把所涉及到的多個物體、多個過程、多個未知量作為一個整體來考慮,這種以整體為研究對象的解題方法稱為整體法;而把整體的某一部分(如其中的一個物體或者是一個過程)單獨從整體中抽取出來進行分析研究的方法,則稱為隔離法.
六、圖解法
圖解法是依據題意作出圖形來確定正確答案的方法.它既簡單明了、又形象直觀,用於定性分析某些物理問題時,可得到事半功倍的效果.特別是在解決物體受三個力(其中一個力大小、方向不變,另一個力方向不變)的平衡問題時,常應用此法.
七、轉換法
有些物理問題,由於運動過程復雜或難以進行受力分析,造成解答困難.此種情況應根據運動的相對性或牛頓第三定律轉換參考系或研究對象,即所謂的轉換法.應用此法,可使問題化難為易、化繁為簡,使解答過程一目瞭然. 八、程序法
所謂程序法,是按時間的先後順序對題目給出的物理過程進行分析,正確劃分出不同的過程,對每一過程,具體分析出其速度、位移、時間的關系,然後利用各過程的具體特點列方程解題.利用程序法解題,關鍵是正確選擇研究對象和物理過程,還要注意兩點:一是注意速度關系,即第1個過程的末速度是第二個過程的初速度;二是位移關系,即各段位移之和等於總位移.
九、極端法
有些物理問題,由於物理現象涉及的因素較多,過程變化復雜,同學們往往難以洞察其變化規律並做出迅速判斷.但如果把問題推到極端狀態下或特殊狀態下進行分析,問題會立刻變得明朗直觀,這種解題方法我們稱之為極限思維法,也稱為極端法.
運用極限思維思想解決物理問題,關鍵是考慮將問題推向什麼極端,即應選擇好變數,所選擇的變數要在變化過程中存在極值或臨界值,然後從極端狀態出發分析問題的變化規律,從而解決問題.
有些問題直接計算時可能非常繁瑣,若取一個符合物理規律的特殊值代入,會快速准確而靈活地做出判斷,這種方法尤其適用於選擇題.如果選擇題各選項具有可參考性或相互排斥性,運用極端法更容易選出正確答案,這更加突出了極端法的優勢.加強這方面的訓練,有利於同學們發散性思維和創造性思維的培養.
十、極值法
常見的極值問題有兩類:一類是直接指明某物理量有極值而要求其極值;另一類則是通過求出某物理量的極值,進而以此作為依據解出與之相關的問題. 物理極值問題的兩種典型解法.
(1) 解法一是根據問題所給的物理現象涉及的物理概念和規律進行分析,明確題中的物理量是在什麼條件下取極值,或在出現極值時有何物理特徵,然後根據這些條件或特徵去尋找極值,這種方法更為突出了問題的物理本質,這種解法稱之為解極值問題的物理方法. (2)解法二是由物理問題所遵循的物理規律建立方程,然後根據這些方程進行數學推演,在推演中利用數學中已有的有關極值求法的結論而得到所求的極值,這種方法較側重於數學的推演,這種方法稱之為解極值問題的物理—數學方法.
此類極值問題可用多種方法求解:
①算術—幾何平均數法,即
a.如果兩變數之和為一定值,則當這兩個數相等時,它們的乘積取極大值. b.如果兩變數的積為一定值,則當這兩個數相等時,它們的和取極小值.
②利用二次函數判別式求極值 一元二次方程ax2+bx+c=0(a≠0)的根的判別式,具有以下性質:
Δ=b2- 4ac>0——方程有兩實數解; Δ=b2-4ac=0——方程有一實數解; Δ=b2-4ac<0——方程無實數解.
利用上述性質,就可以求出能化為ax2+bx+c=0形式的函數的極值. 十一、估演算法
物理估算,一般是指依據一定的物理概念和規律,運用物理方法和近似計算方法,對物理量的數量級或物理量的取值范圍,進行大致的推算.物理估算是一種重要的方法.有的物理問題,在符合精確度的前提下可以用近似的方法簡捷處理;有的物理問題,由於本身條件的特殊性,不需要也不可能進行精確的計算.在這些情況下,估算就成為一種科學而又有實用價值的特殊方法.
十二、守恆思想
能量守恆、機械能守恆、質量守恆、電荷守恆等守恆定律都集中地反映了自然界所存在的一種本質性的規律——「恆」.學習物理知識是為了探索自然界的物理規律,那麼什麼是自然界的物理規律?在千變萬化的物理現象中,那個保持不變的「東西」才是決定事物變化發展的本質因素.
從另一個角度看,正是由於物質世界存在著大量的守恆現象和守恆規律,才為我們處理物理問題提供了守恆的思想和方法.能量守恆、機械能守恆等守恆定律就是我們處理高中物理問題的主要工具,分析物理現象中能量、機械能的轉移和轉換是解決物理問題的主要思路.在變化復雜的物理過程中,把握住不變的因素,才是解決問題的關鍵所在.
Ⅲ 求解數學.物理.化學中所有重要的思想
一、在高中復習教學中,數學思想方法教學的途徑主要有:
1、用數學思想指導基礎復習,在基礎復習中培養思想方法。
① 基礎知識的復習中要充分展現知識形成發展過程,揭示其中蘊涵的豐富的數學思想方法。如討論直線和圓錐曲線的位置關系時的兩種基本方法:一是把直線方程和圓錐曲線方程聯立,討論方程組解的情況;二是從幾何圖形上考慮直線和圓錐曲線交點的情況,利用數形結合的思想方法,將會使問題清晰明了。
②注重知識在教學整體結構中的內在聯系,揭示思想方法在知識互相聯系、互相溝通中的紐帶作用。如函數、方程、不等式的關系,當函數值等於、大於或小於一常數時,分別可得方程,不等式,聯想函數圖象可提供方程,不等式的解的幾何意義。運用轉化、數形結合的思想,這中塊知識可相互為用。
例如、若關於 x的方程9x2+(4+a)3x+4=0有實根,求實數a的范圍。
分析:若令3x=t ,則t>0,原方程有解的充要條件是方程t2+(4+a)t+4=0有正根,故解得:a≤-8。這種解法是根據一元二次方程解的討論,思維方法是常規合理的,但解法繁瑣,若採取以下解法:因為a∈R,所以原方程有解的a的取值范圍為函數a= 的值域。根據基本不等式上式 a≤-2-4=-8。則思維突破常規,利用函數與方程的轉化,解法靈活簡捷。
2、用數學思想方法指導解題練習,在問題解決中運用思想方法,提高學生自覺運用數學思想方法的意識。
①注意分析探求解題思路時數學思想方法的運用。解題的過程就是在數學思想的指導下,合理聯想提取相關知識,調用一定數學方法加工、處理題設條件及知識,逐步縮小題設與題斷間的差異的過程。也可以說是運用化歸思想的過程,解題思想的尋求就自然是運用思想方法分析解決問題的過程。
②注意數學思想方法在解決典型問題中的運用。例如選擇題中的求解不等式:>x+1,雖然可以通過代數方法求解,但若用數形結合,轉化為半圓與直線的位置關系,問題將變得非常簡單。
③用數學思想指導知識、方法的靈活運用,進行一題多解的練習,培養思維的發散性,靈活性,敏捷性;對習題靈活變通,引伸推廣,培養思維的深刻性,抽象性;組織引導對解法的簡捷性的反思評估,不斷優化思維品質,培養思維的嚴謹性,批判性。對同一數學問題的多角度的審視引發的不同聯想,是一題多解的思維本源。豐富的合理的聯想,是對知識的深刻理解,及類比、轉化、數形結合、函數與方程等數學思想運用的必然。數學方法、數學思想的自覺運用往往使我們運算簡捷、推理機敏,是提高數學能力的必由之路。
二、高中數學中常用的思想方法有以下幾類:
1、函數與方程的思想方法。
函數描述了自然界中量的依存關系,是對問題本身的數量本質特徵和制約關系的一種動態刻畫。因此,函數思想的實質是提取問題的數學特徵,用聯系的變化的觀點提出數學對象,抽象其數學特徵,建立函數關系。很明顯,只有在對問題的觀察、分析、判斷等一系列的思維過程中,具備有標新立異、獨樹一幟的深刻性、獨創性思維,才能構造出函數原型,化歸為方程的問題,實現函數與方程的互相轉化接軌,達到解決問題的目的。函數知識涉及到的知識點多,面廣,在概念性、應用性、理解性上能達到一定的要求,有利於檢測學生的深刻性、獨創性思維。
2、數形結合的思想方法。
數形結合的思想,其實質是將抽象的數學語言與直觀的圖形結合起來,使抽象思維和形象思維結合,通過對圖形的認識,數形結合的轉化,可以培養思維的靈活性,形象性,使問題化難為易,化抽象為具體。
3、分類討論的思想方法。
分類討論是解決問題的一種邏輯方法,也是一種數學思想,這種思想在人的思維發展中有著重要的作用。原因有二,其一:具有明顯的邏輯性特點;其二:能訓練人的思維的條理性的概括性。
如「參數問題」對中學生來說並不十分陌生,它實際上是對具體的個別的問題的概括.從絕對值、算術根以及在一般情況下討論字母系數的方程、不等式、函數,到曲線方程等等,無不包含著參數討論的思想.但在含參數問題中,常常會碰到兩種情形:在一種情形下,參數變化並未引起所研究的問題發生質變,例如在 中,參數 的變化並未改變曲線系是拋物線系的性質;而在另一種情況下,參數的變化使問題發生了質變.例如曲線系 中,隨著 值的變化,該曲線可能是橢圓、雙曲線、圓、二平行直線等,因此需根據 的不同范圍分類討論.這種分類討論有時並不難,但問題主要在於有沒有討論的意識.在更多的情況下,「想不到要分類」比「不知如何分類」的錯誤更為普遍.這就是所謂「素質」的問題.良好的數學素養,需長期的磨練形成.
4、等價轉化的思想。
等價轉化思想是把未知解的問題轉化到在已有知識范圍內可解的問題的一種重要的數學思想方法,轉化包括等價轉化和非等價轉化,等價轉化要求轉化過程中前因後果應是充分必要的,這樣的轉化能保證轉化後的結果仍為原問題所需要的結果;而非等價轉化其過程是充分或必要的,這樣的轉化能給人帶來思維的閃光點,找到解決問題的突破口,是分析問題中思維過程的主要組成部分。
轉化思想貫穿於整個高中數學之中,每個問題的解題過程實質就是不斷轉化的過程。
Ⅳ 在高中物理的做題里定性分析,與定量分析是什麼舉個例子
定性就是重在性質。。定量重在量。舉一個簡單的例子;
一個人向東走,這是定性描述。
一個人向東走300米,這是定量描述。
定量比定性更加精確詳細
Ⅳ 物理上的定性和定量 有什麼區別
定性就是重在性質。。定量重在量。舉一個簡單的例子; 一個人向東走,這是定性描述。 一個人向東走300米,這是定量描述。 定量比定性更加精確詳細
Ⅵ 初中物理中定量分析和定性分析的區別,並舉一例
定性分析不需要計算具體的值,定量分析需要計算出具體的值,例如,甲10s跑40m,乙10s跑20m,則比較甲乙的速度大小關系,定性分析,相同時間內甲跑的比乙遠,所以甲的速度比乙大。定量分析,V甲=s/t=4m/s,V乙=s/t=2m/s,V甲>V乙
Ⅶ 物理分析中定性及定量分析分別是什麼 請舉例`
給你舉個例子~比如萬有引力公式使用范圍是R很大時當R很小時萬有引力公式就不適用了~但是可以用那個公式定性分析問題~也就是把豎直帶進去比較一下誰增大誰減小之類的問題 但不能用它來計算具體數值~類似的還有電場中的庫倫力
求採納
Ⅷ 好評!!物理學中定量和定性結論
定性結論是電流隨電壓的改變而改變。
定量結論是電流等於電壓和電阻的比值,也就是電流和電壓呈現正比例關系。
Ⅸ 物理實驗數據中,什麼是定性,什麼是定量
定性是指不需要用具體數字表達最終結果,如表述液體的壓強與液體深度的關系時,只用說液體的壓強隨液體深度的增加而增大定量是指用具體的數字或關系來表達結果,如表述液體的壓強與液體深度的關系時,要說成:液體的壓強跟液體的深度成正比。