Ⅰ 宇宙的年齡是多少
宇宙的年齡是138.2億年 。
宇宙年齡(age of universe)是指宇宙從某個特定時刻到現在的時間間隔。對於某些宇宙模型,如牛頓宇宙模型、等級模型、穩恆態模型等,宇宙年齡沒有意義。
在通常演化的宇宙模型里,宇宙年齡指宇宙標度因子為零起到時刻的時間間隔。通常,哈勃年齡是宇宙年齡的上限,可以作為宇宙年齡的某種度量。根據大爆炸宇宙模型推算,宇宙年齡大約138.2億年。
宇宙的年齡理論研究:
宇宙的年齡研究中雖然宇宙大爆炸說已經深入人心,人們已經默認了宇宙誕生於近140億年前的一次大爆炸中,宇宙萬物、星系、地球、生命都是在大爆炸之後逐漸形成的。
然而在這個理論出世之後,很多人也提出了另外一個問題:在宇宙大爆炸之前發生了什麼,5月5日《科學》雜志上發表的一篇研究論文稱解答了這個讓科學家們為之爭論不休的謎題。
美國普林斯頓大學的波爾·施泰恩加德和英國劍橋大學的尼爾·圖爾克這兩名理論物理學家在這篇論文里共同提出了一個理論,即宇宙大爆炸發生了不止一次,宇宙一直經歷著「生死輪回」的過程,而人們所認為的140億年前的宇宙大爆炸並非宇宙誕生的絕對起點,那隻是宇宙的一次新生。
Ⅱ 宇宙的年齡現在大約是幾歲
宇宙年齡(universe,age of)宇宙從某個特定時刻到現在的時間間隔。對於某些宇宙模型,如牛頓宇宙模型、等級模型、穩恆態模型等,宇宙年齡沒有意義。在通常的演化的宇宙模型里,宇宙年齡指宇宙標度因子為零起到現在時刻的時間間隔。通常,哈勃年齡是宇宙年齡的上限,可以作為宇宙年齡的某種度量。根據大爆炸宇宙模型推算,宇宙年齡大約200億年。
[編輯本段]年齡推算
宇宙年齡為一百二十五億年
科學家利用望遠鏡觀察最老的星球上的鈾光譜,從而估計宇宙的年齡是一千一百二十五億年。科學家對宇宙(Universe)的年齡有不同的估計,根據不同的宇宙學模型(cosmologicalmodels),科學家估計宇宙的年齡是介乎一百億至一百六十億之間;2001年科學家利用南歐洲天文台(EuropeanSouthernObservatory)的望遠鏡,觀察一顆稱CS31082-001的星球,量度星球上放射性(radioactive)同位素(isotope)鈾-238(Uranium-238)的光譜(spectrum),從而計算出這星球的年齡是一百二十五億年,這個估計的誤差大約三十億年,是亦即是說,宇宙的年齡至少有一百二十五億年,這是科學家第一次量度太陽系(SolarSystem)以外鈾含量的研究。
科學家解釋說,這個方法和在考古學(archaeology)上使用碳-14(Carbon-14)同位素量度物質的年齡一樣,鈾-238同位素的半衰期(half-life)是四十四億五千萬年;半衰期是放射性元素(element)自動蛻變成為其他元素,至它本身剩下一半時所需要的時間。
科學家指出,在宇宙開始時,大爆炸(BigBang)會產生氫(hydrogen)、氦(helium)和鋰(lithium)等元素,而比較重的元素是在星球內部產生,當星球死亡時,含有重元素的物質會散布到周圍的空間,然後和下一代個的星球結合;其實,地球上黃金(gold)也是從爆炸了的星球來。
因此,愈老的星球上的重元素,也會愈少,科學家認為,一些比較老的星球的重元素含量,只有太陽(Sun)的二百分之一。科學家曾經嘗試利用釷-232(Thorium-232)同位素來估計宇宙的年齡,釷是一種放射性金屬元素,與中子(neutron)接觸時會引起核分裂,產生原子能源(atomicenergy),不過,釷的半衰期是一百四十億五百萬年,半衰期比較鈾-238長,因此,估計的誤差也比較大。
[編輯本段]年齡將增加
2006年8月7日出版的美國《科學》雜志刊載文章說,一個由天文學家組成的國際團隊發表了一份最新報告稱,宇宙的年齡可能比原先設想的還要早20億年。科學家們已發現一個比原先預想還遠15%的鄰近星系,這意味著宇宙的年齡可能少估計了15%。但是另一些專家認為現在下結論還為時過早。
天文學家們通過觀測一顆階段性改變亮度的特殊行星,已經成功測定出許多遙遠星系的相對距離。但是為了知道這些星系距離人們究竟有多少光年,科學家們需要直接計算銀河系和一些星系之間的距離。這樣的測量很難進行。多少前以來,唯一測量出的可信的距離是鄰近的大麥哲倫星系,但是一些天文學家擔心它不同尋常的化學構成會影響計算。
現在,華盛頓卡耐基研究所的阿切斯特·波南斯和他的同事已經在銀河系的「鄰居」三角座星系中觀測到一顆正在逐漸暗淡的失色雙星。這個系統中的兩顆星星在它們的軌道上互相穿越,觀測這兩顆星星互相黯淡的過程讓天文學家們可以忽略兩顆星星的大小和它們釋放的能量。比較觀測到的亮度揭示了行星離地球的距離。
這個結果刊登在美國《天文物理期刊》上,它測算出三角座星系(同樣被稱為M33星)距離地球300萬光年,比通常人們認為的260萬光年遠了15%,後者是通過其他非直接的技術測量得出的。如果300萬年這個數據得到確定,新的距離暗示更遠的星系都將比原先遠15%,因為相對距離不會改變。而且因為宇宙的大小和年齡都以星系距離為基礎,結果宇宙的年齡從137億年增加到了157億年。
[編輯本段]宇宙年齡可能更長
德國科學家研究發現,宇宙深處的一個類星體上鐵物質含量要遠多於太陽系中任何一個星體。由於天體中鐵物質的形成需要極漫長的時間,在與太陽系天體鐵物質含量對比的基礎上,科學家提出宇宙年齡可能大於此前人們的猜測。
馬普學會地外物理學研究所和歐洲航天局的科學家們藉助XMM-NEWTON空間射線望遠鏡對這一編號為「APM08279+5255」的類星體上所含成分進行分析發現,雖然該類星體中似乎並不存在氧元素等,但其鐵物質含量大約是太陽系中單個星體的3倍左右。
科學家介紹說,根據現有認識,類星體及其所含鐵物質是在宇宙大爆炸後15億年左右才逐漸形成的,而天體中的鐵物質是在宇宙中星體燃燒爆炸之後經過聚變反應後形成的,也就是說,某個天體上的鐵物質只能在數十億年時間內才逐漸積聚起來。現有研究認為,宇宙的年齡至少為125億年,太陽系形成的時間約在90億年前。因此,以太陽系天體中鐵物質含量做對比,科學家認為這一新發現或者表明宇宙中存在一類人們迄今並無認識的富含鐵物質的星體,或者表明宇宙年齡要大於此前的猜測。
類星體是宇宙中一類體積相對較小,但能量巨大的天體。該類天體在一般光學觀測中類似恆星,但在分光觀測中,它的譜線具有很大的紅移,與恆星並不相同,因此被稱為類星體。中國學家蔡星宇曾推測說宇宙至少有一億歲。
[編輯本段]測定
波南斯的團隊已經做了「非常扎實的工作」,美國加州卡內基天文台的宇宙學家溫迪·弗里德曼說,她從20世紀90年代就開始領導一項大型的哈勃太空望遠鏡來測定宇宙距離的范圍。但是,她也認為,需要在一個星系中再找一對「黯淡的雙星」來改變人們現在對於宇宙年齡的想法。
夕法尼亞州的維拉諾瓦大學的天體物理學家愛德華·希安也同意這個觀點。他開拓了在鄰近大麥哲倫星系測試黯淡的雙星技術。他說。只有一顆星來說明結論是遠遠不夠的。同時,他還同樣擔心,波南斯團隊使用了一顆閃亮的行星,而非黯淡的雙星,因為他認為他們的理論模型還不是很扎實。「我的設想是三角座星系應該沒有那樣遙遠,」他說,「它可能會再次向地球移動。」
[編輯本段]研究理論
宇宙始於何時?將止於何時?這是宇宙留給人類最為神秘,也最難解釋的謎題。雖然宇宙大爆炸說已經深入人心,人們已經默認了宇宙誕生於近140億年前的一次大爆炸中,宇宙萬物、星系、地球、生命都是在大爆炸之後逐漸形成的。然而,在這個理論出世之後,很多人也提出了另外一個問題:在宇宙大爆炸之前發生了什麼?5月5日《科學》雜志上發表的一篇研究論文稱解答了這個讓科學家們為之爭論不休的謎題。美國普林斯頓大學的波爾·施泰恩加德和英國劍橋大學的尼爾·圖爾克這兩名理論物理學家在這篇論文里共同提出了一個理論,即宇宙大爆炸發生了不止一次,宇宙一直經歷著「生死輪回」的過程,而人們所認為的140億年前的宇宙大爆炸並非宇宙誕生的絕對起點,那隻是宇宙的一次新生。
誰讓宇宙加速膨脹讓科學家們注意到宇宙大爆炸不僅只有一次的是被科學家拋棄後又重新拾起的「宇宙常量」。所謂宇宙常量,是對真空中的能量的數學表述,並用希臘字母的第11個字母「拉姆達」表示,這種能量也被認為是神秘的「暗能量」,而這種神秘能量正在讓宇宙不斷加速膨脹。
美國太空網5月8日對英美科學家這一研究的報道中稱,當初愛因斯坦首次提出宇宙常量時,是想證明在宇宙間存在一種能量抗衡著星體間的重力作用,使得各星體不會因為相互的吸引而合到一起,最終讓整個宇宙的物質都融合成一體,因此他也想證明宇宙是靜止的,沒有生長也沒有萎縮。但沒過多久,愛因斯坦就拋棄了這個理論,他稱自己犯下了一生「最大的錯誤」。因為經他自己的廣義相對論公式的計算,宇宙正在膨脹,而天文學家埃德溫-哈勃經過觀察也證實了宇宙確實在膨脹。
20世紀90年代末期,「拉姆達」被科學家們重新拾起,這時一些天文學家發現宇宙不僅僅在膨脹,而且速度正在加快,科學家們不知道是什麼樣的神秘力量導致了這一結果,於是「暗能量」這個詞便產生了。並且科學家們認為「暗能量」就是宇宙常量「拉姆達」,在宇宙大爆炸後「拉姆達」沒有和重力「平分天下」,保持宇宙的平衡,而是從重力手中奪權,使星體間越來越遠,宇宙不斷膨脹。
宇宙常量應該幾何
宇宙常量該有多大,這是宇宙大爆炸發生次數的關鍵。美英科學家波爾·施泰恩加德和尼爾·圖爾克就是在對宇宙常量的大小計算中發現了宇宙大爆炸不應該只發生了一次。
科學界一直都試圖解釋的一個問題是為什麼自然界中的那麼多常量的值都是那麼正好,剛好讓生命存在。如果「拉姆達」太大,那麼宇宙就會在大爆炸後立刻迅速膨脹並撐破,就像吹爆的氣球,那麼生命就不可能在百億年後存在了。波爾教授在接受太空網的采訪中說:「『拉姆達』的值是物理學中最神秘的事物之一。它讓我們非常的迷惑。」甚至科學界出現了「人擇原理」,即宇宙常量恰當地選擇了人類生存,而人類也恰好選擇了在這樣一個常量條件下出現,而人類又回頭研究著為什麼宇宙常量大小會剛好讓人類生存。這聽起來確實不可思議,尼爾教授稱:「這簡直太糟了,真的該被拋棄了。這個理論就是想說明人類永遠不會了解宇宙的奧秘,這就是我們的生存之道。」
為了找到「人擇原理」之外合理的解釋,兩位科學家利用宇宙大爆炸模型計算宇宙常量,但得到的結果要比實際觀測到的宇宙常量大得多,是實際值的10的100次方倍,也就是根本不適合現在宇宙中的生命生存。宇宙常量的大小說到底還關繫到人類的生存。因此波爾教授和尼爾教授認為在宇宙大爆炸後宇宙常量(也就是「暗能量」)都會隨著時間的推移而減弱。但是經過進一步的計算後,他們發現140億年根本不夠將爆炸後的值減弱的現在這個值。劍橋大學的尼爾教授說:「人們認為時間開始於那次大爆炸,但從沒有一個合理的解釋。而我們的推論看起來就非常的激進:在宇宙大爆炸之前是存在時間的。」
大爆炸不止一次發生宇宙年齡超乎科學家想像兩位科學家的理論顛覆了人們的「常識」,在人們常常猜想時間將止於何時的時候,他們又告訴了人們時間沒有起點。既然「拉姆達」的值在近140億年中減弱到現在這個適合生命存在的值,那麼,兩位科學家就想到了宇宙大爆炸也許發生了不止一次,每一次的大爆炸都讓宇宙常量有所減弱。在產生了現在我們生活的這個宇宙之前,很可能是在萬億年中宇宙大爆炸發生了很多次。尼爾教授說:「我想,宇宙的年齡可能遠遠大於萬億年。時間沒有開始,根據理論宇宙的年齡是無限大的,而宇宙范圍也是無限大的。」
在2002年,這兩位科學家就提出了宇宙進化經歷著「生死輪回」這個觀點。宇宙就是在一次次大爆炸後重生,在每一次的「輪回」中,宇宙都在膨脹中消耗原有的物質,在宇宙常量減弱的同時也產生了一些新的粒子,直到另一次的大爆炸到來,然後新的粒子又形成了新的物質、天體乃至生命。
如果這兩位科學家的假設是正確的,那麼下一次的大爆炸將在什麼時候到來?尼爾教授說:「不論計算多麼准確,人們都無法預料下一次大爆炸的時間,但可以說的是,下一次的大爆炸不會在之後的100億年內發生。」
Ⅲ 有關宇宙方面的資料
發展軌跡
宇宙的形狀現在
宇宙大爆炸(5張)還是未知的,人類在大膽想像。有的人說宇宙其實是一個類似人的這樣一種生物的一個小細胞,而也有人說宇宙是一種擁有比人類更高智慧的電腦生物所製造出來的一個程序或是一個小小的原件,宇宙其實就是一個電子,宇宙是一個比電子更小得多的東西,宇宙根本就不存在,或者宇宙是無形的。根據大爆炸理論,宇宙的發展史可表示為一個右端開放的封閉曲面體,如右圖。左端中心為爆炸奇點,向右延伸137億光年,到達我們現在這個開口部。從左往右依次為:奇點、40萬年的初期膨脹、近4億年的黑暗期、出現恆星、星系和行星發展期、含有暗物質與暗能量的加速膨脹期。
編輯本段年齡
年齡定義
絢爛的宇宙(40張)宇宙年齡定義:宇宙年齡(age of universe)宇宙從某個特定時刻到現在的時間間隔。對於某些宇宙模型,如牛頓宇宙模型、等級模型、穩恆態模型等,宇宙年齡沒有意義。在通常的演化的宇宙模型里,宇宙年齡指宇宙標度因子為零起到現在時刻的時間間隔。通常,哈勃年齡為宇宙年齡的上限,可以作為宇宙年齡的某種度量。
年齡推算
宇宙年齡約為137.5億年 使用整個星系作為透鏡觀看其他星系,目前研究人員最新使用一種精確方法測量了宇宙的體積大小和年齡,以及它如何快速膨脹。這項測量證實了「哈勃常數」的實用性,它指示出了宇宙的體積大小,證實宇宙的年齡約為137.5億年。
宇宙最大結構-史隆長城(33張)研究小組使用一種叫做引力透鏡的技術測量了從明亮活動星系釋放的光線沿著不同路徑傳播至地球的距離,通過理解每個路徑的傳播時間和有效速度,研究人員推斷出星系的距離,同時可分析出它們膨脹擴張至宇宙范圍的詳細情況。 科學家經常很難識別宇宙中遙遠星系釋放的明亮光源和近距離昏暗光源之間的差異,引力透鏡迴避了這一問題,能夠提供遠方光線傳播的多樣化線索。這些測量信息使研究人員可以測定宇宙的體積大小,並且天體物理學家可以用哈勃常數進行表達。 KIPAC研究員菲爾-馬歇爾(Phil Marshall)說:「長期以來我們知道透鏡能夠對哈勃常數進行物理性測量。」而當前引力透鏡實現了非常精確的測量結果,它可以作為一種長期確定的工具提供哈勃常數均等化精確測量,比如:觀測超新星和宇宙微波背景。他指出,引力透鏡可作為天體物理學家的一種最佳測量工具測定宇宙的年齡。
編輯本段宇宙結構觀念的發展
眾多的觀點
遠古時代,人們對宇宙結構的認識處於十分幼稚的狀態,他們通常按照自己的生活環境對宇宙的構造
璀璨的宇宙星空作出推測。在中國西周時期,生活在華夏大地上的人們提出的早期蓋天說認為,天穹像一口鍋,倒扣在平坦的大地上;後來又發展為後期蓋天說,認為大地的形狀也是拱形的。公元前7世紀,巴比倫人認為,天和地都是拱形的,大地被海洋所環繞,而其中央則是高山。古埃及人把宇宙想像成以天為盒蓋、大地為盒底的大盒子,大地的中央則是尼羅河。古印度人想像圓盤形的大地負在幾只大象上,而象則站在巨大的龜背上,公元前7世紀末,古希臘的泰勒斯認為,大地是浮在水面上的巨大圓盤,上面籠罩著拱形的天穹。 也有一些人認為,地球只是一隻龜上的一片甲板,而龜則是站在一個托著一個又一個的龜塔...
地球原來是球形
最早認識到大地是球形的是古希臘人。公元前6世紀,畢達哥拉斯從美學觀念出發,認為一切立體圖形中最美的是球形,主張天體和我們所居住的大地都是球形的。這一觀念為後來許多古希臘學者所繼承,但直到1519~1522年,葡萄牙的F.麥哲倫率領探險隊完成了第一次環球航行後 ,地球是球形的觀念才最終被證實。
地心說、日心說和萬有引力定律
公元2世紀,C.托勒密提出了一個完整的地心說。這一學說認為地球在宇宙的中央安然不動,月亮、太陽和諸行星以及最外層的恆星天都在以不同速度繞著地球旋轉。為了說明行星運動的不均勻性,他還認為行星在本輪上繞其中心轉動,而本輪中心則沿均輪繞地球轉動。地心說曾在歐洲流傳了1000多年。1543年,N.哥白尼提出科學的日心說,認為太陽位於宇宙中心,而地球則是一顆沿圓軌道繞太陽公轉的普通行星。到16世紀哥白尼建立日心說後才普遍認識到:地球是繞太陽公轉的行星之一,而包括地球在內的八大行星則構成了一個圍繞太陽旋轉的行星系── 太陽系的主要成員。1609年,J.開普勒揭示了地球和諸行星都在橢圓軌道上繞太陽公轉,發展了哥白尼的日心說,同年,伽利略·伽利雷則率先用望遠鏡觀測天空,用大量觀測事實證實了日心說的正確性。1687年,I.牛頓提出了萬有引力定律,深刻揭示了行星繞太 自然顏色下的土星
陽運動的力學原因,使日心說有了牢固的力學基礎。在這以後,人們逐漸建立起了科學的太陽系概念。
宇宙里不光只有銀河系
在哥白尼的宇宙圖像中,恆星只是位於最外層恆星天上的光點。1584年,喬爾丹諾·布魯諾大膽取消了這層恆星天,認為恆星都是遙遠的太陽。18世紀上半葉,由於E.哈雷對恆星自行的發展和J.布拉得雷對恆星遙遠距離的科學估計,布魯諾的推測得到了越來越多人的贊同。18世紀中葉,T.賴特、I.康德和J.H.朗伯推測說,布滿全天的恆星和銀河構成了一個巨大的天體系統。弗里德里希·威廉·赫歇爾首創用取樣統計的方法,用望遠鏡數出了天空中大量選定區域的星數以及亮星與暗星的比例,1785年首先獲得了一幅扁而平、輪廓參差、太陽居中的銀河系結構圖,從而奠定了銀河系概念的基礎。在此後一個半世紀中,H.沙普利發現了太陽不在銀河系中心、J.H.奧爾特發現了銀河系的自轉和旋臂,以及許多人對銀河系直徑、厚度的測定,科學的銀河系概念才最終確立。 太陽
18世紀中葉,康德等人還提出,在整個宇宙中,存在著無數像我們的天體系統(指銀河系)那樣的天體系統。而當時看去呈雲霧狀的「星雲」很可能正是這樣的天體系統。此後經歷了長達170年的曲折的探索歷程,直到1924年,才由E.P.哈勃用造父視差法測仙女座大星雲等的距離確認了河外星系的存在。
河外星系離我們越來越近
近半個世紀,人們通過對河外星系的研究,不僅已發現了星系團、超星系團等更高層次的天體系統,而且已使我們的視野擴展到遠達大約200億光年的宇宙深處。
編輯本段宇宙演化觀念的發展
宇宙
在中國,早在西漢時期,《淮南子·俶真訓》指出:「有始者,有未始有有始者,有未始有夫未始有有始者」,認為世界有它的開辟之時,有它的開辟以前的時期,也有它的開辟以前的以前的時期。《淮南子·天文訓》中還具體勾畫了世界從無形的物質狀態到渾沌狀態再到天地萬物生成演變的過程。在古希臘,也存在著類似的見解。例如留基伯就提出,由於原子在空虛的空間中作旋渦運動,結果輕的物質逃逸到外部的虛空,而其餘的物質則構成了球形的天體,從而形成了我們的世界。 太陽系概念確立以後,人們開始從科學的角度來探討太陽系的起源。1644年,R.笛卡爾提出了太陽系起源的旋渦說;1745年,G.L.L.布豐提出了一個因大彗星與太陽掠碰導致形成行星系統的太陽系起源說;1755年和1796年,康德和拉普拉斯則各自提出了太陽系起源的星雲說。現代探討太陽系起源z的新星雲說正是在康德-拉普拉斯星雲說的基礎上發展起來。
編輯本段銀河系
1911年,E.赫茨普龍建立了第一幅銀河星團的顏色星等圖;1913年,伯特蘭·阿瑟·威廉·羅素則繪出了恆星的光譜-光度圖,即赫羅圖。羅素在獲得此圖後便提出了一個恆星從紅巨星開始,先收縮進入主序,後沿主序下滑,最終成為紅矮星的恆星演化學說。1924年 ,亞瑟·斯坦利·愛丁頓提出了恆星的質光關系;1937~1939年,C.F.魏茨澤克和貝特揭示了恆星的能源來自於氫聚變為氦的原子核反應。這兩個發現導致了羅素理論被否定,並導致了科學的恆星演化理論的誕生。對於星系起源的研究,起步較遲,目前普遍認為,它是我們的宇宙開始形成的後期由原星系演化而來的。 銀河系
1917年,A.阿爾伯特·愛因斯坦運用他剛創立的廣義相對論建立了一個「靜態、有限、無界」的宇宙模型,奠定了現代宇宙學的基礎。1922年,G.D.弗里德曼發現,根據阿爾伯特·愛因斯坦的場方程,宇宙不一定是靜態的,它可以是膨脹的,也可以是振盪的。前者對應於開放的宇宙,後者對應於閉合的宇宙。1927年,G.勒梅特也提出了一個膨脹宇宙模型.1929年 哈勃發現了星系紅移與它的距離成正比,建立了著名的哈勃定律。這一發現是對膨脹宇宙模型的有力支持。20世紀中葉,G.伽莫夫等人提出了熱大爆炸宇宙模型,他們還預言,根據這一模型,應能觀測到宇宙空間目前殘存著溫度很低的背景輻射。1965年微波背景輻射的發現證實了伽莫夫等人的預言。從此,許多人把大爆炸宇宙模型看成標准宇宙模型。1980年,美國的古斯在熱大爆炸宇宙模型的 基礎上又進一步提出了大爆炸前期暴漲宇宙模型。這一模型可以解釋目前已知的大多數重要觀測事實。
編輯本段宇宙圖景
當代天文學的研究成果表明,宇宙是有層次結構的、像布一樣的、不斷膨脹、物質形態多樣的、不斷運動發展的天體系統。 層次結構 行星是最基本的天體系統。太陽系中共有八顆行星:水星金星地球火星木星土星天王星海王星。 (冥王星目前已被從行星里開除,降為矮行星)。除水星和金星外,其他行 蜘蛛星雲
星都有衛星繞其運轉,地球有一個衛星 月球,土星的衛星最多,已確認的有28顆。行星小行星彗星和流星體都圍繞中心天體太陽運轉,構成太陽系。太陽占太陽系總質量的99.86%,其直徑約140萬千米,最大的行星木星的直徑約14萬千米。太陽系的大小約120億千米(以冥王星作邊界)。有證據表明,太陽系外也存在其他行星系統。2500億顆類似太陽的恆星和星際物質構成更巨大的天體系統——銀河系。銀河系中大部分恆星和星際物質集中在一個扁球狀的空間內,從側面看很像一個「鐵餅」,正面看去?則呈旋渦狀。銀河系的直徑約10萬光年,太陽位於銀河系的一個旋臂中,距銀心約3萬光年。銀河系外還有許多類似的天體系統,稱為河外星系,常簡稱星系。現已觀測到大約有10億個。星系也聚集成大大小小的集團,叫星系團。平均而言,每個星系團約有百餘個星系,直徑達上千萬光年。現已發現上萬個星系團。包括銀河系在內約40個星系構成的一個小星系團叫本星系群。若干星系團集聚在一起構成更大、更高一層次的天體系統叫超星系團。超星系團往往具有扁長的外形,其長徑可達數億光年。通常超星系團內只含有幾個星系團,只有少數超星系團擁有幾十個星系團。本星系群和其附近的約50個星系團構成的超星系團叫做本超星系團。目前天文觀測范圍已經擴展到200億光年的廣闊空間,它稱為總星系。 麥哲倫星雲&
宇宙歷史
編輯本段起源
宇宙的不斷膨脹
宇宙大爆炸圖冊(6張)一般認為,宇宙產生於150億年前一次大爆炸中。大爆炸後30億年,最初的物質漣漪出現。大爆炸後20億~30億年,類星體逐漸形成。大爆炸後100億年,太陽誕生。38億年前地球上的生命開始逐漸演化。 大爆炸散發的物質在太空中漂游,由許多恆星組成的巨大的星系就是由這些物質構成的,我們的太陽就是這無數恆星中的一顆。原本人們想像宇宙會因引力而不再膨脹,但是,科學家已發現宇宙中有一種 「暗能量」會產生一種斥力而加速宇宙的膨脹。 大爆炸後的膨脹過程是一種引力和斥力之爭,爆炸產生的動力是一種斥力,它使宇宙中的天體不斷遠離;天體間又存在萬有引力,它會阻止天體遠離,甚至力圖使其互相靠近。引力的大小與天體的質量有關,因而大爆炸後宇宙的最終歸宿是不斷膨脹,還是最終會停止膨脹並反過來收縮變小,這完全取決於宇宙中物質密度的大小。 宇宙內圍為引力,宇宙外圍為斥力(暗能量)
理論上存在某種臨界密度。如果宇宙中物質的平均密度小於臨界密度,宇宙就會一直膨脹下去,稱為「開宇宙」;要是物質的平均密度大於臨界密度,膨脹過程遲早會停下來,並隨之出現收縮,稱為「閉宇宙」。 問題似乎變得很簡單,但實則不然。理論計算得出的臨界密度為5×8^-30克/厘米3。但要測定宇宙中物質平均密度就不那麼容易了。星系間存在廣袤的星系間空間,如果把目前所觀測到的全部發光物質的質量平攤到整個宇宙空間,那麼,平均密度就只有2×10^-31克/厘米3,遠遠低於上述臨界密度。 然而,種種證據表明,宇宙中還存在著尚未觀測到的所謂的暗物質,其數量可能遠超過可見物質,這給平均密度的測定帶來了很大的不確定因素。因此,宇宙的平均密度是否真的小於臨界密度仍是一個有爭議的問題。不過,就目前來看,開宇宙的可能性大一些。 恆星演化到晚期,會把一部分物質(氣體)拋入星際 NGC 5139 半人馬座Ω
空間,而這些氣體又可用來形成下一代恆星。這一過程中氣體可能越來越少(並未確定這種過程會減少這種氣體。)。以致於不能再產生新的恆星。10^14年後,所有恆星都會失去光輝,宇宙也就變暗。同時,恆星還會因相互作用不斷從星系逸出,星系則因損失能量而收縮,結果使中心部分生成黑洞,並通過吞食經過其附近的恆星而長大。(根據質能守恆定律,形成恆星的氣體並不會減少而是轉換成其他形態。所以新的恆星可能會一直產生.) 10^17~10^18年後,對於一個星系來說只剩下黑洞和一些零星分布的死亡了的恆星,這時,組成恆星的質子不再穩定。10^32年後,質子開始衰變為光子和各種輕子。10^71年後,這個衰變過程進行完畢,宇宙中只剩下光子、輕子和一些巨大的黑洞。 10^108年後,通過蒸發作用,有能量的粒子會從巨大的黑洞中逃逸出。宇宙將歸於一片黑暗。這也許就是開宇宙「末日」到來時的景象,但它仍然在不斷地、緩慢地膨脹著。(但質子是否會衰變還未得到結論,因此根據質能守恆定律。宇宙中的質能會不停的轉換。) 閉宇宙的結局又會怎樣呢?閉宇宙中,膨脹過程結束時間的早晚取決於宇宙平均密度的大小。如果假設平均密度是臨界密度的2倍,那麼根據一種簡單的理論模型,經過400~500億年後,當宇宙半徑擴大到目前的2倍左右時,引力開始占上風,膨脹即告停止,而接下來宇宙便開始收縮。 以後的情況差不多就像一部宇宙影片放映結束後再倒放一樣,大爆炸後宇宙中所發生的一切重大變化將會反演。收縮幾百億年後,宇宙的平均密度又大致回到目前的狀態,不過,原來星系遠離地球的退行運動將代之以向地球接近的運動。再過幾十億年,宇宙背景輻射會上升到400開,並繼續上升,於是,宇宙變得非常熾熱而又稠密。 在坍縮過程中,星系會彼此並合,恆星間碰撞頻繁。 這些結局也只是假想推論的。 近幾年來,一批西方的天文學家發表了關於「宇宙無始無終」的新論斷。他們認為,宇宙既沒有「誕生」之日,也沒有終結之時,而就是在一次又一次的大爆炸中進行運動,循環往復,以至無窮的。 至於「宇宙無始無終」的新論是否正確,科學家認為,過幾年國際天文學界可望對此做出驗證。
編輯本段宇宙的創生
1.有些宇宙學家認為,暴漲模型最徹底的改革也許是觀測宇宙中所有的物質和能量從無中產生的觀點,這種觀點之所以在以前不能為人們接受,是因為存在著許多守恆定律,特別是重子數守恆和能量守恆。但隨著大統一理論的發展,重子數有可能是不守恆的,而宇宙中的引力能可粗略地說是負的,並精確地抵消非引力能,總能量為零。因此就不存在已知的守恆律阻止觀測宇宙從無中演化出來的問題。這種「無中生有」的觀點在哲學上包括兩個方面:①本體論方面。如果認為「無」是絕對的虛無,則是錯誤的。這不僅違反了人類已知的科學實踐,而且也違反了暴漲模型本身。按照該模型,我們所研究的觀測宇宙僅僅是整個暴漲區域的很小的一部分,在觀測宇宙之外並不是絕對的「無」。現在觀測宇宙的物質是從假真空狀態釋放出來的能量轉化而來的,這種真空能恰恰是一種特殊的物質和能量形式,並不是創生於絕對的「無」。如果進一步說這種真空能起源於「無」,因而整個觀測宇宙歸根到底起源於「無」,那麼這個「無」也只能是一種未知的物質和能量形式。②認識論和方法論方面。暴漲模型所涉及的宇宙概念是自然科學的宇宙概念。這個宇宙不論多麼巨大,作為一個有限的物質體系 ,也有其產生、發展和滅亡的歷史。暴漲模型把傳統的大爆炸宇宙學與大統一理論結合起來,認為觀測宇宙中的物質與能量形式不是永恆的,應研究它們的起源。它把「無」作為一種未知的物質和能量形式,把「無」和「有」作為一對邏輯范疇,探討我們的宇宙如何從「無」——未知的物質和能量形式,轉化為「有」——已知的物質和能量形式,這在認識論和方法論上有一定意義。 2. 宇宙是如何起源的?空間和時間的本質是什麼?這是從2000多年前的古代哲學家到現代天文學家一直都在苦苦思索的問題。經過了哥白尼、赫歇爾、哈勃的從太陽系、銀河系、河外星系的探索宇宙三部曲,宇宙學已經不再是幽深玄奧的抽象哲學思辯,而是建立在天文觀測和物理實驗基礎上的一門現代科學。 目前學術界影響較大的「大爆炸宇宙論」是1927年由比利時數學家勒梅特提出的,他認為最初宇宙的物質集中在一個超原子的「宇宙蛋」里,在一次無與倫比的大爆炸中分裂成無數碎片,形成了今天的宇宙。1948年,俄裔美籍物理學家伽莫夫等人,又詳細勾畫出宇宙由一個緻密熾熱的奇點於150億年前一次大爆炸後,經一系列元素演化到最後形成星球、星系的整個膨脹演化過程的圖像。但是該理論存在許多使人迷惑之處。 宏觀宇宙是相對無限延伸的。「大爆炸宇宙論」關於宇宙當初僅僅是一個點,而它周圍卻是一片空白,即將人類至今還不能確定范圍也無法計算質量的宇宙壓縮在一個極小空間內的假設只是一種臆測。況且從能量與質量的正比關系考慮,一個小點無緣無故地突然爆炸成浩瀚宇宙的能量從何而來呢? 人類把地球繞太陽轉一圈確定為衡量時間的標准——年。但宇宙中所有天體的運動速度都是不同的,在宇宙范圍,時間沒有衡量標准。譬如地球上東西南北的方向概念在宇宙范圍就沒有任何意義。既然年的概念對宇宙而言並不存在,大爆炸宇宙論又如何用年的概念去推算宇宙的確切年齡呢? 1929年,美國天文學家哈勃提出了星系的紅移量與星系間的距離成正比的哈勃定律,並推導出星系都在互相遠離的宇宙膨脹說。哈勃定律只是說明了距離地球越遠的星系運動速度越快--星系紅移量與星系距離呈正比關系。但他沒能發現很重要的另一點--星系紅移量與星系質量也呈正比關系。 宇宙中星系間距離非常非常遙遠,光線傳播因空間物質的吸收、阻擋會逐漸減弱,那些運動速度越快的星系就是質量越大的星系。質量大,能量輻射就強,因此我們觀察到的紅移量極大的星系,當然是質量極大的星系。這就是被稱作「類星體」的遙遠星系因質量巨大而紅移量巨大的原因。另外那些質量小、能量輻射弱的星系(除極少數距銀河系很近的星系,如大、小麥哲倫星系外)則很難觀察到,於是我們現在看到的星系大多呈紅移。而銀河系內的恆星由於距地球近,大小恆星都能看到,所以恆星的紅移紫移數量大致相等。 導致星系紅移多紫移少的另一原因是:宇宙中的物質結構都是在一定范圍內圍繞一個中心按圓形軌跡運動的,不是像大爆炸宇宙論描述的從一個中心向四周作放射狀的直線運動。因此,從地球看到的紫移星系范圍很窄,數量極少,只能是與銀河系同一方向運動的,前方比銀河系小的星系;後方比銀河系大的星系。只有將來研製出更高分辨程度的天文觀測儀器才能看到更多的紫移星系。 宇宙中的物質分布出現不平衡時,局部物質結構會不斷發生膨脹和收縮變化,但宇宙整體結構相對平衡的狀態不會改變。僅憑從地球角度觀測到的部分(不是全部)可見星系與地球之間距離的遠近變化,不能說明宇宙整體是在膨脹或收縮。就像地球上的海洋受引力作用不斷此漲彼消的潮汐現象並不說明海水總量是在增加或減少一樣。 1994年,美國卡內基研究所的弗里德曼等人,用估計宇宙膨脹速率的辦法計算宇宙年齡時,得出一個80~120億年的年齡計算值。然而根據對恆星光譜的分析,宇宙中最古老的恆星年齡為140~160億年。恆星的年齡倒比宇宙的年齡大。 1964年,美國工程師彭齊亞斯和威爾遜探測到的微波背景輻射,是因為布滿宇宙空間的各種物質相互之間能量傳遞產生的效果。宇宙中的物質輻射是時刻存在的,3K或5K的溫度值也只是人類根據自己判斷設計的一種衡量標准。這種能量輻射現象只能說明宇宙中的物質由於引力作用,在大尺度空間整體分布的相對均勻性和星際空間里確實存在大量我們目前還觀測不到的「暗物質」。 至於大爆炸宇宙論中的氦豐度問題,氦元素原本就是宇宙中存在的僅次於氫元素的數量極豐富的原子結構,它在空間的百分比含量和其它元素的百分比含量同樣都屬於物質結構分布規律中很平常的物理現象。在宇宙大尺度范圍中,不僅氦元素的豐度相似,其餘的氫、氧……元素的豐度也都是相似的。而且,各種元素是隨不同的溫度、環境而不斷互相變換的,並不是始終保持一副面孔,所以微波背景輻射和氦豐度與宇宙的起源之間看不出有任何必然的聯系。 大爆炸宇宙論面臨的難題還有,如果宇宙無限膨脹下去,最後的結局如何呢?德國物理學家克勞修斯指出,能量從非均勻分布到均勻分布的那種變化過程,適用於宇宙間的一切能量形式和一切事件,在任何給定物體中有一個基於其總能量與溫度之比的物理量,他把這個物理量取名為「熵」,孤立系統中的「熵」永遠趨於增大。但在宇宙中總會有高「熵」和低「熵」的區域,不可能出現絕對均勻的狀態。所以,那種認為由於「熵」水平的不斷升高而達到最大值時,宇宙就會進入一片死寂的永恆狀態,最終「熱寂」而亡的結局,是把我們現在可觀測到的一部分宇宙范圍當作整個宇宙的誤識。 根據天文觀測資料和物理理論描述宇宙的具體形態,星系的形態特徵對研究宇宙結構至關重要,從星系的運動規律可以推斷整個宇宙的結構形態。而星系共有的圓形旋渦結構就是整個宇宙的縮影,那些橢圓、棒旋等不同的星系形態只是因為星系年齡和觀測角度不同而產生的視覺效果。 奇妙的螺旋形是自然界中最普遍、最基本的物質運動形式。這種螺旋現象對於認識宇宙形態有著重要的啟迪作用,大至旋渦星系,小至DNA分子,都是在這種螺旋線中產生。大自然並不認可筆直的形式,自然界所有物質的基本結構都是曲線運動方式的圓環形狀。從原子、分子到星球、星系直到星系團、超星系團無一例外,毋庸置疑,浩瀚的宇宙就是一個大旋渦。因此,確立一個「螺旋運動形態宇宙模型」,比那種作為所有物質總和的「宇宙」卻脫離曲線運動模式而獨辟蹊徑,以直線運動方式從一個中心向四面八方無限伸展的「大爆炸宇宙模型」,更能體現真實的宇宙結構形態。
編輯本段大爆炸宇宙模型
理論簡介
(big-bang model) 一種廣為認可的宇宙演化理論。其要點是,宇宙是從溫度和密度都極高的狀態中由一次「大爆炸」產生的。時間至少發生在100億年前。這種模型基於兩個假設:第一是愛因斯坦提出的,能正確描述宇宙物質的引力作用的廣義相對論;第二是所謂宇宙學原理,即宇宙中的觀測者所看到的事物既同觀測的方向無關也同所處的位置無關。這個原理只適用於宇宙的大尺度上,而它也意味著宇宙是無邊的。因此,宇宙的大爆炸源不是發生在空間的某一點,而是發生在同一時間的整個空間內。有這兩個假設,就能計算出宇宙從某一確定時間(稱為普朗克時間)起始的歷史,而在此之前,何種物理規律在起作用至今還不清楚。宇宙從那時起迅速膨脹,使密度和溫度從原來極高的狀態降下來,緊接著,預示質子衰變的一些過程也使物質的數量遠超過反物質,如同我們今天所看到的一樣。許多基本粒子在這一階段也可能出現。過了幾秒鍾,宇宙溫度就降低到能形成某些原子核。這一理論還預言能形成一定數量的氫、氦和鋰的核素,豐度同今天所看到的一致。大約再過100萬年後,宇宙進一步冷卻,開始形成原子,而充滿宇宙中的輻射則在宇宙空間自由傳播。這種輻射稱為宇宙微波背景輻射,它已經被觀測所證實。除了原始物質和輻射外大爆炸理論還預言,現在宇宙中應充滿中微子,它們是無質量或無電荷的基本粒子。現在科學家們正在努力找尋這種物質。
Ⅳ 宇宙到底有多大啊
宇宙年齡
宇宙年齡定義
宇宙年齡(universe,age of)宇宙從某個特定時刻到現在的時間間隔。對於某些宇宙模型,如牛頓宇宙模型、等級模型、穩恆態模型等,宇宙年齡沒有意義。在通常的演化的宇宙模型里,宇宙年齡指宇宙標度因子為零起到現在時刻的時間間隔。通常,哈勃年齡是宇宙年齡的上限,可以作為宇宙年齡的某種度量。根據大爆炸宇宙模型推算,宇宙年齡大約200億年。
年齡推算
宇宙年齡為一百二十五億年
科學家利用望遠鏡觀察最老的星球上的鈾光譜,從而估計宇宙的年齡是一百二十五億年。科學家對宇宙(Universe)的年齡有不同的估計,根據不同的宇宙學模型(cosmologicalmodels),科學家估計宇宙的年齡是介乎一百億至一百六十億之間;2001年科學家利用南歐洲天文台(EuropeanSouthernObservatory)的望遠鏡,觀察一顆稱CS31082-001的星球,量度星球上放射性(radioactive)同位素(isotope)鈾-238(Uranium-238)的光譜(spectrum),從而計算出這星球的年齡是一百二十五億年,這個估計的誤差大約三十億年,是亦即是說,宇宙的年齡至少有一百二十五億年,這是科學家第一次量度太陽系(SolarSystem)以外鈾含量的研究。
科學家解釋說,這個方法和在考古學(archaeology)上使用碳-14(Carbon-14)同位素量度物質的年齡一樣,鈾-238同位素的半衰期(half-life)是四十四億五千萬年;半衰期是放射性元素(element)自動蛻變成為其他元素,至它本身剩下一半時所需要的時間。
科學家指出,在宇宙開始時,大爆炸(BigBang)會產生氫(hydrogen)、氦(helium)和鋰(lithium)等元素,而比較重的元素是在星球內部產生,當大質量星球死亡時,含有重元素的物質會散布到周圍的空間,然後和下一代個的星球結合;其實,地球上黃金(gold)也是從爆炸了的星球而來的。
因此,愈老的星球上的重元素,也會愈少,科學家認為,一些比較老的星球的重元素含量,只有太陽(Sun)的二百分之一。科學家曾經嘗試利用釷-232(Thorium-232)同位素來估計宇宙的年齡,釷是一種放射性金屬元素,與中子(neutron)接觸時會引起核分裂,產生原子能源(atomicenergy),不過,釷的半衰期是一百四十億五百萬年,半衰期比較鈾-238長,因此,估計的誤差也比較大。
宇宙形態:
至於宇宙是什麼結構的,目前的科學界幾乎沒有任何確切的觀點。
根據愛因斯坦的理論,他認為宇宙是一個封閉的圓球體。
宇宙很可能是有限無邊的。
『邊緣』很可能是一個有著很大的力,足以使任何的物質在靠近它時,都會受到一個斥力,從而使該物體發聲『絕對』運動方向發生改變,但是其實它的相對運動方向並沒有改變,因為這個斥力影響著整個宇宙。我們可以理解成,有一個人在地球上有一個很大功率的望遠鏡朝某一方向望去,很可能在某年後會在該鏡里看到地球甚至自己,其原因就是當光以徑直的方向向前運行時(不考慮其他力),在不斷靠近這堵『牆』時會不斷的受到一個斥力,漸漸的的,這個斥力越來越大,使得光以一定的曲率彎曲而繼續運行。最終,回到原點。(至於是不是球形的就不知道了,圓球體既然那是一種完美的形狀或狀態的話,我想宇宙有是會去『考慮』的)
簡單的講,如果在二維的基礎上,人的速度只要不超過每秒7.9km時我們始終不會走出地球外。這時,在某種角度上來講我們會認為這地球是無限大的。
而實際上,這個邊緣並不存在,簡單的想像一下一個無限大的立體平面促接成了一個類似圓球體。
或者在想像一下,我們在地球上行走,只要不飛離地球,我們就會認為地球是無限大的。
再有,對於在地球行走的我們其實並不能察覺到地球是圓的,由由於重力的原因,我們似乎察覺到的行走感覺是平面,同樣的道理,宇宙的空間其實是一個圓的或者說以一定曲率彎曲的空間,只不過,宇宙裡面的所有物體都遵循這種曲率運行,而由於參照物的原因,致使我們不能察覺到。
而這個扭曲的空間其實是互相承接的,是一個封閉的空間,就像上面說的那樣,由於受到扭曲曲率的影響,當我們以一定速度超前運動,不考慮其他因素,我們將回在未來的某年內回到原點。
我們不能以我們的感覺去度量、察看宇宙的形態。我們所有的感覺但是局限性的。就像我們不感知異常小的物質(原子等)或者異常大的物質(宇宙或者地球)一樣。目前,我們所擁有的感知器官,可能只適應局限性的感覺。而不能去察覺之外的事物。也許,我們適應了運動在我們眼見到的平直的『空間』上,就會認為空間也是平直,也許並不是呢。
最後,也是最重要的一點。
在無限大的平面內行動,是逃脫不出去的。而類比一下成封閉體的空間內,依然是無限大的,只是,由於空間內封閉了,而且是以一定的曲率。而這個曲率被作用於封閉體,是把一個無限大的平面體彎曲後的封閉體。
在無限大的平面內,不存在什麼邊界,那麼同樣的道理,由於空間上的扭曲,致使扭曲的空間也是沒有邊界的,
想像一下,把無限的平面升華為圓球體。不是去想像什麼形狀,而是去想像其中的道理。
宇宙的起源:
1.有些宇宙學家認為,暴漲模型最徹底的改革也許是觀測宇宙中所有的物質和能量從無中產生的觀點,這種觀點之所以在以前不能為人們接受,是因為存在著許多守恆定律,特別是重子數守恆和能量守恆。但隨著大統一理論的發展,重子數有可能是不守恆的,而宇宙中的引力能可粗略地說是負的,並精確地抵消非引力能,總能量為零。因此就不存在已知的守恆律阻止觀測宇宙從無中演化出來的問題。這種「無中生有」的觀點在哲學上包括兩個方面:①本體論方面。如果認為「無」是絕對的虛無,則是錯誤的。這不僅違反了人類已知的科學實踐,而且也違反了暴漲模型本身。按照該模型,我們所研究的觀測宇宙僅僅是整個暴漲區域的很小的一部分,在觀測宇宙之外並不是絕對的「無」。現在觀測宇宙的物質是從假真空狀態釋放出來的能量轉化而來的,這種真空能恰恰是一種特殊的物質和能量形式,並不是創生於絕對的「無」。如果進一步說這種真空能起源於「無」,因而整個觀測宇宙歸根到底起源於「無」,那麼這個「無」也只能是一種未知的物質和能量形式。②認識論和方法論方面。暴漲模型所涉及的宇宙概念是自然科學的宇宙概念。這個宇宙不論多麼巨大,作為一個有限的物質體系 ,也有其產生、發展和滅亡的歷史。暴漲模型把傳統的大爆炸宇宙學與大統一理論結合起來,認為觀測宇宙中的物質與能量形式不是永恆的,應研究它們的起源。它把「無」作為一種未知的物質和能量形式,把「無」和「有」作為一對邏輯范疇,探討我們的宇宙如何從「無」——未知的物質和能量形式,轉化為「有」——已知的物質和能量形式,這在認識論和方法論上有一定意義。
2. 宇宙是如何起源的?空間和時間的本質是什麼?這是從2000多年前的古代哲學家到現代天文學家一直都在苦苦思索的問題。經過了哥白尼、赫歇爾、哈勃的從太陽系、銀河系、河外星系的探索宇宙三部曲,宇宙學已經不再是幽深玄奧的抽象哲學思辯,而是建立在天文觀測和物理實驗基礎上的一門現代科學。
目前學術界影響較大的「大爆炸宇宙論」是1927年由比利時數學家勒梅特提出的,他認為最初宇宙的物質集中在一個超原子的「宇宙蛋」里,在一次無與倫比的大爆炸中分裂成無數碎片,形成了今天的宇宙。1948年,俄裔美籍物理學家伽莫夫等人,又詳細勾畫出宇宙由一個緻密熾熱的奇點於150億年前一次大爆炸後,經一系列元素演化到最後形成星球、星系的整個膨脹演化過程的圖像。但是該理論存在許多使人迷惑之處。
宏觀宇宙是相對無限延伸的。「大爆炸宇宙論」關於宇宙當初僅僅是一個點,而它周圍卻是一片空白,即將人類至今還不能確定范圍也無法計算質量的宇宙壓縮在一個極小空間內的假設只是一種臆測。況且從能量與質量的正比關系考慮,一個小點無緣無故地突然爆炸成浩瀚宇宙的能量從何而來呢?
人類把地球繞太陽轉一圈確定為衡量時間的標准——年。但宇宙中所有天體的運動速度都是不同的,在宇宙范圍,時間沒有衡量標准。譬如地球上東西南北的方向概念在宇宙范圍就沒有任何意義。既然年的概念對宇宙而言並不存在,大爆炸宇宙論又如何用年的概念去推算宇宙的確切年齡呢?
1929年,美國天文學家哈勃提出了星系的紅移量與星系間的距離成正比的哈勃定律,並推導出星系都在互相遠離的宇宙膨脹說。哈勃定律只是說明了距離地球越遠的星系運動速度越快--星系紅移量與星系距離呈正比關系。但他沒能發現很重要的另一點--星系紅移量與星系質量也呈正比關系。
宇宙中星系間距離非常非常遙遠,光線傳播因空間物質的吸收、阻擋會逐漸減弱,那些運動速度越快的星系就是質量越大的星系。質量大,能量輻射就強,因此我們觀察到的紅移量極大的星系,當然是質量極大的星系。這就是被稱作「類星體」的遙遠星系因質量巨大而紅移量巨大的原因。另外那些質量小、能量輻射弱的星系(除極少數距銀河系很近的星系,如大、小麥哲倫星系外)則很難觀察到,於是我們現在看到的星系大多呈紅移。而銀河系內的恆星由於距地球近,大小恆星都能看到,所以恆星的紅移紫移數量大致相等。
導致星系紅移多紫移少的另一原因是:宇宙中的物質結構都是在一定范圍內圍繞一個中心按圓形軌跡運動的,不是像大爆炸宇宙論描述的從一個中心向四周作放射狀的直線運動。因此,從地球看到的紫移星系范圍很窄,數量極少,只能是與銀河系同一方向運動的,前方比銀河系小的星系;後方比銀河系大的星系。只有將來研製出更高分辨程度的天文觀測儀器才能看到更多的紫移星系。
宇宙中的物質分布出現不平衡時,局部物質結構會不斷發生膨脹和收縮變化,但宇宙整體結構相對平衡的狀態不會改變。僅憑從地球角度觀測到的部分(不是全部)可見星系與地球之間距離的遠近變化,不能說明宇宙整體是在膨脹或收縮。就像地球上的海洋受引力作用不斷此漲彼消的潮汐現象並不說明海水總量是在增加或減少一樣。
1994年,美國卡內基研究所的弗里德曼等人,用估計宇宙膨脹速率的辦法計算宇宙年齡時,得出一個80~120億年的年齡計算值。然而根據對恆星光譜的分析,宇宙中最古老的恆星年齡為140~160億年。恆星的年齡倒比宇宙的年齡大。
1964年,美國工程師彭齊亞斯和威爾遜探測到的微波背景輻射,是因為布滿宇宙空間的各種物質相互之間能量傳遞產生的效果。宇宙中的物質輻射是時刻存在的,3K或5K的溫度值也只是人類根據自己判斷設計的一種衡量標准。這種能量輻射現象只能說明宇宙中的物質由於引力作用,在大尺度空間整體分布的相對均勻性和星際空間里確實存在大量我們目前還觀測不到的「暗物質」。
至於大爆炸宇宙論中的氦豐度問題,氦元素原本就是宇宙中存在的僅次於氫元素的數量極豐富的原子結構,它在空間的百分比含量和其它元素的百分比含量同樣都屬於物質結構分布規律中很平常的物理現象。在宇宙大尺度范圍中,不僅氦元素的豐度相似,其餘的氫、氧……元素的豐度也都是相似的。而且,各種元素是隨不同的溫度、環境而不斷互相變換的,並不是始終保持一副面孔,所以微波背景輻射和氦豐度與宇宙的起源之間看不出有任何必然的聯系。
大爆炸宇宙論面臨的難題還有,如果宇宙無限膨脹下去,最後的結局如何呢?德國物理學家克勞修斯指出,能量從非均勻分布到均勻分布的那種變化過程,適用於宇宙間的一切能量形式和一切事件,在任何給定物體中有一個基於其總能量與溫度之比的物理量,他把這個物理量取名為「熵」,孤立系統中的「熵」永遠趨於增大。但在宇宙中總會有高「熵」和低「熵」的區域,不可能出現絕對均勻的狀態。所以,那種認為由於「熵」水平的不斷升高而達到最大值時,宇宙就會進入一片死寂的永恆狀態,最終「熱寂」而亡的結局,是把我們現在可觀測到的一部分宇宙范圍當作整個宇宙的誤識。
根據天文觀測資料和物理理論描述宇宙的具體形態,星系的形態特徵對研究宇宙結構至關重要,從星系的運動規律可以推斷整個宇宙的結構形態。而星系共有的圓形旋渦結構就是整個宇宙的縮影,那些橢圓、棒旋等不同的星系形態只是因為星系年齡和觀測角度不同而產生的視覺效果。
奇妙的螺旋形是自然界中最普遍、最基本的物質運動形式。這種螺旋現象對於認識宇宙形態有著重要的啟迪作用,大至旋渦星系,小至DNA分子,都是在這種螺旋線中產生。大自然並不認可筆直的形式,自然界所有物質的基本結構都是曲線運動方式的圓環形狀。從原子、分子到星球、星系直到星系團、超星系團無一例外,毋庸置疑,浩瀚的宇宙就是一個大旋渦。因此,確立一個「螺旋運動形態宇宙模型」,比那種作為所有物質總和的「宇宙」卻脫離曲線運動模式而獨辟蹊徑,以直線運動方式從一個中心向四面八方無限伸展的「大爆炸宇宙模型」,更能體現真實的宇宙結構形態。
滿意請採納。
Ⅳ 哈勃常數單位:m/(s*l.y.)表示什麼物理意義(是物理意義!不是翻譯它) 已知哈勃常數為0.03m/(s*l....
沒什麼意義(米/秒光年),T=1/H=1(s*l.y.)/(0.03m)=94,605億千米秒/0.03米=3153500千億秒=100億年
Ⅵ 哈勃定律的物理意義
利用哈勃定律v=H0 r,只要能確知哈勃常數H0,便可由天體的視向速度v得出其距離r,稱為宇宙學距離,這里唯一需要取得的觀測資料是遠方天體的視向速度。這樣r=v/H0 也許便是確定天體宇宙學距離的最為簡單的一種標距關系,但前提是哈勃常數必需已知。
p作為天文學分支學科之一的宇宙學,主要是從大尺度(甚至整體)上研究宇宙的結構和演化,又可分為觀測宇宙學和理論宇宙學模型兩方面的內容,不過兩者之間有著密切的聯系。「大尺度」結構,通常是指范圍在10Mpc(3000萬光年)以上的宇宙物質分布情況,而目前所能觀測到的宇宙尺度為1010光年量級。在宇宙學中,有一條未能完全證實的「公設」性基本原理,即宇宙學原理。它的含意是:在空間中任意一點,以及從任意一點位置上的任一方向來進行觀察的話,宇宙的大尺度圖景是沒有區別的;而且對宇宙中各處的觀測者來說,他們所觀察到的物理量和物理規律完全相同,沒有任何一個觀測者會處於與眾不同的特殊地位。根據宇宙學原理,地球上所觀察到的宇宙大尺度圖景也能被處於任何其他天體上的觀測者看到,這就意味著由地球觀測者所發現的哈勃定律應該同樣適用於宇宙中的任何天體。於是可以得知,在任何一個星繫上,都能觀測到其他星系在作遠離該星系的退行運動,而且距離越遠的星系退行速度越大。由此可以得出一個重要的推論:對宇宙中的任何兩個星系來說,它們都在彼此互相遠離,而且星系間的距離越遠,相互遠離的速度也越大。因此對由哈勃定律所推斷的上述大尺度宇宙圖景的最簡單的物理解釋便是整個宇宙在不斷膨脹,且這種膨脹是均勻各向同性的,這正是大爆炸宇宙模型的預期結果。
哈勃常數的倒數t0=r/v=H0-1具有時間的量綱,稱為哈勃時間。既然哈勃定律是由大爆炸引起的宇宙膨脹的一種觀測效應,那麼在過去遙遠的某個時間,具體說來就是在t0時間前,宇宙中所有的物質必然聚集於一點,或者說一個極小的空間范圍內。可見,一旦確定了哈勃常數的具體數值,便可以估計宇宙的年齡。由近期測定的哈勃常數H0=73km/(s·Mpc),可以推算出宇宙年齡的上限為137億年(不過有報道稱,2006年8月一項新的研究結果是宇宙的年齡應為158億年,可是對此仍然存在爭議)。哈勃定律表徵了宇宙膨脹,但哈勃常數並不是宇宙膨脹的速度,而是星系間退行速度的變化率。哈勃常數的單位是每百萬秒差距、每秒公里,如採用H0=73km/(s·Mpc),那麼星系間的距離每增大1Mpc,星系的相互退行速度便增大73公里/秒。
在哈勃定律發現之前,蘇聯數學家弗里德曼(A.A.Friedmann)於1922年首次論證了宇宙隨時間不斷膨脹的可能性,從而對愛因斯坦的靜態宇宙觀念提出了挑戰。比利時主教、天文學家勒梅特(G.Lemaltre)在弗里德曼工作的基礎上,經過5年的潛心研究,於1927年提出均勻各向同性的膨脹宇宙模型。在這一模型中,遙遠天體的紅移(即退行運動)起因於空間膨脹,勒梅特還預言紅移的大小應該與天體的距離成正比。但是,1920年代的通訊技術和學術交流遠不如現在發達,大洋彼岸的哈勃對弗里德曼和勒梅特的理論一無所知。可見,哈勃定律的發現過程並不是刻意為了證實膨脹宇宙模型,它完全是哈勃本人在觀測和細心分析的基礎上所獲得的原創性成果。星系存在普遍性退行運動以及哈勃定律的發現,對宇宙膨脹及大爆炸宇宙論是一個強有力的支持。
宇宙中的各類天體必定形成於宇宙誕生之後,自然它們的年齡都不可能超過由哈勃定律推算出的宇宙年齡137億年。根據恆星演化理論,可以推知最年老星系和恆星的年齡為100多億年;太陽現在的年齡約為50億年,地球年齡約為46億年,所有這些由不同途徑測得的涉及各類天體年齡的結果,都可以按合理的時序一一納入大爆炸後宇宙整體演化的框架內。盡管哈勃第一篇涉及星系速度-距離關系的論文只有短短的6頁,卻是人類對宇宙認識的一次飛躍。著名的美國宇宙學家惠特羅(G.J.Whitrow)把哈勃定律和400年前哥白尼提出的日心說相提並論,在天文學史上兩者都具有革命性的意義。盡管哈勃在他的這篇開創性論文中沒有提到宇宙膨脹的概念,但由於他的重要發現,長久以來關於靜止宇宙的圖像終究被動態的膨脹宇宙模型取代了。