1. 傅里葉變換的物理意義是什麼
傅立葉變換是數字信號處理領域一種很重要的演算法。要知道傅立葉變換演算法的意義,首先要了解傅立葉原理的意義。傅立葉原理表明:任何連續測量的時序或信號,都可以表示為不同頻率的正弦波信號的無限疊加。而根據該原理創立的傅立葉變換演算法利用直接測量到的原始信號,以累加方式來計算該信號中不同正弦波信號的頻率、振幅和相位。
和傅立葉變換演算法對應的是反傅立葉變換演算法。該反變換從本質上說也是一種累加處理,這樣就可以將單獨改變的正弦波信號轉換成一個信號。
因此,可以說,傅立葉變換將原來難以處理的時域信號轉換成了易於分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進行處理、加工。最後還可以利用傅立葉反變換將這些頻域信號轉換成時域信號。
從現代數學的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函數表示成正弦基函數的線性組合或者積分。在不同的研究領域,傅里葉變換具有多種不同的變體形式,如連續傅里葉變換和離散傅里葉變換。
在數學領域,盡管最初傅立葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特徵。"任意"的函數通過一定的分解,都能夠表示為正弦函數的線性組合的形式,而正弦函數在物理上是被充分研究而相對簡單的函數類:1. 傅立葉變換是線性運算元,若賦予適當的范數,它還是酉運算元;2. 傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;3. 正弦基函數是微分運算的本徵函數,從而使得線性微分方程的求解可以轉化為常系數的代數方程的求解.在線性時不變雜的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段;5. 離散形式的傅立葉的物理系統內,頻率是個不變的性質,從而系統對於復雜激勵的響應可以通過組合其對不同頻率正弦信號的響應來獲取;4. 著名的卷積定理指出:傅立葉變換可以化復變換可以利用數字計算機快速的算出(其演算法稱為快速傅立葉變換演算法(FFT))。
正是由於上述的良好性質,傅里葉變換在物理學、數論、組合數學、信號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。
2. 傅里葉變換的物理意義是什麼為什麼需要進行傅里葉變換
傅立葉變換是數字信號處理領域一種很重要的演算法,要知道傅立葉變換演算法的意義,首先要了解傅立葉原理的意義。
傅立葉原理表明:任何連續測量的時序或信號,都可以表示為不同頻率的正弦波信號的無限疊加。而根據該原理創立的傅立葉變換演算法利用直接測量到的原始信號,以累加方式來計算該信號中不同正弦波信號的頻率、振幅和相位。
傅立葉變換的提出:
用正弦曲線來代替原來的曲線而不用方波或三角波來表示的原因在於,分解信號的方法是無窮的,但分解信號的目的是為了更加簡單地處理原來的信號。用正餘弦來表示原信號會更加簡單,因為正餘弦擁有原信號所不具有的性質:正弦曲線保真度。
一個正弦曲線信號輸入後,輸出的仍是正弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。且只有正弦曲線才擁有這樣的性質,正因如此我們才不用方波或三角波來表示。
3. 傅里葉變換的目的和意義
目的:把聲音、圖像都分解為N多個三角函數的疊加。使用不同的基本函數去分解可以得到不同變換。傅里葉變換只是其中一種,還是有拉普拉斯變換、Z 變換等
傅里葉變換的應用:
1、傅里葉變換是線性運算元,若賦予適當的范數,它還是酉運算元;
2、傅里葉變換的逆變換容易求出,而且形式與正變換非常類似;
3、正弦基函數是微分運算的本徵函數,從而使得線性微分方程的求解可以轉化為常系數的代數方程的求解在線性時不變的物理系統內,頻率是個不變的性質,從而系統對於復雜激勵的響應可以通過組合其對不同頻率正弦信號的響應來獲取;
4、著名的卷積定理指出:傅里葉變換可以化復雜的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段;
5、離散形式的傅里葉變換可以利用數字計算機快速的算出(其演算法稱為快速傅里葉變換演算法(FFT))。
4. 為什麼要進行傅里葉變換,其物理意義是什麼
傅里葉變換的作用就是把非正餘弦 周期(請注意必須是周期函數)函數轉化為無限個規則的正弦餘弦函數。變成規則的函數以後,雖然有無限項,但是工程取前幾項精度就夠用了。規則函數利於計算。把難以計算甚至無法計算的函數轉化為可以計算的函數。
舉例:
最前面近似矩形的函數,就是有後邊彩色各個無限項組成的。就是用傅里葉函數分解成後邊無窮多個規則正餘弦函數的。
5. 傅立葉變換的物理意義
傅立葉變換,表示能將滿足一定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。最初傅立葉分析是作為熱過程的解析分析的工具被提出的。
變換意義
傅里葉變換是數字信號處理領域一種很重要的演算法。要知道傅里葉變換演算法的意義,首先要了解傅里葉原理的意義。傅里葉原理表明:任何連續測量的時序或信號,都可以表示為不同頻率的正弦波信號的無限疊加。而根據該原理創立的傅里葉變換演算法利用直接測量到的原始信號,以累加方式來計算該信號中不同正弦波信號的頻率、振幅和相位。
和傅里葉變換演算法對應的是反傅里葉變換演算法。該反變換從本質上說也是一種累加處理,這樣就可以將單獨改變的正弦波信號轉換成一個信號。因此,可以說,傅里葉變換將原來難以處理的時域信號轉換成了易於分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進行處理、加工。最後還可以利用傅里葉反變換將這些頻域信號轉換成時域信號。
從現代數學的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函數表示成正弦基函數的線性組合或者積分。在不同的研究領域,傅里葉變換具有多種不同的變體形式,如連續傅里葉變換和離散傅里葉變換。
在數學領域,盡管最初傅里葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特徵。"任意"的函數通過一定的分解,都能夠表示為正弦函數的線性組合的形式,而正弦函數在物理上是被充分研究而相對簡單的函數類:1. 傅里葉變換是線性運算元,若賦予適當的范數,它還是酉運算元;2. 傅里葉變換的逆變換容易求出,而且形式與正變換非常類似;3. 正弦基函數是微分運算的本徵函數,從而使得線性微分方程的求解可以轉化為常系數的代數方程的求解.在線性時復雜的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段;4. 離散形式的傅里葉的物理系統內,頻率是個不變的性質,從而系統對於復雜激勵的響應可以通過組合其對不同頻率正弦信號的響應來獲取;5. 著名的卷積定理指出:傅里葉變換可以化復變換可以利用數字計算機快速的算出(其演算法稱為快速傅里葉變換演算法(FFT))。
正是由於上述的良好性質,傅里葉變換在物理學、數論、組合數學、信號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。
6. 傅里葉變換的物理意義
傅里葉變換能將滿足一定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。在不同的研究領域,傅里葉變換具有多種不同的變體形式,如連續傅里葉變換和離散傅里葉變換。最初傅里葉分析是作為熱過程的解析分析的工具被提出的。
傅里葉變換屬於諧波分析,現代物理學中,對於光、熱、能量、信號等均為波的分析,因此其作為分析工具的意義十分重大。
7. 傅里葉變換的物理意義是什麼
傅立葉變換的物理意義是將一個在時間域當中的信號所包含的所有頻率分量(主要指其各頻率分量的幅度和相位)用一個以角頻率為自變數的函數表示出來,稱其頻譜.