導航:首頁 > 物理學科 > 限制物理學發展定律有哪些

限制物理學發展定律有哪些

發布時間:2022-09-20 07:17:42

① 物理學三大定律是什麼

1、質量守恆定律

質量守恆定律是俄國科學家羅蒙諾索夫於1756年最早發現的。拉瓦錫通過大量的定量試驗,發現了在化學反應中,參加反應的各物質的質量總和等於反應後生成各物質的質量總和。這個規律就叫做質量守恆定律(Law of conservation of mass)。也稱物質不滅定律。它是自然界普遍存在的基本定律之一。

2、電荷守恆定律

在物理學里,電荷守恆定律(law of conservation of electric charge)是一種關於電荷的守恆定律。電荷守恆定律有兩種版本,「弱版電荷守恆定律」(又稱為「全域電荷守恆定律」)與「強版電荷守恆定律」(又稱為「局域電荷守恆定律」)。弱版電荷守恆定律表明,整個宇宙的 總電荷量保持不變,不會隨著時間的演進而改變。

3、能量守恆定律

能量守恆定律(energy conservation law)即熱力學第一定律是指在一個封閉(孤立)系統的總能量保持不變。其中總能量一般說來已不再只是動能與勢能之和,而是靜止能量(固有能量)、動能、勢能三者的總量 。

能量守恆定律可以表述為:一個系統的總能量的改變只能等於傳入或者傳出該系統的能量的多少。總能量為系統的機械能、熱能及除熱能以外的任何內能形式的總和。

(1)限制物理學發展定律有哪些擴展閱讀:

物理學基本定律

牛頓第一定律為慣性定律;牛頓第二定律建立起物體質量與加速度之間的聯系;牛頓第三定律為作用力與反作用力定律。

簡單理解三大定律的意義,其第一條就讓我們知道,滾動的皮球之所以能夠在地板上運動,必定是受到外力的推動。這外力可能是與地板之間的摩擦,也許是小孩子踢出的一腳。第二定律以F=ma這個公式表述,同時也意味著一個具有方向性的矢量。

那個皮球滾過地板時,因為加速度的原因,獲得了一個指向滾動方向的矢量。通過它便能夠計算出皮球所受到的作用力。第三定律相當簡潔,也最為人們所熟知,其意思無外乎,用手指隨便戳戳哪個物體的表面,它們都將用同等的力量進行回應。

② 十大物理學定律

1、牛頓力學第一定律——慣性定律(空間重力場平衡律)。

2、牛頓力學第二定律——重力加速度定律(空間重力場變化律)。

3、牛頓力學第三定律——力相互作用定律(重力斥力對應律)。

4、牛頓力學第四定律——萬有引力定律(重力分布律)。

5、熱力學第零定律——溫度律、熱平衡律(能量場平衡律)。

6、熱力學第一定律——能量守恆定律(能量分布空間律)。

7、熱力學第二定律——熵增加定律、熱不可逆定律(能量變化時間律)。

8、熱力學第三定律——絕對零度不可達定律(能量利用人力極限律)。

9、相對性原理(普適律)。

10、光速不變原理(運動極限律)。



(2)限制物理學發展定律有哪些擴展閱讀:

一、物理定律的概述:

物理定律是從特別事實推導出的理論學科。物理定律是以經過多年重復實驗和觀察為基礎並在科學領域內普遍接受的典型結論。用定律形式歸納描述我們環境是科學的基本目的。並非所有作者對物理定律用法相同。

二、物理定律的性質

1、物理定律有下列性質:

2、普遍,它在宇宙任何地方都適用。

3、絕對,宇宙中無任何東西能影晌它。

4、一般有量的守恆關系。

③ 物理學上10大科學定律及理論

科學定律常常可以被精簡成數學表達式,比如偉大的E=mc2。這類公式是基於大量實驗數據上的一種特定表述,並且一般只有在某些特定條件存在時才能成立。我在這里整理了相關資料,希望能幫助到您。

物理學上10大科學定律及理論

10、眾理論的敲磚石:大爆炸理論

標准釋義:大爆炸是描述宇宙誕生初始條件及其後續演化的宇宙學模型,其得到了當今科學研究和觀測最廣泛且最精確的支持。目前一般所指的大爆炸觀點為:宇宙是在過去有限的時間之前,由一個密度極大且溫度極高的太初狀態演變而來的(根據2010年所得到的最佳觀測結果,這些初始狀態大約存在於133億年至139億年前),並經過不斷的膨脹到達今天的狀態。

當有誰想要試著觸碰一下深奧的科學理論,那麼,從宇宙下手就對了,而解釋宇宙如何發展至今的大爆炸理論就是最好選擇。這條理論的基礎架構在埃德溫·哈勃、喬治斯·勒梅特、阿爾伯特·愛因斯坦以及許多其他人士的研究之上,該理論說白了,就是假設宇宙開始於幾乎140億年前的一次重量級的爆炸。當時的宇宙局限於一個奇點,包含了宇宙中的所有物質,宇宙原始的運動:保持向外擴張,在今天仍在進行著。

大爆炸理論能得到如此廣泛的支持,離不開阿諾·彭齊亞斯和羅伯特·威爾遜的功勞。他們架設的一台喇叭形狀的天線,接收到了一種怎麼都消除不掉的雜訊信號,那就是宇宙的電磁輻射,即宇宙微波背景輻射。正是最初的大爆炸使得現在整個宇宙都充滿了這種可以檢測到的微弱輻射,對應溫度大約為3K。9、推算出宇宙年齡:哈勃定律

標准釋義:來自遙遠星系光線的紅移與它們的距離成正比。該定律由哈勃和米爾頓·修默生在將近十年的觀測之後,於1929年首先公式化,Vf=Hc×D(遠離速率=哈勃常數×相對地球的距離),其在今天經常被援引作為支持大爆炸的一個重要證據,並成為宇宙膨脹理論的基礎。

這里涉及一個前文提到的人,埃德溫·哈勃。此人對宇宙學的貢獻值得讓人來回溯下他的事跡:在20世紀20年代呼嘯掠過、大蕭條蹣跚而至的歲月里,哈勃卻演繹了突破性的天文研究。他不僅證明,除了銀河系外還有其他星系的存在,還發現了那些星系正以遠離銀河系的方向運動,而他公式中的遠離速率就是星系後退的速度。哈勃常數指的是宇宙膨脹速率的參數,而相對地球的距離主體也是這些星系。但據說,被尊為星系天文學創始人的哈勃本人卻非常不喜歡「星系」一詞,堅稱其為「河外星雲」。

隨著時間流逝,斗轉星移,哈勃常數值也發生著變化,但這並沒很大關系。重要的是,正是該定律幫助量化了宇宙各星系的運動,推算遙遠星系的距離。而「宇宙是由許多星系組成」的概念的提出,以及發現這些星系的運動可以追溯至大爆炸,它們都使哈勃定律就像同樣以此人命名的天文望遠鏡般著名。8、改變整個天文學:開普勒三定律

標准釋義:即行星運動定律,由開普勒發現的行星移動所遵守的三條簡單定律。

第一定律:每一個行星都沿各自的橢圓軌道環繞太陽運行,而太陽則處在橢圓的一個焦點中;

第二定律:在相等時間內,太陽和運動著的行星的連線所掃過的面積都是相等的;

第三定律:各個行星繞太陽公轉周期的平方和它們的橢圓軌道的半長軸的立方成正比。

圍繞著行星的運行軌道,尤其是它們是否以太陽為中心,科學家與宗教領袖以及自己的同行進行了長達數個世紀的爭斗。16世紀時,哥白尼提出了在當時引發巨大爭議的日心說理論,認為行星是以太陽而不是地球為中心進行運行的。此後第谷·布拉赫等人也相繼有所論述。但真正為行星運動學建立明確科學基礎的,是約翰內斯·開普勒。

開普勒於17世紀早期提出的行星運動三大定律,描述了行星是如何圍繞太陽運動的。第一定律,又被稱為橢圓定律;第二定律,又被稱面積定律,換句話解釋該定律,就是說如果你連續30天跟蹤測算地球與太陽之間連線隨地球運動所形成面積,就會發現不管地球在軌道的哪個位置,也不管何時開始測算,結果都是一樣的。至於第三定律,也稱調和定律,它使得我們能夠建立起一個行星軌道周期與距太陽遠近之間的明確關系。比如金星這樣非常靠近太陽的行星,就有著比海王星短得多的軌道運行周期。正是這三條定律,徹底摧毀了托勒密復雜的宇宙體系。7、大部分理論的基石:萬有引力定律

標准釋義:牛頓的普適萬有引力定律表示為,任意兩個質點通過連心線方向上的力相互吸引。該引力的大小與它們的質量乘積成正比,與它們距離的平方成反比,與兩物體的化學本質或物理狀態以及中介物質無關。該理論能夠由一個已經寫進今天高中物理課本的公式進行表述:F=G×[(m1m2)/r2]

盡管今天人們將其看作是理所當然的事情,但當艾薩克·牛頓在300多年前提出萬有引力學說的時候,無疑是當時最具有革命性的重大事件。牛頓提出的理論可以簡單表述為:任何兩個物體,不管各自質量如何,相互之間都會發生作用力,而質量越大的東西產生的引力越大。公式中,F指兩個物體之間的萬有引力,用「牛頓」作為計量單位;m1和m2分別代表兩個物體的質量;r為兩者之間的距離;G是引力常數。

這是多種實踐條件下都相當精確的定律,但物理學發展至今,人們已經知道牛頓對重力描述的不完美性。然而,該定律仍不失為迄今所有科學中最實用的概念之一,它簡單、易學、且涵蓋面很廣,以至於在廣義相對論初問世的一段時間內都甚少有人問津。更有意義的是,萬有引力定律讓渺小的人類獲得了計算龐大星球之間引力的能力,並且在發射軌道衛星與測繪探月航線等方面尤其有用。6、物理科學有了基本定理:牛頓運動定律

標准釋義:牛頓第一定律為慣性定律;牛頓第二定律建立起物體質量與加速度之間的聯系;牛頓第三定律為作用力與反作用力定律。

還是牛頓。每當我們談論起這位人類歷史上最傑出的科學家之一,總不由得從他最著名的力學三大定律開始。因為這些簡潔而優雅的定律,奠定了現代物理學的基礎。

簡單理解三大定律的意義,其第一條就讓我們知道,滾動的皮球之所以能夠在地板上運動,必定是受到外力的推動。這外力可能是與地板之間的摩擦,也許是小孩子踢出的一腳。第二定律以F=ma這個公式表述,同時也意味著一個具有方向性的矢量。那個皮球滾過地板時,因為加速度的原因,獲得了一個指向滾動方向的矢量。通過它便能夠計算出皮球所受到的作用力。第三定律相當簡潔,也最為人們所熟知,其意思無外乎,用手指隨便戳戳哪個物體的表面,它們都將用同等的力量進行回應。5、熱力學基礎基本完備:熱力學三定律

標准釋義:熱力學第一定律,熱可以轉變為功,功也可以轉變為熱,也就是能量守恆和轉換定律;第二定律有幾種表述方式,其中之一是不可能把熱從低溫物體傳到高溫物體而不引起其他變化;第三定律,在熱力學溫度零度(即T=0開)時,一切完美晶體的熵值等於零。

英國物理學家和小說家查爾斯·珀西·斯諾曾經有一段非常著名的論述:「不懂得熱力學第二定律的科學家,就像一個從沒讀過莎士比亞的科學家一樣。」斯諾的言語意在批評科學與人文之間「兩種文化」的隔絕與分裂,但卻無意中在文人圈裡「捧紅」了熱力學第二定律。其實,斯諾的論述確實強調並呼籲人文學者都應該去了解一下它的重要性。

熱力學是研究系統中能量運動的科學。這里的系統既可以是一台發動機,也可以是熾熱的地核。斯諾運用自己的聰明才智將其精簡成為以下若干條基本規則:你贏不了、你無法實現收支平衡、你無法退出遊戲。

該如何理解這些說法呢?首先來看所謂的「你贏不了」。斯諾的意思是指既然物質與能量是守恆關系,在能量轉換過程中,我們無法實現一種能量形式到另一種的對等轉換,而不損失一部分能量。就像如果要發動機做功,就必須提供熱能一樣。即便是在一個完美極致的封閉空間中,部分熱量依然將不可避免地散逸到外部世界中去。

而這就引發了第二定律「你實現不了收支平衡」。鑒於熵的無限增加,我們無法返回或保持相同的能量狀態。因為熵總是從濃度高的地方向濃度低的區域流動。而有熵的存在,也是永動機不可能出現的原因。

最後是第三定律「無法退出的游戲」。這里要涉及到絕對零度,即理論上可能達到的最低溫度,一般指零開爾文(零下273.15攝氏度或零下459.67華氏度)。第三定律的表述為,當系統達到絕對零度時,分子將停止一切運動,即沒動能,熵也能達到理論上的最低值。但現實世界中,即使在宇宙的深處,達到絕對零度也是不可能的。你只能無限地接近所謂的終點。4、公元前200年的大智慧:阿基米德定律

標准釋義:物理學中的阿基米德定律,即阿基米德浮力原理,是指浸在靜止流體中的物體受到流體作用的合力大小等於物體排開的流體的重力,這個合力稱為浮力。數學表達式為:F浮=G排

關於阿基米德是如何發現浮力原理這一物理學重大突破的,有個傳說:阿基米德某次洗澡的時候,看到浴缸里的水會隨著自己身體的浸入而上升,便受到啟發開始思考。而當他最終確定發現了浮力理論之後,這位古希臘最偉大的哲人一邊興奮地大喊「找到了!找到了!」,一邊裸露著身體狂奔在錫拉丘茲城的大街小巷。

古希臘學者阿基米德的古老發現已經被廣泛應用在人類社會生產的各個領域。根據浮力原理,施加在一個部分或整體淹沒於液體中的物體的作用力,等於該物體液內體積所排出的液體重量。這對於計算物體的密度,進而進行潛艇和遠洋輪船的設計建造,具有關鍵性意義。3、我們自身的探討:進化與自然選擇

標准釋義:進化,即演化,在生物學中是指種群里的遺傳性狀在世代之間的變化。自然選擇,也稱為天擇,指生物的遺傳特徵在生存競爭中,具有了某優勢或某劣勢,進而在生存能力上產生差異,並導致繁殖能力的差異,使得這些特徵被保存或是淘汰。

既然我們已經建立起關於宇宙何以從無到有,以及物理學在日常生活中是如何發揮作用的若干基礎概念體系,下一步便可以開始關注我們人類自己的形式問題,即我們是如何成為今天這番模樣的。

我們知道,基因是會復制給下一代的,但基因突變會讓其情況出現變化,這種變化了的新情況,可能隨著物種遷徙等在種群中傳遞。

那麼按照當今大多數科學家的觀點,所有地球生物曾經擁有一個共同的祖先。後來隨著時間的發展,部分開始進化成為特徵鮮明的特定物種。久而久之,生物多樣性便逐漸在所有有機生物中增加與擴展開來。

從最基本的意義上說,基因突變等變異機制在生物進化的過程中一直發生著。而每一階段的這些細節變化都會通過世代的遺傳而得以保留。相應的,生物種群也因此發展出了不同的特徵,並且這些特徵往往能夠幫助生物更好地繁衍生存下來。比如棕色皮膚的青蛙,顯然比其它顏色的同類更適宜以偽裝的方式在泥濘的沼澤地區生存。這便是所謂的自然選擇。

當然,對於進化與自然選擇理論,我們還可以將其應用到更廣泛的生物范圍。但是達爾文在19世紀提出的「地球生命豐富的多樣性,來源於進化中的自然選擇」,無疑依舊是最基礎和最具開創性的。2、永遠轉變了理解宇宙的方式:廣義相對論

標准釋義:引力在此被描述為時空的一種幾何屬性(曲率),而這種時空曲率與處於時空中的物質與輻射的能量,動量張量直接相聯系,其聯系方式即是愛因斯坦的引力場方程(一個二階非線性偏微分方程組)。

對於任何一個不曾學習或研究它的人來說,廣義相對論的標准釋義看了和沒看一個樣。因為它在解釋該詞條時,至少又用了4組不被人理解的詞彙。

它的內涵和外延涉及甚廣,似乎非論文形式不能描述。在此,我們且看看被稱為現代引力理論研究的最高水平的廣義相對論在論什麼。作為比牛頓萬有引力更具有一般性的理論,質量還是一個決定引力的重要屬性,但是不再是引力的唯一來源。

在愛因斯坦這里,引力已不再是牛頓所描述的一種力,甚至可以說,已沒有了原來引力的概念。因為愛因斯坦把它看成物體周圍的時空彎曲,以前所說的「物體受引力作用所作的運動」,被歸結為物體在一個彎曲時空中,沿短程線的自由運動。

如果讓「彎曲時空」的概念更明朗化些,可以想像環繞地球飛行的太空梭里的宇航員,對他們而言,他們是按直線方式在太空中飛行,但實際上太空梭周圍的時空,已經被地球的引力所彎曲,這使太空梭成為又能向前飛行,又能圍繞地球轉的物體。

按美國相對論研究的首席專家約翰·惠勒解釋,這種所謂時空的幾何屬性可以這樣概述:時空告訴物質如何運動,物質告訴時空如何彎曲。因而,其可以展現出宇宙星光受大天體影響的彎曲方式,並且為研究黑洞奠定了理論基礎。1、上帝擲骰子嗎?:海森堡測不準原理

標准釋義:德國物理學家海森堡於1927年提出,表明量子力學中的不確定性,指在一個量子力學系統中,一個粒子的位置和它的動量(粒子的質量乘以速度)不可被同時確定。

「測量!在經典理論中,這不是一個被考慮的問題。」《量子物理史話》如是說。

那是因為在經典物理學里,你、我,或作為觀測者的任何一人,對這個等待被測量的客觀物體是沒有影響,或影響甚微以致可忽略不計的。那時就算我們弄不懂個中道理,也不妨礙原理待在那,等著我們慢慢參詳。

但現在就要踏入量子世界的魔潭了,此處我們作為觀測者會給實驗現象帶來一定的擾動,因此如果測一個電子的動量,所得值只是相對你這個觀測者而言的。微觀世界中,要以「概率」來論,所謂上帝擲骰子。

當年的華納·海森堡就在此中有了突破性的發現,人們無法同時得到粒子的兩種變數精確信息,哪怕再精密的儀器都不行。具體講,你或者可以准確地知道電子的位置,但無法同時知道其動量,或者反之,得此失彼。而類似的不確定性也存在於能量和時間、角動量和角度等許多物理量之間。

或許你沒明白這件事的詭異性,就像之前提到的,量子世界裡的量既然是相對性,那隻要它存在,就應該可以被測量出來。既然無論如何不能測量到,那它就不復存在。因此,在你沒確定測量這個物理量的手段時,談論它毫無意義。一個電子的動量,只有當你測量時,也才有意義。

這更像是一個哲學話題了。而「海森堡測不準原理」與其說是實驗中發現的,倒不如說是海森堡和他老師玻爾等人討論出來的。到了玻爾發現電子同時具有粒子和波的雙重性質(量子物理的柱石,波粒二象性),當我們測量電子的位置時,我們將其當作粒子,波長不定;而當我們要測量動量時,我們將其當作波,知道波長的量值卻失去它的位置。

即便你現在無比混亂,這依然沒什麼大不了的。玻爾的名言就是:「如果誰不為量子論而困惑,那他一定沒有理解量子論。」類似的話費曼也說過。所以我們沒啥好郁悶的,愛因斯坦和我們一個狀況。

提升物理成績的五個關鍵點和三條主線

一、研究《考綱》,通讀教材

《考綱》是教學的基本要求,它規定了中考的范圍和要求,是中考命題的依據之一,對於中考復習具有重要的作用。通過對《考綱》的研究,明確考試的要求,了解題型和對學生的能力要求,使自己的復習有方向、有目標,使自己的復習能有一個明確的評價依據,從而有利於把握復習的廣度和深度,使復習更有的放矢。在研究《考綱》的同時,還要仔細閱讀教材,因為教材是課堂教學的根本依據,也是中考命題的依據之一。學生一定要仔細閱讀教材,特別要注意教材中以下幾個方面:

(1)物理概念和規律形成的過程和伴隨的科學方法。在最近幾年的中考物理試題中,此類題目的分值要佔到10%左右。在初中物理教材中,物理概念和規律形成的過程經常採用的是「控制變數法」。如:速度、密度、壓強、比熱容等概念的形成過程,歐姆定律、影響液體蒸發快慢的因素、影響電阻大小的因素、液體內部壓強的規律、阿基米德定理等物理規律的得到等,都是採用「探制變數法」來進行研究的。近幾年的中考物理試題中除了考核「控制變數法」,也考核了「等效替代法」,如作用在物體上的兩個力的作用效果可以由一個力的作用來替代;串並聯電路中,總電阻與各電阻的關系等。

(2)教材中的實例分析(包括各類插圖、生活及有關科技發展的實例等)。

(3)各種實驗的原理、研究方法、過程。

(4)相關的物理學史。筆者在多年的物理教學中發現,許多學生在復習迎考過程中埋頭苦做習題,忽視了最根本的、最必要的工作―――閱讀教材,在升學考中造成不該有的失分而後悔莫及。

二、整理知識內容,歸類掌握

中考物理試卷中的各知識點覆蓋率較高,最近幾年都在80%―90%左右,但對十個重點知識點的覆蓋率則為100%。這十個重點知識是:比熱容和熱量的計算、光的反射定律和平面鏡成像特點、凸透鏡成像規律、歐姆定律、串並聯電路的特點、電功率、力的概念、密度、壓強、二力平衡。物理知識涉及的面很廣,基本概念、理論更是體現在不同的教學內容中。學生要對每個部分中的知識,按知識結構進行歸類、整理,形成各知識點之間的聯系,並擴展成知識面,做到基本概念牢固掌握,基本理論相互聯系,如:在對速度這一知識進行復習的時候,就可以把研究得到這一物理概念的思想方法遷移到密度、壓強、功率、比熱容等其它物理概念的形成過程中去,舉一反三,即要做到「書越讀越厚(知識內容多)―――書越讀越薄(概括整理、總結)―――知識越來越豐富」,這樣才能在考試時思維敏捷,得心應手。

三、題型歸類,掌握方法

目前學生已做了大量的模擬考試題,許多學生仍然在題海中奮力拚搏,許多學生和家長認為,題目一定要多做,才能熟能生巧、才能觸類旁通。

筆者認為「精神可嘉,方式不當」。當前在有限的時間內做大量的題目,並不是明智之舉。學生應把所做的練習中的各類題型進行分析、比較、歸類,發現其中的異同點,掌握解決問題的方法。只有掌握了方法,才能在解決問題時多角度地理解題意,拓寬解決問題的思路和方法,才能在考試中充分發揮自己的能力。

四、加強實驗研究能力的訓練

物理是以實驗為基礎的學科,新的教學改革中很重要的一點就是注重學生研究能力的培養。教材和歷年中考試題中都十分注重對學生實驗研究能力的考核。近幾年來,中考物理中實驗考核的分值在上升,而從試題內容上看,已從單純的記憶型趨向實驗探求設計的模型。而這方面恰恰是學生較薄弱的方面,歷年來失分較多。因此,在復習中學生要加強訓練。一般在實驗研究中,學生尤其要注意題目中提供的信息,明確研究的目的、實驗原理、實驗器材的作用和選擇、實驗操作步驟、對實驗現象的觀察分析和對實驗結果的分析歸納。

五、關注熱點問題,把握考試動態

近幾年的中考物理中有五大類熱點問題:(1)估計、估算題主要涉及學生實際生活中與所學知識直接相關的實際事例。(2)動態、故障分析(3)科學方法題主要考核物理概念、規律形成中的思想方法;(4)情景信息題即在考題中提供較多的情景信息,根據題目要求,從中篩選出有用的相關信息。(5)開放性試題(包括結果開放、條件開放、過程開放等)即在研究中可以多角度、多方面地進行研究的方法、手段可以多種多樣,沒有固定的模式和定勢,研究的結果並不唯一,表達的形式可以豐富多彩。

④ 物理學上的各大定律

守恆律能量守恆定律機械能守恆定律動量守恆定律角動量守恆定律[編輯]力學慣性原理牛頓運動定律牛頓第一運動定律牛頓第二運動定律牛頓第三運動定律萬有引力定律開普勒行星運動三定律開普勒第一定律開普勒第二定律開普勒第三定律胡克定律帕斯卡定律阿基米德定律伯努利定律[編輯]熱力學阿伏伽德羅定律理想氣體狀態方程玻意耳定律查理定律蓋-呂薩克定律道爾頓分壓定律杜隆-珀蒂定律格銳目定律亨利定律熱力學基本定律熱力學第零定律熱力學第一定律熱力學第二定律熱力學第三定律[編輯]電磁學庫侖定律電荷守恆定律楞次定律法拉第電磁感應定律畢奧-薩伐爾定律安培定律高斯定律洛倫茲力麥克斯韋方程歐姆定律焦耳定律基爾霍夫第一定律基爾霍夫第二定律[編輯]光學光的折射定律光的反射定律斯涅爾定律[編輯]量子力學態疊加原理薛定諤方程狄拉克方程莫塞萊定律[編輯]相對論光速不變原理相對性原理洛倫茲變換等效原理愛因斯坦場方程

⑤ 物理學定律有那些 物理學都有那些定律要全面點

補充三樓的:
基爾霍夫第一定律,基爾霍夫第二定律,基爾霍夫第三定律,比奧—薩夫爾定律,熱力學第零定律,熱力學第一定律,熱力學第二定律,熱力學第三定律,斯忒番—玻耳茲曼定律

⑥ 必須了解的物理10大科學定律及理論

科學定律常常可以被精簡成數學表達式,比如偉大的E=mc2。這類公式是基於大量實驗數據上的一種特定表述,並且一般只有在某些特定條件存在時才能成立。下面我帶來的這篇 文章 就讓我們可以像看「 十萬個為什麼 」一樣,輕松踏上一條通往基礎科學的最佳捷徑。

10條內容將採取便於理解,也符合發展規律的倒述形式,從宇宙大爆炸這階段開始,理解行星、描述引力,再到生命進化起步,最後一頭鑽進量子物理學,去會一會那世上最讓人頭暈的玩意。

10、眾理論的敲磚石:大爆炸理論

標准釋義:大爆炸是描述宇宙誕生初始條件及其後續演化的宇宙學模型,其得到了當今科學研究和觀測最廣泛且最精確的支持。目前一般所指的大爆炸觀點為:宇宙是在過去有限的時間之前,由一個密度極大且溫度極高的太初狀態演變而來的(根據2010年所得到的最佳觀測結果,這些初始狀態大約存在於133億年至139億年前),並經過不斷的膨脹到達今天的狀態。

當有誰想要試著觸碰一下深奧的科學理論,那麼,從宇宙下手就對了,而解釋宇宙如何發展至今的大爆炸理論就是最好選擇。這條理論的基礎架構在埃德溫·哈勃、喬治斯·勒梅特、阿爾伯特·愛因斯坦以及許多其他人士的研究之上,該理論說白了,就是假設宇宙開始於幾乎140億年前的一次重量級的爆炸。當時的宇宙局限於一個奇點,包含了宇宙中的所有物質,宇宙原始的運動:保持向外擴張,在今天仍在進行著。

大爆炸理論能得到如此廣泛的支持,離不開阿諾·彭齊亞斯和羅伯特·威爾遜的功勞。他們架設的一台喇叭形狀的天線,接收到了一種怎麼都消除不掉的雜訊信號,那就是宇宙的電磁輻射,即宇宙微波背景輻射。正是最初的大爆炸使得現在整個宇宙都充滿了這種可以檢測到的微弱輻射,對應溫度大約為3K。

9、推算出宇宙年齡:哈勃定律

標准釋義:來自遙遠星系光線的紅移與它們的距離成正比。該定律由哈勃和米爾頓·修默生在將近十年的觀測之後,於1929年首先公式化,Vf=Hc×D(遠離速率=哈勃常數×相對地球的距離),其在今天經常被援引作為支持大爆炸的一個重要證據,並成為宇宙膨脹理論的基礎。

這里涉及一個前文提到的人,埃德溫·哈勃。此人對宇宙學的貢獻值得讓人來回溯下他的 事跡 :在20世紀20年代呼嘯掠過、大蕭條蹣跚而至的歲月里,哈勃卻演繹了突破性的天文研究。他不僅證明,除了銀河系外還有其他星系的存在,還發現了那些星系正以遠離銀河系的方向運動,而他公式中的遠離速率就是星系後退的速度。哈勃常數指的是宇宙膨脹速率的參數,而相對地球的距離主體也是這些星系。但據說,被尊為星系天文學創始人的哈勃本人卻非常不喜歡「星系」一詞,堅稱其為「河外星雲」。

隨著時間流逝,斗轉星移,哈勃常數值也發生著變化,但這並沒很大關系。重要的是,正是該定律幫助量化了宇宙各星系的運動,推算遙遠星系的距離。而「宇宙是由許多星系組成」的概念的提出,以及發現這些星系的運動可以追溯至大爆炸,它們都使哈勃定律就像同樣以此人命名的天文望遠鏡般著名。

8、改變整個天文學:開普勒三定律

標准釋義:即行星運動定律,由開普勒發現的行星移動所遵守的三條簡單定律。

第一定律:每一個行星都沿各自的橢圓軌道環繞太陽運行,而太陽則處在橢圓的一個焦點中;

第二定律:在相等時間內,太陽和運動著的行星的連線所掃過的面積都是相等的;

第三定律:各個行星繞太陽公轉周期的平方和它們的橢圓軌道的半長軸的立方成正比。

圍繞著行星的運行軌道,尤其是它們是否以太陽為中心,科學家與宗教領袖以及自己的同行進行了長達數個世紀的爭斗。16世紀時,哥白尼提出了在當時引發巨大爭議的日心說理論,認為行星是以太陽而不是地球為中心進行運行的。此後第谷·布拉赫等人也相繼有所論述。但真正為行星運動學建立明確科學基礎的,是約翰內斯·開普勒。

開普勒於17世紀早期提出的行星運動三大定律,描述了行星是如何圍繞太陽運動的。第一定律,又被稱為橢圓定律;第二定律,又被稱面積定律,換句話解釋該定律,就是說如果你連續30天跟蹤測算地球與太陽之間連線隨地球運動所形成面積,就會發現不管地球在軌道的哪個位置,也不管何時開始測算,結果都是一樣的。至於第三定律,也稱調和定律,它使得我們能夠建立起一個行星軌道周期與距太陽遠近之間的明確關系。比如金星這樣非常靠近太陽的行星,就有著比海王星短得多的軌道運行周期。正是這三條定律,徹底摧毀了托勒密復雜的宇宙體系。

7、大部分理論的基石:萬有引力定律

標准釋義:牛頓的普適萬有引力定律表示為,任意兩個質點通過連心線方向上的力相互吸引。該引力的大小與它們的質量乘積成正比,與它們距離的平方成反比,與兩物體的化學本質或物理狀態以及中介物質無關。該理論能夠由一個已經寫進今天高中物理課本的公式進行表述:F=G×[(m1m2)/r2]

盡管今天人們將其看作是理所當然的事情,但當艾薩克·牛頓在300多年前提出萬有引力學說的時候,無疑是當時最具有革命性的重大事件。牛頓提出的理論可以簡單表述為:任何兩個物體,不管各自質量如何,相互之間都會發生作用力,而質量越大的東西產生的引力越大。公式中,F指兩個物體之間的萬有引力,用「牛頓」作為計量單位;m1和m2分別代表兩個物體的質量;r為兩者之間的距離;G是引力常數。

這是多種實踐條件下都相當精確的定律,但物理學發展至今,人們已經知道牛頓對重力描述的不完美性。然而,該定律仍不失為迄今所有科學中最實用的概念之一,它簡單、易學、且涵蓋面很廣,以至於在廣義相對論初問世的一段時間內都甚少有人問津。更有意義的是,萬有引力定律讓渺小的人類獲得了計算龐大星球之間引力的能力,並且在發射軌道衛星與測繪探月航線等方面尤其有用。

6、物理科學有了基本定理:牛頓運動定律

標准釋義:牛頓第一定律為慣性定律;牛頓第二定律建立起物體質量與加速度之間的聯系;牛頓第三定律為作用力與反作用力定律。

還是牛頓。每當我們談論起這位人類歷史上最傑出的科學家之一,總不由得從他最著名的力學三大定律開始。因為這些簡潔而優雅的定律,奠定了現代物理學的基礎。

簡單理解三大定律的意義,其第一條就讓我們知道,滾動的皮球之所以能夠在地板上運動,必定是受到外力的推動。這外力可能是與地板之間的摩擦,也許是小孩子踢出的一腳。第二定律以F=ma這個公式表述,同時也意味著一個具有方向性的矢量。那個皮球滾過地板時,因為加速度的原因,獲得了一個指向滾動方向的矢量。通過它便能夠計算出皮球所受到的作用力。第三定律相當簡潔,也最為人們所熟知,其意思無外乎,用手指隨便戳戳哪個物體的表面,它們都將用同等的力量進行回應。

5、熱力學基礎基本完備:熱力學三定律

標准釋義:熱力學第一定律,熱可以轉變為功,功也可以轉變為熱,也就是能量守恆和轉換定律;第二定律有幾種表述方式,其中之一是不可能把熱從低溫物體傳到高溫物體而不引起其他變化;第三定律,在熱力學溫度零度(即T=0開)時,一切完美晶體的熵值等於零。

英國物理學家和小說家查爾斯·珀西·斯諾曾經有一段非常著名的論述:「不懂得熱力學第二定律的科學家,就像一個從沒讀過莎士比亞的科學家一樣。」斯諾的言語意在批評科學與人文之間「兩種 文化 」的隔絕與分裂,但卻無意中在文人圈裡「捧紅」了熱力學第二定律。其實,斯諾的論述確實強調並呼籲人文學者都應該去了解一下它的重要性。

熱力學是研究系統中能量運動的科學。這里的系統既可以是一台發動機,也可以是熾熱的地核。斯諾運用自己的聰明才智將其精簡成為以下若干條基本規則:你贏不了、你無法實現收支平衡、你無法退出遊戲。

該如何理解這些說法呢?首先來看所謂的「你贏不了」。斯諾的意思是指既然物質與能量是守恆關系,在能量轉換過程中,我們無法實現一種能量形式到另一種的對等轉換,而不損失一部分能量。就像如果要發動機做功,就必須提供熱能一樣。即便是在一個完美極致的封閉空間中,部分熱量依然將不可避免地散逸到外部世界中去。

而這就引發了第二定律「你實現不了收支平衡」。鑒於熵的無限增加,我們無法返回或保持相同的能量狀態。因為熵總是從濃度高的地方向濃度低的區域流動。而有熵的存在,也是永動機不可能出現的原因。

最後是第三定律「無法退出的游戲」。這里要涉及到絕對零度,即理論上可能達到的最低溫度,一般指零開爾文(零下273.15攝氏度或零下459.67華氏度)。第三定律的表述為,當系統達到絕對零度時,分子將停止一切運動,即沒動能,熵也能達到理論上的最低值。但現實世界中,即使在宇宙的深處,達到絕對零度也是不可能的。你只能無限地接近所謂的終點。

4、公元前200年的大智慧:阿基米德定律

標准釋義:物理學中的阿基米德定律,即阿基米德浮力原理,是指浸在靜止流體中的物體受到流體作用的合力大小等於物體排開的流體的重力,這個合力稱為浮力。數學表達式為:F浮=G排

關於阿基米德是如何發現浮力原理這一物理學重大突破的,有個 傳說 :阿基米德某次洗澡的時候,看到浴缸里的水會隨著自己身體的浸入而上升,便受到啟發開始思考。而當他最終確定發現了浮力理論之後,這位古希臘最偉大的哲人一邊興奮地大喊「找到了!找到了!」,一邊裸露著身體狂奔在錫拉丘茲城的大街小巷。

古希臘學者阿基米德的古老發現已經被廣泛應用在人類社會生產的各個領域。根據浮力原理,施加在一個部分或整體淹沒於液體中的物體的作用力,等於該物體液內體積所排出的液體重量。這對於計算物體的密度,進而進行潛艇和遠洋輪船的設計建造,具有關鍵性意義。

3、我們自身的探討:進化與自然選擇

標准釋義:進化,即演化,在生物學中是指種群里的遺傳性狀在世代之間的變化。自然選擇,也稱為天擇,指生物的遺傳特徵在生存競爭中,具有了某優勢或某劣勢,進而在生存能力上產生差異,並導致繁殖能力的差異,使得這些特徵被保存或是淘汰。

既然我們已經建立起關於宇宙何以從無到有,以及物理學在日常生活中是如何發揮作用的若干基礎概念體系,下一步便可以開始關注我們人類自己的形式問題,即我們是如何成為今天這番模樣的。

我們知道,基因是會復制給下一代的,但基因突變會讓其情況出現變化,這種變化了的新情況,可能隨著物種遷徙等在種群中傳遞。

那麼按照當今大多數科學家的觀點,所有地球生物曾經擁有一個共同的祖先。後來隨著時間的發展,部分開始進化成為特徵鮮明的特定物種。久而久之,生物多樣性便逐漸在所有有機生物中增加與擴展開來。

從最基本的意義上說,基因突變等變異機制在生物進化的過程中一直發生著。而每一階段的這些細節變化都會通過世代的遺傳而得以保留。相應的,生物種群也因此發展出了不同的特徵,並且這些特徵往往能夠幫助生物更好地繁衍生存下來。比如棕色皮膚的青蛙,顯然比 其它 顏色的同類更適宜以偽裝的方式在泥濘的沼澤地區生存。這便是所謂的自然選擇。

當然,對於進化與自然選擇理論,我們還可以將其應用到更廣泛的生物范圍。但是達爾文在19世紀提出的「地球生命豐富的多樣性,來源於進化中的自然選擇」,無疑依舊是最基礎和最具開創性的。

2、永遠轉變了理解宇宙的方式:廣義相對論

標准釋義:引力在此被描述為時空的一種幾何屬性(曲率),而這種時空曲率與處於時空中的物質與輻射的能量,動量張量直接相聯系,其聯系方式即是愛因斯坦的引力場方程(一個二階非線性偏微分方程組)。

對於任何一個不曾學習或研究它的人來說,廣義相對論的標准釋義看了和沒看一個樣。因為它在解釋該詞條時,至少又用了4組不被人理解的詞彙。

它的和外延涉及甚廣,似乎非論文形式不能描述。在此,我們且看看被稱為現代引力理論研究的最高水平的廣義相對論在論什麼。作為比牛頓萬有引力更具有一般性的理論,質量還是一個決定引力的重要屬性,但是不再是引力的唯一來源。

在愛因斯坦這里,引力已不再是牛頓所描述的一種力,甚至可以說,已沒有了原來引力的概念。因為愛因斯坦把它看成物體周圍的時空彎曲,以前所說的「物體受引力作用所作的運動」,被歸結為物體在一個彎曲時空中,沿短程線的自由運動。

如果讓「彎曲時空」的概念更明朗化些,可以想像環繞地球飛行的太空梭里的宇航員,對他們而言,他們是按直線方式在太空中飛行,但實際上太空梭周圍的時空,已經被地球的引力所彎曲,這使太空梭成為又能向前飛行,又能圍繞地球轉的物體。

按美國相對論研究的首席專家約翰·惠勒解釋,這種所謂時空的幾何屬性可以這樣概述:時空告訴物質如何運動,物質告訴時空如何彎曲。因而,其可以展現出宇宙星光受大天體影響的彎曲方式,並且為研究黑洞奠定了理論基礎。

1、上帝擲骰子嗎?:海森堡測不準原理

標准釋義:德國物理學家海森堡於1927年提出,表明量子力學中的不確定性,指在一個量子力學系統中,一個粒子的位置和它的動量(粒子的質量乘以速度)不可被同時確定。

「測量!在經典理論中,這不是一個被考慮的問題。」《量子物理史話》如是說。

那是因為在經典物理學里,你、我,或作為觀測者的任何一人,對這個等待被測量的客觀物體是沒有影響,或影響甚微以致可忽略不計的。那時就算我們弄不懂個中道理,也不妨礙原理待在那,等著我們慢慢參詳。

但現在就要踏入量子世界的魔潭了,此處我們作為觀測者會給實驗現象帶來一定的擾動,因此如果測一個電子的動量,所得值只是相對你這個觀測者而言的。微觀世界中,要以「概率」來論,所謂上帝擲骰子。

當年的華納·海森堡就在此中有了突破性的發現,人們無法同時得到粒子的兩種變數精確信息,哪怕再精密的儀器都不行。具體講,你或者可以准確地知道電子的位置,但無法同時知道其動量,或者反之,得此失彼。而類似的不確定性也存在於能量和時間、角動量和角度等許多物理量之間。

或許你沒明白這件事的詭異性,就像之前提到的,量子世界裡的量既然是相對性,那隻要它存在,就應該可以被測量出來。既然無論如何不能測量到,那它就不復存在。因此,在你沒確定測量這個物理量的手段時,談論它毫無意義。一個電子的動量,只有當你測量時,也才有意義。

這更像是一個哲學話題了。而「海森堡測不準原理」與其說是實驗中發現的,倒不如說是海森堡和他老師玻爾等人討論出來的。到了玻爾發現電子同時具有粒子和波的雙重性質(量子物理的柱石,波粒二象性),當我們測量電子的位置時,我們將其當作粒子,波長不定;而當我們要測量動量時,我們將其當作波,知道波長的量值卻失去它的位置。

即便你現在無比混亂,這依然沒什麼大不了的。玻爾的 名言 就是:「如果誰不為量子論而困惑,那他一定沒有理解量子論。」類似的話費曼也說過。所以我們沒啥好郁悶的,愛因斯坦和我們一個狀況。

⑦ 物理學定律有那些

補充三樓的:
基爾霍夫第一定律,基爾霍夫第二定律,基爾霍夫第三定律,比奧—薩夫爾定律,熱力學第零定律,熱力學第一定律,熱力學第二定律,熱力學第三定律,斯忒番—玻耳茲曼定律

⑧ 十大物理定律

一、牛頓力學四定律(萬有引力定律也可算入力學定律):
1、牛頓力學第一定律——慣性定律(空間重力場平衡律)。
2、牛頓力學第二定律——重力加速度定律(空間重力場變化律)。
3、牛頓力學第三定律——力相互作用定律(重力斥力對應律)。
4、牛頓力學第四定律——萬有引力定律(重力分布律)。
二、熱力學四定律:
5、熱力學第零定律——溫度律、熱平衡律(能量場平衡律)。
6、熱力學第一定律——能量守恆定律(能量分布空間律)。
7、熱力學第二定律——熵增加定律、熱不可逆定律(能量變化時間律)。
8、熱力學第三定律——絕對零度不可達定律(能量利用人力極限律)。
三、相對論四定律:
9、相對性原理(普適律)。
10、光速不變原理(運動極限律)。
11、引力重力等效原理(重力場同一律)。
12、物理學定律普遍性原理(絕對律)。
四、量子力學四定律:
13、波粒二象性原理(二象同一律)。
14、能級躍遷原理(空間能量梯級變化律)。
15、測不準原理(認識極限律)。
16、泡利不相容原理(能量分布極限律)。

⑨ 影響世界的十大物理定律

1、牛頓力學第一定律——慣性定律(空間重力場平衡律)。

2、牛頓力學第二定律——重力加速度定律(空間重力場變化律)。

3、牛頓力學第三定律——力相互作用定律(重力斥力對應律)。

4、牛頓力學第四定律——萬有引力定律(重力分布律)。

5、熱力學第零定律——溫度律、熱平衡律(能量場平衡律)。

6、熱力學第一定律——能量守恆定律(能量分布空間律)。

7、熱力學第二定律——熵增加定律、熱不可逆定律(能量變化時間律)。

8、熱力學第三定律——絕對零度不可達定律(能量利用人力極限律)。

9、相對性原理(普適律)。

10、光速不變原理(運動極限律)。


(9)限制物理學發展定律有哪些擴展閱讀:

一、物理定律的概述:

物理定律是從特別事實推導出的理論學科。物理定律是以經過多年重復實驗和觀察為基礎並在科學領域內普遍接受的典型結論。用定律形式歸納描述我們環境是科學的基本目的。並非所有作者對物理定律用法相同。

二、物理定律的性質

1、物理定律有下列性質:

2、普遍,它在宇宙任何地方都適用。

3、絕對,宇宙中無任何東西能影晌它。

4、一般有量的守恆關系。

參考資料來源:網路—物理定律

⑩ 物理學界中有哪幾大定律

質量守恆定律
能量守恆定律
人品守恆定律(開個玩笑)

一、力學中定律有:
1.牛頓第一定律:任何物體都要保持勻速直線運動或靜止狀態,直到外力迫使它改變運動狀態為止;
2.牛頓第二定律:動量為p的物體,在合外力F的作用下,其動量隨時間的變化率同該物體所受的合外力成正比,並與合外力的方向相同;
3.第三定律:相互作用的兩個物體之間的作用力和反作用力總是大小相等,方向相反,作用在同一條直線上。

二、熱力學定律中有:
1. 熱力學第零定律:
如果兩個熱力學系統中的每一個都與第三個熱力學系統處於熱平衡(溫度相同),則它們彼此也必定處於熱平衡。
熱力學第零定律:
熱可以轉變為功,功也可以轉變為熱;消耗一定的功必產生一定的熱,一定的熱消失時,也必產生一定的功。熱力學第一定律的另一種表述是:第一類永動機是不可能造成的。
2. 熱力學第二定律:
1)、克勞修斯說法:不可能把熱從低溫物體傳到高溫物體,而不引起其他變化。
2)、開爾文說法:不可能從單一熱源吸取熱使之完全變成功,而不發生其他變化。從單一熱源吸熱作功的循環熱機稱為第二類永動機,所以開爾文說法的意思是「第二類永動機無法實現」。
3.熱力學第三定律:
在熱力學溫度零度(即T=0開)時,一切完美晶體的熵值等於零。」所謂「完美晶體」是指沒有任何缺陷的規則晶體。此定律還可表達為「不可能利用有限的可逆操作使一物體冷卻到熱力學溫度的零度。」此種表述可簡稱為「絕對零度不可能達到」原理。

閱讀全文

與限制物理學發展定律有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:741
乙酸乙酯化學式怎麼算 瀏覽:1407
沈陽初中的數學是什麼版本的 瀏覽:1354
華為手機家人共享如何查看地理位置 瀏覽:1046
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:888
數學c什麼意思是什麼意思是什麼 瀏覽:1412
中考初中地理如何補 瀏覽:1302
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:704
數學奧數卡怎麼辦 瀏覽:1391
如何回答地理是什麼 瀏覽:1027
win7如何刪除電腦文件瀏覽歷史 瀏覽:1059
大學物理實驗干什麼用的到 瀏覽:1488
二年級上冊數學框框怎麼填 瀏覽:1702
西安瑞禧生物科技有限公司怎麼樣 瀏覽:982
武大的分析化學怎麼樣 瀏覽:1251
ige電化學發光偏高怎麼辦 瀏覽:1340
學而思初中英語和語文怎麼樣 瀏覽:1655
下列哪個水飛薊素化學結構 瀏覽:1426
化學理學哪些專業好 瀏覽:1489
數學中的棱的意思是什麼 瀏覽:1061