① 70年代的初中物理老課本可以分享給我一份嗎
1.重視常規學習(1)研讀課本。軍隊不打無准備之仗,學習物理也是如此。新學期的書發下來,希望你能夠拿起物理課本,翻開美如畫的篇章,順著目錄,大致了解本學期的內容;每章、每節上課前,再次提前預習,你心存大量疑惑,等待在課堂上與老師一起揭開謎底;復習時,課本要一遍又一遍地反復復習,「讀書百遍,其義自現」,而且每一次你都會有新發現。(2)認真聽講。天才不是天生的。無論是新課、實驗課,還是習題課、復習課,每一個「考試狀元」都能充分利用課堂時間,聚精會神聽講,緊跟老師思路,積極思考,不時勾畫出重點,標注仍不清楚的,或者記錄又產生的新疑問,這樣的學習才是高效的。學習是一個過程,不斷鞭策自己,堅定自己的學習信念,堅持不懈,才能到達「會學」和「學會」的境界。(3)自我督查。習題是鞏固、復習是系統、考試是檢驗。每一次作業、每一次考試,獨立完成,認真審題,仔細計算,精煉結論,全面思考,規范答題;及時訂正,不懂就問,學會歸納,一題多解,舉一反三,多題歸一。學好物理,關鍵問題是要盡快了解物理學科的特點,否則,就會「坐飛機」,雲里霧里,窮於應付,失去學習主動性。
2.重視物理過程(1)會看。例如,老師在空礦泉水瓶子的側面不同高度處扎了幾個小洞,將水倒入瓶中。你睜大了眼睛,像看電影一樣,就怕漏掉哪個環節。做好實驗,老師問觀察到什麼現象?集體回答「水噴出來了」。其實,還有一個答案,「越是下面的小洞水噴得越遠」。兩個現象,兩個結論,而後一個更是研究重點。物理是以觀察和實驗為基礎的一門學科,初中物理的實驗更多,但實驗不是看熱鬧的。(2)會想。上述例子中兩個現象說明什麼問題?回顧前面的知識,木塊壓在海面上,海綿凹陷,即產生形變,說明木塊對海綿有壓強。類比一下,水噴出來,說明水對瓶子側壁有壓強,且水越深壓強越大。那麼如果倒入其他液體會產生什麼現象呢?「心中存疑,小疑則小進,大疑則大進」,惟有動腦思考,才能實現思維升華。(3)會探。上述是《研究液體壓強規律》的引入課,若要深入研究,還需要分組探究。動手准備充足的實驗器材,設計實驗必須注意控制變數,編制數據表格要分清有幾行幾列,需填寫什麼內容,小組成員分工明確,溝通協作,這都是很重要的實驗技能。(4)會說。「說」即「歸納」,根據測量數據,橫縱對比,歸納實驗結論。哪些數據可以進行數量上的對比,得出初步結論?如何對數據運算處理,得到進一步結論?歸納初步結論時,語言敘述要精煉,也要注意控制變數,還要注意結論的完整性。歸納進一步結論時,要明白進行加(求和)、減(求差)、乘(乘積)、除(比值)運算,是為了得到新的物理概念,與普通的數學運算是有本質區別的。囫圇吞棗的學物理,沒有過程,就像蓋樓房沒有地基,是不牢固的。只會背概念,不會用概念,時間久了,那些物理名詞、公式、原理,就成了「天書」,不理解,不是「真經」。
3.重視思維方法(1)方法遷移。初學物理,你會讀到《擺的故事的啟示》,同時,你第一次接觸了利用控制變數法「研究影響擺的周期的因素」。漸漸地,你從「研究聲音的音調跟哪些因素有關」、「比較物體運動快慢」等實驗中,領會了控制變數法的真諦,而這個方法是貫穿於初中物理學習的始終,可以這樣說,你掌握了這種方法,你的初中物理學習就成功了一半。學習光的傳播規律,老師教你畫光線表示光的傳播路徑和方向,可真的有「光線」嗎?當然沒有,只有「光」,沒有「線」,物理學中為了研究的方便而假想的。你明白了這一點,就知道「磁感線」、高中的「質點」、「電場線」也是「建立物理模型」了。曹沖稱象的故事流傳至今,曹沖很聰明的運用了「等效替代」這個物理思想,船上所放石頭的重力就等於大象的重力,「化整為零」,解決了沒有大稱的難題。「合力」、「總電阻」等概念也都運用了這個方法。初中物理中「路程-時間」圖像是學習高中運動力學圖像和其他圖像的基礎。初中物理是為高中物理、大學物理打基礎的,所以你還要學會下列研究方法:累積法、類比法、比較法、歸納法、圖像法、列表法等。(2)知識遷移。物理課程系統分為五個部分:力學、熱學、光學、聲學、電學。除了光學相對獨立,其他內容都是密不可分的整體,物質、運動、能量把它們牢牢地捆在一起。要從整體上把握物理教材,明確知識在本單元、本冊教材、知識系統中的地位,注意前後聯系。
4.重視知識應用物理從生活中來,必然要回歸生活,要學會運用物理知識解決學習、生活、生產中的實際問題。(1)回歸生活。家裡突然停電了,你還會像小時候那麼害怕嗎?八成是保險絲燒掉了,快去看看。百米賽跑時,為何要求計時員看到槍冒煙開始計時,而不是聽到槍聲計時?你學了光速比聲速大很多,計算一下,就明白了。為什麼汽車剎車後還要行駛一段距離?在雨雪天氣路滑時,如何減小交通事故的發生?這與慣性、摩擦有關。如何判斷戒指是否純金?測量質量與體積,計算密度,查密度表對比吧!隨著物理學習的深入,你會豁然明朗,生活到處是物理謎語,等待你去解開。(2)課外研究。物理世界是真實的,也是豐富的。猜想一下,沒有聲音的世界將會是一個怎樣的世界呢?《無聲的世界》幻想文章即刻出爐。城市現代化,玻璃牆面的樓房越來越高,黑夜越來越亮,刺眼的光給居民生活帶來很多不便,那就去想一想《如何減少光污染》。《如果沒有摩擦》、《自行車上的物理》……調查報告,課外製作、課外探究都能把物理從課內延伸到課外,為你帶去研究的歡樂與驚喜。(3)學科交叉。「刻舟求劍」、「掩耳盜鈴」的典故中包含著深刻的物理原理:參照物、運動與靜止的相對性、聲音的產生與傳播。中國古代詩詞、成語諺語中描述了大量的物理現象,你可以從語文中學習相關的物理知識,也可以從歷史中體味物理學家的優秀品質。你嘗到了運用物理知識解決實際問題的樂趣,就會愉快地、主動地投身於物理知識的學習中。
5.重視情感傾注(1)合作。人不是獨立的個體,不能離開群體而存在。有些物理問題,單獨思考會回答不全面,此時需要集體的智慧。有些實驗一個人無法操作,就需要兩個人,甚至四個人一起分工協作完成。有時答案五花八門,則需要集體討論,找到真理。(2)堅持。學習物理要能吃苦,愛因斯坦說,「成功是一分天才加九十九分汗水」。學習物理要有想法,阿基米德說,「給我一個支點和足夠長的杠桿,我能撬動地球」。學習物理更要謙虛,牛頓說,「如果說我比別人看得更遠些,那是因為我站在了巨人的肩上」。「業精於勤,荒於嬉,行成於思,毀於隨」。學習物理必須腳踏實地,夯實基礎,系統把握,循序漸進,不搞突擊。
方法很重要,只要方法對了,堅持就會成功。
② 高中物理學史都有哪些
高中物理難,但一直以來都是高考拿分的關鍵,你是否會有學習物理倍感壓力,無從下手的苦惱,那麼如何學好物理,怎麼做到高考物理不丟基礎分呢,接下來大家可以看看我整理的高中最全物理學史,輕松學好物理。
1.力學
1、1638年,義大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體和輕物體下落一樣快;並在比薩斜塔做了兩個不同質量的小球下落的實驗,證明了他的觀點是正確的,推翻了古希臘學者亞里士多德的觀點(即:質量大的小球下落快是錯誤的);
2、1654年,德國的馬德堡市做了一個轟動一時的實驗——馬德堡半球實驗;
3、1687年,英國科學家牛頓在《自然哲學的數學原理》著作中提出了三條運動定律(即牛頓三大運動定律)。
4、17世紀,伽利略通過構思的理想實驗指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;得出結論:力是改變物體運動的原因,推翻了亞里士多德的觀點:力是維持物體運動的原因。同時代的法國物理學家笛卡兒進一步指出:如果沒有 其它 原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。
5、英國物理學家胡克對物理學的貢獻:胡克定律;經典題目:胡克認為只有在一定的條件下,彈簧的彈力才與彈簧的形變數成正比(對)
6、1638年,伽利略在《兩種新科學的對話》一書中,運用觀察-假設-數學推理的 方法 ,詳細研究了拋體運動。17世紀,伽利略通過理想實驗法指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。
7、人們根據日常的觀察和 經驗 ,提出「地心說」,古希臘科學家托勒密是代表;而波蘭天文學家哥白尼提出了「日心說」,大膽反駁地心說。
8、17世紀,德國天文學家開普勒提出開普勒三大定律;
9、牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤實驗裝置比較准確地測出了引力常量;
10、1846年,英國劍橋大學學生亞當斯和法國天文學家勒維烈(勒維耶)應用萬有引力定律,計算並觀測到海王星,1930年,美國天文學家湯苞用同樣的計算方法發現冥王星。
11、我國宋朝發明的火箭是現代火箭的鼻祖,與現代火箭原理相同;但現代火箭結構復雜,其所能達到的最大速度主要取決於噴氣速度和質量比(火箭開始飛行的質量與燃料燃盡時的質量比);俄國科學家齊奧爾科夫斯基被稱為近代火箭之父,他首先提出了多級火箭和慣性導航的概念。多級火箭一般都是三級火箭,我國已成為掌握載人航天技術的第三個國家。
12、1957年10月,蘇聯發射第一顆人造地球衛星;1961年4月,世界第一艘載人宇宙飛船「東方1號」帶著尤里加加林第一次踏入太空。
13、20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用於微觀粒子和高速運動物體。
14、17世紀,德國天文學家開普勒提出開普勒三定律;牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤裝置比較准確地測出了引力常量(體現放大和轉換的思想);1846年,科學家應用萬有引力定律,計算並觀測到海王星。
2.電磁學
13、1785年法國物理學家庫侖利用扭秤實驗發現了電荷之間的相互作用規律——庫侖定律,並測出了靜電力常量k的值。
14、1752年,富蘭克林在費城通過風箏實驗驗證閃電是放電的一種形式,把天電與地電統一起來,並發明避雷針。
15、1837年,英國物理學家法拉第最早引入了電場概念,並提出用電場線表示電場。
16、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。
17、1826年德國物理學家歐姆(1787-1854)通過實驗得出歐姆定律。
18、1911年,荷蘭科學家昂尼斯(或昂納斯)發現大多數金屬在溫度降到某一值時,都會出現電阻突然降為零的現象——超導現象。
19、19世紀,焦耳和楞次先後各自獨立發現電流通過導體時產生熱效應的規律,即焦耳——楞次定律。
20、1820年,丹麥物理學家奧斯特發現電流可以使周圍的小磁針發生偏轉,稱為電流磁效應。
21、法國物理學家安培發現兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥,同時提出了安培分子電流假說;並 總結 出安培定則(右手螺旋定則)判斷電流與磁場的相互關系和左手定則判斷通電導線在磁場中受到磁場力的方向。
22、荷蘭物理學家洛侖茲提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛侖茲力)的觀點。
23、英國物理學家湯姆生發現電子,並指出:陰極射線是高速運動的電子流。
24、湯姆生的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素。
25、1932年,美國物理學家勞倫茲發明了迴旋加速器能在實驗室中產生大量的高能粒子。(最大動能僅取決於磁場和D形盒直徑。帶電粒子圓周運動周期與高頻電源的周期相同;但當粒子動能很大,速率接近光速時,根據狹義相對論,粒子質量隨速率顯著增大,粒子在磁場中的迴旋周期發生變化,進一步提高粒子的速率很困難。
26、1831年英國物理學家法拉第發現了由磁場產生電流的條件和規律——電磁感應定律。
27、1834年,俄國物理學家楞次發表確定感應電流方向的定律——楞次定律。
28、1835年,美國科學家亨利發現自感現象(因電流變化而在電路本身引起感應電動勢的現象),日光燈的工作原理即為其應用之一,雙繞線法制精密電阻為消除其影響應用之一。
3.熱學
29、1827年,英國植物學家布朗發現懸浮在水中的花粉微粒不停地做無規則運動的現象——布朗運動。
30、19世紀中葉,由德國醫生邁爾、英國物理學家焦爾、德國學者亥姆霍茲最後確定能量守恆定律。
31、1850年,克勞修斯提出熱力學第二定律的定性表述:不可能把熱從低溫物體傳到高溫物體而不產生其他影響,稱為克勞修斯表述。次年開爾文提出另一種表述:不可能從單一熱源取熱,使之完全變為有用的功而不產生其他影響,稱為開爾文表述。
32、1848年開爾文提出熱力學溫標,指出絕對零度是溫度的下限。指出絕對零度(-273.15℃)是溫度的下限。T=t+273.15K
熱力學第三定律:熱力學零度不可達到。
4.波動學
33、17世紀,荷蘭物理學家惠更斯確定了單擺周期公式。周期是2s的單擺叫秒擺。
34、1690年,荷蘭物理學家惠更斯提出了機械波的波動現象規律——惠更斯原理。
35、奧地利物理學家多普勒(1803-1853)首先發現由於波源和觀察者之間有相對運動,使觀察者感到頻率發生變化的現象——多普勒效應。【相互接近,f增大;相互遠離,f減少】
36、1864年,英國物理學家麥克斯韋發表《電磁場的動力學理論》的論文,提出了電磁場理論,預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎。電磁波是一種橫波
37、1887年,德國物理學家赫茲用實驗證實了電磁波的存在,並測定了電磁波的傳播速度等於光速。
38、1894年,義大利馬可尼和俄國波波夫分別發明了無線電報,揭開無線電通信的新篇章。
39、1800年,英國物理學家赫歇耳發現紅外線;1801年,德國物理學家裡特發現紫外線;1895年,德國物理學家倫琴發現X射線(倫琴射線),並為他夫人的手拍下世界上第一張X射線的人體照片。
5.光學
40、1621年,荷蘭數學家斯涅耳找到了入射角與折射角之間的規律——折射定律。
41、1801年,英國物理學家托馬斯·楊成功地觀察到了光的干涉現象。
42、1818年,法國科學家菲涅爾和泊松計算並實驗觀察到光的圓板衍射—泊松亮斑。
43、1864年,英國物理學家麥克斯韋預言了電磁波的存在,指出光是一種電磁波;1887年,赫茲證實了電磁波的存在,光是一種電磁波
44、1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;
②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變。
45、愛因斯坦還提出了相對論中的一個重要結論——質能方程式。
46.公元前468-前376,我國的墨翟及其弟子在《墨經》中記載了光的直線傳播、影的形成、光的反射、平面鏡和球面鏡成像等現象,為世界上最早的光學著作。
47.1849年法國物理學家斐索首先在地面上測出了光速,以後又有許多科學家採用了更精密的方法測定光速,如美國物理學家邁克爾遜的旋轉棱鏡法。(注意其測量方法)
48.關於光的本質:17世紀明確地形成了兩種學說:一種是牛頓主張的微粒說,認為光是光源發出的一種物質微粒;另一種是荷蘭物理學家惠更斯提出的波動說,認為光是在空間傳播的某種波。這兩種學說都不能解釋當時觀察到的全部光現象。
6.相對論
49、物理學晴朗天空上的兩朵烏雲:①邁克遜-莫雷實驗——相對論(高速運動世界),②熱輻射實驗——量子論(微觀世界);
50、19世紀和20世紀之交,物理學的三大發現:X射線的發現,電子的發現,放射性的發現。
51、1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變。
52、1900年,德國物理學家普朗克解釋物體熱輻射規律提出能量子假說:物質發射或吸收能量時,能量不是連續的,而是一份一份的,每一份就是一個最小的能量單位,即能量子
53、激光——被譽為20世紀的「世紀之光」;
54、1900年,德國物理學家普朗克為解釋物體熱輻射規律提出:電磁波的發射和吸收不是連續的,而是一份一份的,把物理學帶進了量子世界;受其啟發1905年愛因斯坦提出光子說,成功地解釋了光電效應規律,因此獲得諾貝爾物理獎。
55、1922年,美國物理學家康普頓在研究石墨中的電子對X射線的散射時——康普頓效應,證實了光的粒子性。(說明動量守恆定律和能量守恆定律同時適用於微觀粒子)
56、1913年,丹麥物理學家玻爾提出了自己的原子結構假說,成功地解釋和預言了氫原子的輻射電磁波譜,為量子力學的發展奠定了基礎。
57、1924年,法國物理學家德布羅意大膽預言了實物粒子在一定條件下會表現出波動性;
58、1927年美、英兩國物理學家得到了電子束在金屬晶體上的衍射圖案。電子顯微鏡與光學顯微鏡相比,衍射現象影響小很多,大大地提高分辨能力,質子顯微鏡的分辨本能更高。
7.原子物理
59、1858年,德國科學家普里克發現了一種奇妙的射線——陰極射線(高速運動的電子流)。
60、1906年,英國物理學家湯姆生發現電子,獲得諾貝爾物理學獎。
61、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。
62、1897年,湯姆生利用陰極射線管發現了電子,說明原子可分,有復雜內部結構,並提出原子的棗糕模型。
63、1909-1911年,英國物理學家盧瑟福和助手們進行了α粒子散射實驗,並提出了原子的核式結構模型。由實驗結果估計原子核直徑數量級為10-15m。
1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,並發現了質子。預言原子核內還有另一種粒子,被其學生查德威克於1932年在α粒子轟擊鈹核時發現,由此人們認識到原子核由質子和中子組成。
64、1885年,瑞士的中學數學教師巴耳末總結了氫原子光譜的波長規律——巴耳末系。
65、1913年,丹麥物理學家波爾最先得出氫原子能級表達式;
66、1896年,法國物理學家貝克勒爾發現天然放射現象,說明原子核有復雜的內部結構。天然放射現象:有兩種衰變(α、β),三種射線(α、β、γ),其中γ射線是衰變後新核處於激發態,向低能級躍遷時輻射出的。衰變快慢與原子所處的物理和化學狀態無關。
67、1896年,在貝克勒爾的建議下,瑪麗-居里夫婦發現了兩種放射性更強的新元素——釙(Po)鐳(Ra)。
68、1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,發現了質子,並預言原子核內還有另一種粒子——中子。
69、1932年,盧瑟福學生查德威克於在α粒子轟擊鈹核時發現中子,獲得諾貝爾物理獎。
70、1934年,約里奧-居里夫婦用α粒子轟擊鋁箔時,發現正電子和人工放射性同位素。
71、1939年12月,德國物理學家哈恩和助手斯特拉斯曼用中子轟擊鈾核時,鈾核發生裂變。1942年,在費米、西拉德等人領導下,美國建成第一個裂變反應堆(由濃縮鈾棒、控制棒、減速劑、水泥防護層等組成)。
72、1952年美國爆炸了世界上第一顆氫彈(聚變反應、熱核反應)。人工控制核聚變的一個可能途徑是:利用強激光產生的高壓照射小顆粒核燃料。
73、1932年發現了正電子,1964年提出誇克模型;粒子分三大類:媒介子-傳遞各種相互作用的粒子,如:光子;輕子-不參與強相互作用的粒子,如:電子、中微子;強子-參與強相互作用的粒子,如:重子(質子、中子、超子)和介子,強子由更基本的粒子誇克組成,誇克帶電量可能為元電荷。
③ 高中物理學史
新課程高考高中物理學史(粵教版)
必修部分:
一、力學:
1、1638年,義大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體和輕物體下落一樣快;並在比薩斜塔做了兩個不同質量的小球下落的實驗,證明了他的觀點是正確的,推翻了古希臘學者亞里士多德的觀點(即:質量大的小球下落快是錯誤的);
2、1654年,德國的馬德堡市做了一個轟動一時的實驗——馬德堡半球實驗;
3、1687年,英國科學家牛頓在《自然哲學的數學原理》著作中提出了三條運動定律(即牛頓三大運動定律)。
4、17世紀,伽利略通過構思的理想實驗指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;得出結論:力是改變物體運動的原因,推翻了亞里士多德的觀點:力是維持物體運動的原因。
同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿著一條直線運動,既不會停下來,也不會偏離原來的方向。
5、20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用於微觀粒子和高速運動物體。
6、1638年,伽利略在《兩種新科學的對話》一書中,運用觀察-假設-數學推理的方法,詳細研究了拋體運動。
7、人們根據日常的觀察和經驗,提出「地心說」,古希臘科學家托勒密是代表;而波蘭天文學家哥白尼提出了「日心說」,大膽反駁地心說。
8、17世紀,德國天文學家開普勒提出開普勒三大定律;
9、牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤實驗裝置比較准確地測出了引力常量;
10、1846年,英國劍橋大學學生亞當斯和法國天文學家勒維烈應用萬有引力定律,計算並觀測到海王星,1930年,美國天文學家湯苞用同樣的計算方法發現冥王星。
9、我國宋朝發明的火箭是現代火箭的鼻祖,與現代火箭原理相同;
俄國科學家齊奧爾科夫斯基被稱為近代火箭之父,他首先提出了多級火箭和慣性導航的概念。
10、1957年10月,蘇聯發射第一顆人造地球衛星;
1961年4月,世界第一艘載人宇宙飛船「東方1號」帶著尤里加加林第一次踏入太空。
二、相對論:
13、物理學晴朗天空上的兩朵烏雲:①邁克遜-莫雷實驗——相對論(高速運動世界),
②熱輻射實驗——量子論(微觀世界);
14、19世紀和20世紀之交,物理學的三大發現:X射線的發現,電子的發現,放射性的發現。
15、1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:
①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;
②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變。
16、1900年,德國物理學家普朗克解釋物體熱輻射規律提出能量子假說:物質發射或吸收能量時,能量不是連續的,而是一份一份的,每一份就是一個最小的能量單位,即能量子;
17、激光——被譽為20世紀的「世紀之光」;
選修部分:
三、電磁學:
理科班(選修3-1):
18、1785年法國物理學家庫侖利用扭秤實驗發現了電荷之間的相互作用規律——庫侖定律,並測出了靜電力常量k的值。
19、1752年,富蘭克林在費城通過風箏實驗驗證閃電是放電的一種形式,把天電與地電統一起來,並發明避雷針。
20、1837年,英國物理學家法拉第最早引入了電場概念,並提出用電場線表示電場。
21、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。
22、1826年德國物理學家歐姆(1787-1854)通過實驗得出歐姆定律。
23、1911年,荷蘭科學家昂納斯發現大多數金屬在溫度降到某一值時,都會出現電阻突然降為零的現象——超導現象。
24、19世紀,焦耳和楞次先後各自獨立發現電流通過導體時產生熱效應的規律,即焦耳定律。
25、1820年,丹麥物理學家奧斯特發現電流可以使周圍的小磁針發生偏轉,稱為電流磁效應。
26、法國物理學家安培發現兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥,並總結出安培定則(右手螺旋定則)判斷電流與磁場的相互關系和左手定則判斷通電導線在磁場中受到磁場力的方向。
27、荷蘭物理學家洛侖茲提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛侖茲力)的觀點。
28、英國物理學家湯姆生發現電子,並指出:陰極射線是高速運動的電子流。
29、湯姆生的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素。
30、1932年,美國物理學家勞倫茲發明了迴旋加速器能在實驗室中產生大量的高能粒子。
(最大動能僅取決於磁場和D形盒直徑,帶電粒子圓周運動周期與高頻電源的周期相同)
物理X科(3-2至3-5 ):
三、電磁學:
31、1831年英國物理學家法拉第發現了由磁場產生電流的條件和規律——電磁感應定律。
32、1834年,俄國物理學家楞次發表確定感應電流方向的定律——楞次定律。
32、1835年,美國科學家亨利發現自感現象(因電流變化而在電路本身引起感應電動勢的現象),日光燈的工作原理即為其應用之一。
四、熱學(選做):
33、1827年,英國植物學家布朗發現懸浮在水中的花粉微粒不停地做無規則運動的現象——布朗運動。
34、19世紀中葉,由德國醫生邁爾、英國物理學家焦爾、德國學者亥姆霍茲最後確定能量守恆定律。
35、1850年,克勞修斯提出熱力學第二定律的定性表述:不可能把熱從低溫物體傳到高溫物體而不產生其他影響,稱為克勞修斯表述。次年開爾文提出另一種表述:不可能從單一熱源取熱,使之完全變為有用的功而不產生其他影響,稱為開爾文表述。
36、1848年 開爾文提出熱力學溫標,指出絕對零度是溫度的下限。
五、波動學(選做):
33、17世紀,荷蘭物理學家惠更斯確定了單擺周期公式。周期是2s的單擺叫秒擺。
34、1690年,荷蘭物理學家惠更斯提出了機械波的波動現象規律——惠更斯原理。
35、奧地利物理學家多普勒(1803-1853)首先發現由於波源和觀察者之間有相對運動,使觀察者感到頻率發生變化的現象——多普勒效應。
36、1864年,英國物理學家麥克斯韋發表《電磁場的動力學理論》的論文,提出了電磁場理論,預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎。
37、1887年,德國物理學家赫茲用實驗證實了電磁波的存在,並測定了電磁波的傳播速度等於光速。
38、1894年,義大利馬可尼和俄國波波夫分別發明了無線電報,揭開無線電通信的新篇章。
39、1800年,英國物理學家赫歇耳發現紅外線;
1801年,德國物理學家裡特發現紫外線;
1895年,德國物理學家倫琴發現X射線(倫琴射線),並為他夫人的手拍下世界上第一張X射線的人體照片。
六、光學(選做):
40、1621年,荷蘭數學家斯涅耳找到了入射角與折射角之間的規律——折射定律。
41、1801年,英國物理學家托馬斯·楊成功地觀察到了光的干涉現象。
42、1818年,法國科學家菲涅爾和泊松計算並實驗觀察到光的圓板衍射——泊松亮斑。
43、1864年,英國物理學家麥克斯韋預言了電磁波的存在,指出光是一種電磁波;
1887年,赫茲證實了電磁波的存在,光是一種電磁波
44、1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:
①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;
②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變。
45、愛因斯坦還提出了相對論中的一個重要結論——質能方程式:。
七、波粒二向性:
46、1900年,德國物理學家普朗克為解釋物體熱輻射規律提出:電磁波的發射和吸收不是連續的,而是一份一份的,把物理學帶進了量子世界;受其啟發1905年愛因斯坦提出光子說,成功地解釋了光電效應規律,因此獲得諾貝爾物理獎。
47、1922年,美國物理學家康普頓在研究石墨中的電子對X射線的散射時——康普頓效應,證實了光的粒子性。
48、1913年,丹麥物理學家玻爾提出了自己的原子結構假說,成功地解釋和預言了氫原子的輻射電磁波譜,為量子力學的發展奠定了基礎。
49、1924年,法國物理學家德布羅意大膽預言了實物粒子在一定條件下會表現出波動性;
1927年美、英兩國物理學家得到了電子束在金屬晶體上的衍射圖案。電子顯微鏡與光學顯微鏡相比,衍射現象影響小很多,大大地提高了分辨能力,質子顯微鏡的分辨本能更高。
八、原子物理學:
50、1858年,德國科學家普里克發現了一種奇妙的射線——陰極射線(高速運動的電子流)。
51、1906年,英國物理學家湯姆生發現電子,獲得諾貝爾物理學獎。
52、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。
53、1897年,湯姆生利用陰極射線管發現了電子,說明原子可分,有復雜內部結構,並提出原子的棗糕模型。
54、1909-1911年,英國物理學家盧瑟福和助手們進行了α粒子散射實驗,並提出了原子的核式結構模型。由實驗結果估計原子核直徑數量級為10 -15m。
55、1885年,瑞士的中學數學教師巴耳末總結了氫原子光譜的波長規律——巴耳末系。
56、1913年,丹麥物理學家波爾最先得出氫原子能級表達式;
57、1896年,法國物理學家貝克勒爾發現天然放射現象,說明原子核有復雜的內部結構。
天然放射現象:有兩種衰變(α、β),三種射線(α、β、γ),其中γ射線是衰變後新核處於激發態,向低能級躍遷時輻射出的。衰變快慢與原子所處的物理和化學狀態無關。
58、1896年,在貝克勒爾的建議下,瑪麗-居里夫婦發現了兩種放射性更強的新元素——釙(Po)鐳(Ra)。
59、1919年,盧瑟福用α粒子轟擊氮核,第一次實現了原子核的人工轉變,發現了質子,
並預言原子核內還有另一種粒子——中子。
60、1932年,盧瑟福學生查德威克於在α粒子轟擊鈹核時發現中子,獲得諾貝爾物理獎。
61、1934年,約里奧-居里夫婦用α粒子轟擊鋁箔時,發現了正電子和人工放射性同位素。
62、1939年12月,德國物理學家哈恩和助手斯特拉斯曼用中子轟擊鈾核時,鈾核發生裂變。63、1942年,在費米、西拉德等人領導下,美國建成第一個裂變反應堆(由濃縮鈾棒、控制棒、減速劑、水泥防護層等組成)。
64、1952年美國爆炸了世界上第一顆氫彈(聚變反應、熱核反應)。人工控制核聚變的一個可能途徑是:利用強激光產生的高壓照射小顆粒核燃料。
1964年提出誇克模型;
65、粒子分三大類:媒介子-傳遞各種相互作用的粒子,如:光子;
輕子-不參與強相互作用的粒子,如:電子、中微子;
強子-參與強相互作用的粒子,如:重子(質子、中子、超子)和介子
④ 六七十年代有物理化學生物嗎
是沒有的。
正式選選文科了,那就不用學物理化學和生物了因為:文科考生高考僅僅考:數學,語文,英語,政治,地理,歷史即可但是有的學校高一就選文理,那是還沒有參加結業考試,所以:還得學習理化生,因為只有結業考試過了,才能參加高考和或得高中畢業證。
高中選課選的物理化學生物是可以報司法學院的,因為司法學院的要求只是你在高中階段並沒有太多的要求,只需要你在大學學習政治法學即可。
⑤ 高中的物理學的是什麼東西
物理是一種理科課程.初中物理呢,是應用物理的知識來解釋日常生活當中的許多現象的學科.比較貼近於生活.也來自生活.要是想學好物理呢,就必須有合適的方法.如果沒有合適的方式方法的話.你根本就學不會物理的,因為物理是有邏輯性的.那麼怎麼學好初中物理這門學科呢?有什麼樣的方法可以學好物理呢?
初中物理思維導圖
第五、不懂就問
發現自己有不會的地方,一定要及時的問同學或者是老師.不懂就問才是最好的學習方法,這樣就把所有的知識點都放在你的腦子里邊了.成為你自己的東西了,而不是別人的東西.
關於怎麼學好初中物理的方法技巧已經告訴給大家了,希望同學們能夠按照上面的方式方法進行學習,對於你們提高成績是很有幫助的.
⑥ 為什麼要學習高中物理高中物理主要能用來解決什麼問題
基本的自然規律
應該要懂的東西,生活在人類社會,至少要懂得一些基本的自然規律,和一些人類社會中常識性的東西
高中物理太簡單了
現在好後悔以前初高中的歷史、地理課都沒好好學,現在感覺什麼都不知道……
物理作為一門科學,高中物理是它的基礎,高中物理不僅為以後學習物理的人打好基礎,它還可以替你解決很多生活中的問題,比如你坐車轉彎時知道怎麼偏轉,提供轉彎的向心力,使身體保持平衡。還有很多電磁學,光學知識都能解決
如果樂意學,興趣皆在
如果不樂意學,毫無意義......
最簡單的回答,這跟為什麼學數學是一樣的
很實在的問題
像物理,數學這樣的基礎學科,並非要你在知識上學到很多,因為如果你大學不研究物理,很多知識都是會遺忘的,而是為了鍛煉你的思維品質以及你的科學精神,為你以後的學習打下基礎。而應試教育也不是一無適處,它可以鍛煉你的心理品質,毅力以及抗挫折能力。
很多人都說這些都沒意義,但其實你從積極的角度去看待這些問題,會讓你收益匪淺
高中的物理看似好象很抽象,其實跟生活有密切聯系,
像微波爐是根據使水分子旋轉產生摩擦熱來加熱食物的,
電磁爐用到渦旋電流,
轉彎過橋用到了向心力知識,
保溫瓶膽用到了鏡面反射,
燒水煲湯用到了沸騰方面的知識,
日光燈用到了鎮流器,
平時打球都可以做一下力學分析,
它可以讓你更好地認識和了解這個世界,
掌握一些自然界最直接最實質的規律,
例如地球為什麼會有磁場,
蘋果為什麼會下掉,
風雨雲霧是什麼回事,
物質為什麼會顯示不同的顏色,
我覺得它是很理性的學科(這就是為什麼那麼多哲學家都有研究物理的原因吧-_-||),對於思維鍛煉也有很大幫助,假如你准備報工程學專業,那高中的物理就是打基礎的了.
我是選修物理的,感覺這門學科不錯,很實用,只要理解了,聯繫到實際,學起來是很輕松的,我們的X科老師說物理還可以上升到更高的層次,也可以引申到其它方面,例如同性相斥異性相吸......
為大學的專業學習打基礎!
物理的學習對於個人來說是一種思維方式的訓練,這種思維方式就是一種物理的科學的思維方式。我們也可以說物理是腦筋體操,對塑造一個人的思想有著很重要的意義。
物理對於一個國家而言,是富國強民的必然要求,因為我們都知道現在的世界是一個嚴重依靠科技來生存發展的世界,而物理正是研究我們這個客觀世界的一門學科,且是一門基礎學科。
物理學習的意義是通過多年的物理學的訓練之後才能逐漸體會到的,比如我,本科+研究生學了7年物理……
其實,你問這個問題就是因為你的物理不太好,但又想把成績提高。我來給你只幾招吧~~!
首先你得明白物理的含義,莊子曾經說過:「判天地之美,析萬物之理」,「萬物之理」說的大概也就是物理了。高中的物理正是在幫助你判定天地的美與否打基礎。
的確高中的物理和初中的不太樣,首先知識深了,有時一個問題要思考半天才能想通。事實上,物理正是在幫助你開發思維,教你想問題的方法。物理是重要的,想一想沒有物理學,你我又怎能在網路上提問解答呢?
⑦ 七十年代的九年義務教育中包含高中教學嗎 那時候有十年級嗎 那時候的十年級是高中還是大學
上世紀70年代小學和中學的學制是:小學5年,初中2年,高中2年,共計9年。那時候沒有十年級。大學的年級從不和中小學連著算。1981年9月城市高中改為3年制(所以1982年7月只有縣級以下的高中有2年制的畢業生,次年城市3年制高中有首屆畢業生),從1985年起高中畢業生全是由3年制高中畢業的。
實行九年義務教育制是從1994年9月1日開始的,包括小學6年,初中3年,並不包括高中。
⑧ 70年代初中和高中都有什麼科目啊
70年代初中和高中一般只有數學,語文,還有物理
⑨ 高中物理學什麼
高一
高中物理新課標教材·必修1
走進物理課堂之前
物理學與人類文明
第一章 運動的描述
1 質點參考系和坐標系
2 時間和位移
3 運動快慢的描述——速度
4 實驗:用打點計時器測速度
5 速度變化快慢的描述——加速度
第二章 勻變速直線運動的研究
1 實驗:探究小車速度隨時間變化的規律
2 勻變速直線運動的速度與時間的關系
3 勻變速直線運動的位移與時間的關系
4 自由落體運動
5 伽利略對自由落體運動的研究
第三章 相互作用
1 重力基本相互作用
2 彈力
3 摩擦力
3 摩擦力
4 力的合成
5 力的分解
第四章 牛頓運動定律
1 牛頓第一定律
2 實驗:探究加速度與力、質量的關系
3 牛頓第二定律
4 力學單位制
5 牛頓第三定律
6 用牛頓定律解決問題(一)
7 用牛頓定律解決問題(二)
第五章 機械能及其守恆定律
1 追尋守恆量
2 功
3 功率
4 重力勢能
5 探究彈性勢能的表達式
6 探究功與物體速度變化的關系
7 動能和動能定理
8 機械能守恆定律
9 實驗:驗證機械能守恆定律
10 能量守恆定律與能源
第六章 曲線運動
1 曲線運動
2 運動的合成與分解
3 探究平拋運動的規律
4 拋體運動的規律
5 圓周運動
6 向心加速度
7 向心力
8 生活中的圓周運動
第七章 萬有引力與航天
1 行星的運動
2 太陽與行星間的引力
3 萬有引力定律
4 萬有引力理論的成就
5 宇宙航行
6 經典力學的局限性
高二
第一章 電流
一、電荷庫侖定律
二、電場
三、生活中的靜電現象
五、電流和電源
六、電流的熱效應
第二章 磁場
一、指南針與遠洋航海
二、電流的磁場
三、磁場對通電導線的作用
四、磁聲對運動電荷的作用
五、磁性材料
第三章 電磁感應
一、電磁感應現象
二、法拉第電磁感應定律
三、交變電流
四、變壓器
五、高壓輸電
六、自感現象 渦流
七、課題研究:電在我家中
第四章 電磁波及其應用
一、電磁波的發現
二、電磁光譜
三、電磁波的發射和接收
四、信息化社會
五、課題研究:社會生活中的電磁波
致同學們
第一章 分子動理論 內能
一、分子及其熱運動
二、物體的內能
三、固體和液體
四、氣體
第二章 能量的守恆與耗散
一、能量守恆定律
二、熱力學第一定律
三、熱機的工作原理
四、熱力學第二定律
五、有序、無序和熵
六、課題研究:家庭中的熱機
第三章 核能
一、放射性的發現
二、原子核的結構
三、放射性的衰變
四、裂變和聚變
五、核能的利用
第四章 能源的開發與利用
一、熱機的發展和應用
二、電力和電信的發展與應用
三、新能源的開發
四、能源與可持續發展
五、課題研究:太陽能綜合利用的研究
致同學們
第一章 電場 直流電路
第1節 電場
第2節 電源
第3節 多用電表
第4節 閉合電路的歐姆定律
第5節 電容器
第二章 磁場
第1節 磁場磁性材料
第2節 安培力與磁電式儀表
第3節 洛倫茲力和顯像管
第三章 電磁感應
第1節 電磁感應現象
第2節 感應電動勢
第3節 電磁感應現象在技術中的應用
第四章 交變電流電機
第1節 交變電流的產生和描述
第2節 變壓器
第3節 三相交變電流
第五章 電磁波通信技術
第1節 電磁場電磁波
第2節 無線電波的發射、接收和傳播
第3節 電視行動電話
第4節 電磁波譜
第六章 集成電路感測器
第1節 晶體管
第2節 集成電路
第3節 電子計算機
第4節 感測器
高三
第一章 光的折射
第1節 光的折射 折射率
第2節 全反射 光導纖維
第3節 棱鏡和透鏡
第4節 透鏡成像規律
第5節 透鏡成像公式
第二章 常用光學儀器
第1節 眼睛
第2節 顯微鏡和望遠鏡
第3節 照相機
第三章 光的干涉、衍射和偏振
第1節 機械波的稍微和干涉
第2節 光的干涉
第3節 光的衍射
第4節 光的偏振
第四章 光源與激光
第1節 光源
第2節 常用照明光源
第3節 激光
第4節 激光的應用
第五章 放射性與原子核
第1節 天然放射現象 原子結構
第2節 原子核衰變
第3節 放射性同位素的應用
第4節 射線的探測和防護
第六章 核能與反應堆技術
第1節 核反應和核能
第2節 核列變和裂變反應堆
第3節 核聚變和受控熱核反應
第四章 電磁感應
1 劃時代的發現
2 探究電磁感應的產生條件
3 法拉第電磁感應定律
4 欏次定律
5 感生電動勢和動生電動勢
6 互感和自感
7 渦流
第五章 交變電流
1 交變電流
2 描述交變電流的物理量
3 電感和電容對交變電流的影響
4 變壓器
5 電能的輸送
第六章 感測器
1 感測器及其工作原理
2 感測器的應用(一)
3 感測器的應用(二)
4 感測器的應用實例
附 一些元器件的原理和使用要點
第七章 分子動理論
1 物體是由大量分子組成的
2 分子的熱運動
3 分子間的作用力
4 溫度的溫標
5 內能
第八章 氣體
1 氣體的等溫變化
2 氣體的等容變化和等壓變化
3 理想氣體的狀態方程
4 氣體熱現象的微觀意義
第九章 物態和物態變化
1 固體
2 液體
3 飽和汽和飽和汽壓
4 物態變化中的能量交換
第十章 熱力學定律
1 功和內能
2 熱和內能
3 熱力學第一定律 能量守恆定律
4 熱力學第二定律
5 熱力學第二定律的微觀解釋
6 能源和可持續發展
第十一章 機械振動
1 簡諧運動
2 簡諧運動的描述
3 簡諧運動的回復力和能量
4 單擺
5 外力作用下的振動
第十二章 機械波
1 波的形成和傳播
2 波的圖象
3 波長、頻率和波速
4 波的反射和折射
5 波的衍射
6 波的干涉
7 多普勒效應
第十三章 光
1 光的折射
2 光的干涉
3 實驗:用雙縫干涉測量光的波長
4 光的顏色 色散
5 光的衍射
6 波的干涉
7 全反射
8 激光
第十四章 電磁波
1 電磁波的發現
2 電磁振盪
3 電磁波的發射和接收
4 電磁波與信息化社會
5 電磁波譜
第十五章 相對論簡介
1 相對論誕生
2 時間和空間的相對性
3 狹義相對論的其他結論
4 廣義相對論簡介
第十六章 動量守恆定律
1 實驗:探究碰撞中的不變數
2 動量守恆定律(一)
3 動量守恆定律(二)
4 碰撞
5 反沖運動 火箭
6 用動量概念表示牛頓的第二定律
第十七章 波粒二象性
1 能量量子化:物理學的新紀元
2 科學的轉折:光的粒子性
3 嶄新的一頁:粒子的波動性
4 概率波
5 不確定的關系
第十八章 原子結構
1 電子的發現
2 原子的核式結構模型
3 氫原子光譜
4 玻爾的原子模型
5 激光
第十九章 原子核
1 原子核的組成
2 放射性元素的衰變
3 探測射線的方法
4 放射性的應用與防護
5 核力與結合能
6 重核的裂變
7 核聚變
8 粒子和宇宙
⑩ 70年代的高中生相當於現在什麼水平大專本科還是其它。具體說說。
從所學的知識上來講和現在的高中差不多。但從物以稀為貴的角度上講那時的高中生比現在的本科生值錢多了。
還有一點很重要那就是那時的高中生基本上都是有真才實學的。現在的大專生或本科生拿來和他們比水份很大(在校基本上都是玩游戲,泡妞壓根就沒學到東東)。所學的東東不一定比得上人家。