A. 物理模型和數學模型的區別
1、數學模型是指將現實問題歸結為相應的數學問題,並在此基礎上利用數學的概念、方法和理論進行深入的分析和研究,從而從定性或定量的角度來刻畫實際問題,並為解決現實問題提供精確的數據或可靠的指導。
一句話, 就是把實際問題抽象成數學問題, 並分析解答.
分類要有分類的標准,比如按實際問題所在的領域分類,可有:
醫學數學模型
氣象學數學模型
經濟學數學模型
社會學數學模型
等等.
要是按所用到的數學學科來分類,可有
幾何模型
方程模型
圖論模型
泛函模型
等等.
分類其實五花八門.
方程是一個數學概念, 如果你的實際問題建立了方程,你的模型可以稱為一個方程模型.
★物理模型就是用物理學的概念和理論來描述抽象現實問題,特點是
舍棄次要因素,抓住主要因素,從而突出客觀事物的本質特徵,這就叫構建物理模型。構建物理模型是一種研究問題的科學的思維方法。
物理模型一般可分三類:物質模型、狀態模型、過程模型。
2、數學模型與物理模型之間究竟有何區別?
這其實就是數學和物理的區別, 數學和物理的聯系很緊密, 很多模型你不能單純地說是物理還是數學模型.當然數學模型更純粹和抽象. 自然科學的研究一般思路可以說是先建立物理模型, 再抽象成數學模型, 再由解算結果反過來反映物理意義, 進而得出實際意義.
B. 什麼是理論物理和實驗物理,它們的區
作者:黃豆子
鏈接:https://www.hu.com/question/34425487/answer/59840035
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
二,什麼是理論物理
wiki對理論物理的定義:
理論物理學通過為現實世界建立數學模型來試圖理解所有物理現象的運行機制。通過「物理理論」來條理化、解釋、預言物理現象。
所以理論物理要做的就是把自然規律用數學模型(可以理解為公式)的形式展示出來。具體來說理論學家做的事可以列舉為
[有未解釋的現象]從現象中總結規律
[有未解釋的現象&&基本理論]根據現象修正現有理論,或推翻現有理論建立新理論
[有基本理論]從基本理論出發,預言可能發生的現象
[有未解釋的現象&&基本理論]從基本理論出發,解釋現象
建立最簡單,最基本的理論體系
三,什麼是實驗物理
wiki對實驗物理的定義:
所以實驗物理要做的就是觀察物理現象,收集並解釋所得到的數據資料。具體來說實驗學家做的事可以列舉為
收集測量記錄現象(以備理論學家使用(劃掉
用實驗創造可以檢驗理論的現象(以備理論學家使用(劃掉
將數據解釋為可以理解的物理現象(以備理論學家使用(劃掉
創造觀察紀錄「反常」新現象(以備理論學家使用(劃掉
四,物理學研究的方法(理論和實驗所扮演的角色)
這里說的只是一個泛泛的方法和思路,並不是說所有物理研究都必須遵從這樣的過程。
簡單說,一個物理理論的發展,往往先是遇到一個現有理論解釋不了的現象→總結規律→得到解釋現象的理論(唯象)→結合現有理論進行修正→發展為更基本的理論體系→用新的現象驗證理論。我認為這是一個非常自然的邏輯。
我畫了一個示意圖來顯示這個過程:
width="409">
現在我們看看理論學家和實驗學家在其中所扮演的角色:
實驗:收集自然現象或設計實驗創造現象
實驗:測量數據,並將數據轉化為有物理含義的結果
理論:總結歸納
理論:用數學模型描述解釋實驗結果
理論:檢驗和現有理論的兼容性,修正現有理論
理論:得到更基本的理論體系
理論:用創建的理論預測應該發生的現象
實驗:設計實驗驗證是否會發生理論預測的現象
可以看出理論和實驗是互相依賴的。如果沒有理論,實驗結果是膚淺的;如果沒有實驗,理論則是和不知正確性的想像。
C. 什麼是物理模型舉個例子解釋下~
物理模型就是指 在處理物理問題時 如果遇上的問題過於復雜 就會把相應的問題簡化 成一個經典的物理現象 然後套用解決這種經典的物理現象的思路和方法來解決這個問題 例如 在水面上(無摩擦)有一艘船船上有一個人 人往船的邊緣行走 這就是高中物理里著名的人船模型 在解決外力極小的運動問題時 通常會考慮這個模型 有了物理模型 你可以在很多情況下近似地解決實際問題 希望我的回答讓您滿意
D. 高中生物中什麼是物理模型概念模型和數學模型
物理模型通常簡稱為模型,指可以模擬物理對象的較小或更大的復製品。
概念模型指一種或多或少的形式化描述,描述的內容包括建立軟體組件時,所用到的演算法、架構、假設與底層約束。通常對實際的簡化描述,包括一定程度的抽象,顯式或隱式地按照頭腦中的確切使用方式進行構建。
數學模型指運用數理邏輯方法和數學語言建構的科學或工程模型。針對參照某種事物系統的特徵或數量依存關系,採用數學語言,概括地或近似地表述出的一種數學結構,這種數學結構藉助於數學符號刻劃出來的某種系統的純關系結構。
(4)如何理解物理理論就是模型理論擴展閱讀
物理模型設計所做的工作是根據信息系統的容量,復雜度,項目資源以及數據倉庫項目自身(當然,也可以是非數據倉庫項目)的軟體生命周期確定數據倉庫系統的軟硬體配置,數據倉庫分層設計模式,數據的存儲結構,確定索引策略,確定數據存放位置,確定存儲分配等等。這部分應該是由項目經理和數據倉庫架構師共同實施的。
概念模型用於信息世界的建模,是現實世界到信息世界的第一層抽象。為了把現實世界中的具體事物抽象、組織為某一資料庫管理系統支持的數據模型,人們常常首先將現實世界抽象為信息世界,然後將信息世界轉換為機器世界。
也就是說,首先把現實世界中的客觀對象抽象為某一種信息結構,這種信息結構並不依賴於具體的計算機系統,不是某一個資料庫管理系統(DBMS)支持的數據模型,而是概念級的模型,稱為概念模型。
從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內的關系的數學表達。
E. 物理模型數學模型概念模型區別
一、特徵上的區別:
1、物理模型
以實物或畫圖形式直觀的表達認識對象的特徵
在數據倉庫項目中,物理模型設計和業務模型設計象兩個輪子一樣有力地支撐著數據倉庫的實施,兩者並行不悖,缺一不可。
實際上,這有意地擴大了物理模型和業務模型的內涵和外延,因為,在這里物理模型不僅僅是數據的存儲,而且也包含了數據倉庫項目實施的方法論、資源以及軟硬體選型,而業務模型不僅僅是主題模型的確立,也包含了企業的發展戰略,行業模本等等更多的內容。
物理模型就像大廈的基礎架構,就是通用的業界標准,無論是一座摩天大廈也好,還是茅草房也好,在架構師的眼裡,他只是一所建築,地基—層層建築—封頂,這樣的工序一樣也不能少,關繫到住戶的安全,房屋的建築質量也必須得以保證,唯一的區別是建築的材料,地基是採用鋼筋水泥還是石頭,牆壁採用木質還是鋼筋水泥或是磚頭;
當然材料和建築細節還是會有區別的,視用戶給出的成本而定;還有不可忽視的一點是,數據倉庫的數據從幾百GB到幾十TB不等,面對如此大的數據管理,無論支撐這些數據的RDBMS(關系資料庫)多麼強大,仍不可避免地要考慮資料庫的物理設計。
2、概念模型
概念數據模型是面向用戶、面向現實世界的數據模型,是與DBMS無關的。它主要用來描述一個單位的概念化結構。採用概念數據模型,資料庫設計人員可以在設計的開始階段,把主要精力用於了解和描述現實世界上,而把涉及DBMS的一些技術性的問題推遲到設計階段去考慮。
3、數學模型
(1)評價問題抽象化和模擬化;
(2)各參數是由與評價對象有關的因素構成的。
(3)要表明各有關因素之間的關系。
二、分類上的區別:
1、物理模型
中學物理模型一般可分三類:物質模型、狀態模型、過程模型。
(1)物質模型
物質可分為實體物質和場物質。
實體物質模型有力學中的質點、輕質彈簧、彈性小球等;電磁學中的點電荷、平行板電容器、密繞螺線管等;氣體性質中的理想氣體;光學中的薄透鏡、均勻介質等。
場物質模型有如勻強電場、勻強磁場等都是空間場物質的模型。
(2)狀態模型
研究流體力學時,流體的穩恆流動(狀態);研究理想氣體時,氣體的平衡態;研究原子物理時,原子所處的基態和激發態等都屬於狀態模型。
(3)過程模型
在研究質點運動時,如勻速直線運動、勻變速直線運動、勻速圓周運動、平拋運動、簡諧運動等;在研究理想氣體狀態變化時,如等溫變化、等壓變化、等容變化、絕熱變化等;還有一些物理量的均勻變化的過程,如某勻強磁場的磁感應強度均勻減小、均勻增加等;非均勻變化的過程,如汽車突然停止都屬於理想的過程模型。
模型是對實際問題的抽象,每一個模型的建立都有一定的條件和使用范圍。學生在學習和應用模型解決問題時,要弄清模型的使用條件,要根據實際情況加以運用。
比如一列火車的運行,能否看成質點,就要根據質點的概念和要研究的火車運動情況而定,在研究火車過橋所需時間時,火車的長度相對於橋長來說,一般不能忽略,所以不能看成質點;在研究火車從北京到上海所需的時間時,火車的長度遠遠小於北京到上海的距離,可忽略不記,因此火車就可以看成為質點。
2、概念模型
原理上來說,並沒有具體的分類。
3、數學模型
(1)精確型:內涵和外延非常分明,可以用精確數學表達。
(2)模糊型:內涵和外延不是很清晰,要用模糊數學來描述。
(5)如何理解物理理論就是模型理論擴展閱讀:
建立數學模型的要求
1、真實完整。
(1)真實的、系統的、完整的反映客觀現象;
(2)必須具有代表性;
(3)具有外推性,即能得到原型客體的信息,在模型的研究實驗時,能得到關於原型客體的原因。
(4)必須反映完成基本任務所達到的各種業績,而且要與實際情況相符合。
2、簡明實用。在建模過程中,要把本質的東西及其關系反映進去,把非本質的、對反映客觀真實程度影響不大的東西去掉,使模型在保證一定精確度的條件下,盡可能的簡單和可操作,數據易於採集。
3、適應變化。隨著有關條件的變化和人們認識的發展,通過相關變數及參數的調整,能很好的適應新情況。
F. ★數學模型與物理模型的區別是什麼★
★數學模型是指將現實問題歸結為相應的數學問題,並在此基礎上利用數學的概念、方法和理論進行深入的分析和研究,從而從定性或定量的角度來刻畫實際問題,並為解決現實問題提供精確的數據或可靠的指導。
一句話, 就是把實際問題抽象成數學問題, 並分析解答.
分類要有分類的標准,比如按實際問題所在的領域分類,可有:
醫學數學模型
氣象學數學模型
經濟學數學模型
社會學數學模型
等等.
要是按所用到的數學學科來分類,可有
幾何模型
方程模型
圖論模型
泛函模型
等等.
分類其實五花八門.
方程是一個數學概念, 如果你的實際問題建立了方程,你的模型可以稱為一個方程模型.
★物理模型就是用物理學的概念和理論來描述抽象現實問題,特點是
舍棄次要因素,抓住主要因素,從而突出客觀事物的本質特徵,這就叫構建物理模型。構建物理模型是一種研究問題的科學的思維方法。
物理模型一般可分三類:物質模型、狀態模型、過程模型。
★數學模型與物理模型之間究竟有何區別?
這其實就是數學和物理的區別, 數學和物理的聯系很緊密, 很多模型你不能單純地說是物理還是數學模型.當然數學模型更純粹和抽象. 自然科學的研究一般思路可以說是先建立物理模型, 再抽象成數學模型, 再由解算結果反過來反映物理意義, 進而得出實際意義.
滿意與否?
G. 什麼是物理理論
理論物理
一、學科概況
理論物理是從理論上探索自然界未知的物質結構、相互作用和物質運動的基本規律的學科。理論物理的研究領域涉及粒子物理與原子核物理、統計物理、凝聚態物理、宇宙學等,幾乎包括物理學所有分支的基本理論問題。
二、培養目標
1.博士學位 應具備堅實的理論物理基礎和廣博的現代物理知識,了解理論物理學科的現狀及發展方向,有扎實的數學基礎,熟練掌握現代計算技術,能應用現代理論物理方法處理相關學科中發現的有關理論問題。具有獨立從事科學研究的能力,具有嚴謹求實的科學態度和作風,在國際前沿方向或交錯領域中有較深入的研究,並取得有創造性的成果。至少掌握一門外國語,能熟練地閱讀本專業的外文資料,具有一定的寫作能力和進行國際學術交流的能力。畢業後可獨立從事前沿理論課題的研究,並能開辟新的研究領域。學位獲得者應能勝任高等院校、科研院所及高科技企業的教學」研究、開發和管理工作。
2.碩士學位 應有扎實的理論物理基礎和相關的背景知識,了解理論物理學科的現狀及發展方向,掌握研究物質的微觀及宏觀現象所用的模型和方法等專業理論以及相關的數學與計算方法,有嚴謹求實的科學態度和作風,具備從事前沿課題研究的能力。應較為熟練地掌握一門外國語,能閱讀本專業的外文資料。畢業後能勝任高等院校、科研院所及高科技企業的教學、研究、開發和管理工作。
三、業務范圍
1.學科研究范圍 理論物理是在實驗現象的基礎上,以理論的方法和模型研究基本粒子、原子核、原子、分子、等離子體和凝聚態物質運動的基本規律,解決學科本身和高科技探索中提出的基本理論問題。研究范圍包括粒子物理理論、原子核理論、凝聚態理論、統計物理、光子學理論、原子分子理論、等離子體理論、量子場論與量子力學、引力理論、數學物理、理論生物物理、非線性物理、計算物理等。
2.課程設置 高等量子力學、高等統計物理、量子場論、群論、規范場論、現代數學方法、計算物理、凝聚態理論、量子多體理論、粒子物理、核理論、非平衡統計物理、非線性物理、廣義相對論、量子光學、理論生物物理、天體物理、微分幾何、拓撲學等。
四、主要相關學科
粒子物理與原子核物理,原子和分子物理,凝聚態物理,等離子體物理,聲學,光學,無線電物理,基礎數學,應用數學,計算數學,凝聚態物理,化學物理,天體物理,宇宙學,材料科學,信息科學和生命科學
-------------------------------------------------------
目前主要研究方向:
(一)、粒子物理和量子場論
粒子物理學是研究物質微觀結構及基本相互作用規律的物理學前沿學科。粒子物理理論作為量子場的基本理論,取得了極大的成功。粒子物理標准模型的建立是二十世紀物理學的重大成就之一,它能統一描述目前人類已知的最小"粒子"(誇克、輕子、光子、膠子、中間玻色子、Higgs 粒子)的性質及強、電、弱三種基本相互作用。粒子物理學有許多研究方向,例如:強子物理、重味物理、輕子物理、中微子物理、標准模型精確檢驗、對稱性和對稱性破壞、標准模型擴展等等。
當前,該所開展的粒子物理理論研究主要圍繞粒子物理標准模型中尚未解決的一些基本問題和有關實驗所暗示的新物理進行。其主要內容為:電弱對稱性破缺機制,CP破壞和費米子質量起源,太陽和大氣中微子失蹤之謎以及粒子物理中的一些重要問題,量子色動力學的低能動力學,量子味動力學,手征微擾理論,重味誇克有效場論,手征對稱性和誇克禁閉,格點規范理論,重味物理,中微子物理,強子結構和性質,超高能碰撞等。研究中特別注意各種新理論和新模型,如:超對稱理論和模型,超對稱大統一模型,兩個或多個Higgs模型,味對稱規范模型。在研究方式上注重緊密與實驗結合,並以實驗為基礎,探索超出標准模型的新理論和新模型以及新的物理概念,運用和發展量子場論、群論、數學物理和計算物理等理論物理方法,開展與粒子物理前沿相關的量子場論研究。此外,重視與其他學科的交叉,開展粒子天體物理,粒子宇宙學和粒子核物理以及與粒子物理有關的超弦理論唯象學的研究。
(二)、超弦理論和場論
量子場論是研究微觀世界的基本工具,屬於重要的前沿領域,它的研究成果直接地影響理論物理許多分支領域的進展。弦理論是在量子場論基礎上發展起來的一種新的物理模型,它避免了通常場論中遇到的紫外發散等問題,是當前統一四種相互作用理論的重要嘗試。
目前該所在此方向的研究課題為:
1、量子場論及超弦理論,特別是其非微擾問題;弦理論的最新發展;
2、場論(特別是規范場論)及弦理論的數學工具,包括非對易幾何,幾何量子化等以及非對易空間上的規范場論、離散群或離散點集上規范場論、用非線性聯絡的規范場論等。
3、各種數學物理和計算物理問題;
4、低維場論,特別是與低維凝聚態物理有關的場論;
5、與粒子物理相聯系的量子場論問題;弦理論在粒子物理中的應用;
6、與引力理論相關的量子場論問題,包括源於弦理論的量子引力、黑洞熵的起源等等。
(三)、引力理論與宇宙學
愛因斯坦的廣義相對論是一個十分成功的經典引力理論,將引力量子化從而 建立一個自恰的量子引力理論是當前理論物理的一大重要任務。與廣義相對論相比,標量-張量引力論具有很強的競爭力。廣義相對論在宇宙學及天體物理中的應用(包括大爆炸宇宙模型、中子星和黑洞、引力透鏡以及引力波的預言)已取得巨大成功,但是,許多疑難問題有待解決。例如,奇性困難,暗物質的構成及其存在形式、物理性質、在宇宙中的佔有比例及其對宇宙演化的作用,物質反物質的不對稱性,宇宙常數和暗能量問題,原初核合成,宇宙早期相變過程的拓撲缺陷問題,宇宙早期暴漲模型的建立,黑洞的量子力學,引力的全息性質等。
國際上若干大型的空間和地面天文觀測裝置(包括大型望遠鏡、引力波天文台、等效原理的檢驗裝置等等)將在今後若干年內投入使用,這將對現有的宇宙學模型、引力波的預言以及等效原理的正確性提供更精確的檢驗,隨之而來的將是宇宙學和引力論的迅速發展,為理論工作提供更多獲取重要成果的機遇。
理論物理所在本方向的研究圍繞上述疑難問題開展。 (四)、凝聚態理論和計算凝聚態物理
復雜性和多樣性是多體微觀量子世界的基本特徵,對其規律性的探索是凝聚態理論研究的核心。這方面的每一次突破,例如能帶論和超導的BCS理論的建立,都對量子多體物理的應用和微觀世界的認識產生了深刻的變革,其成果交叉滲透到數學、化學、材料、信息、計算機等許多學科和領域。近年來,在陶瓷材料、半導體異質結及其它低維固體材料中發現的大量反常物理現象召喚著新的電子論的誕生。對這些新的物理現象的研究是該所研究人員的一個中心任務,主要的研究方向包括:
量子Hall效應、高溫超導電性、巨磁阻等強關聯系統的物理機理、量子液體及量子臨界現象;
量子多體理論方法,特別是數值計算的方法的探索和應用。計算方法包括密度矩陣重整化群、量子蒙特-卡羅計算、從頭計算等;
量子點、線、碳管等納米材料、半導體材料或結構中的非平衡量子輸運及自旋電子學;
格點系統中的量子反散射與可積問題研究。
(五)、統計物理與理論生命科學
統計物理學研究方法極為普遍,研究對象廣泛,它是微觀到宏觀的橋梁,簡單到復雜的階梯,理論到應用的途徑。從生物大分子序列分析,到認識其空間結構,到理解生命活動中的物理化學過程,生命科學提出了大量富有挑戰性的統計物理問題。這些問題的研究將深化對生命現象本質的認識,同時也將促進統計物理學本身的發展。
該所過去在本研究方向上重點開展了相變理論與臨界現象、非線性動力學等方面的研究,目前研究重點集中在有限系統臨界現象、重整化群方法、生物大分子序列分析以及生物體系中的輸運問題等方面,探討由生命科學激發的具有普遍意義的統計物理問題。生物信息學研究是本方向的熱點,該所研究人員與北京華大基因研究中心有很密切的合作關系,在水稻基因組研究工作中已作出重要創新性成果。
(六)、理論生物物理
雙親分子膜是凝聚態物理軟物質,或者叫復雜流體的前沿研究對象,是物理、化學、生物學交叉學科的研究課題。該所研究人員主要是運用微分幾何方法,以液晶為模型,研究雙親分子膜的形狀及其相變問題,已作出一組有國際影響的工作。現在本方向的研究正在向單分子膜、生物大分子與它們的生物功能聯系(DNA單分子彈性、蛋白質折疊等)的理論探索擴展。
(七)、原子核理論
從20世紀九十年代中期開始到本世紀初的十年內,國際上先後有一批超大型核物理實驗裝置投入運行,如TJNAF(CEBAF),RIB,RHIC 等等,核物理的發展進入了一個新階段。這些新的巨型裝置為從更深入的層次上研究核子-核子相互作用、核內的短程行為和核結構、各種極端條件下的核現象、核性質和多體理論方法提供了很好的機遇。在未來十年中,該所的研究人員將集中力量開展超重元素的性質及其合成途徑,極端條件下的原子核結構,核天體物理及核內誇克效應等方面的研究,以求得對原子核運動規律的新認識。
(八)、量子物理、量子信息和原子分子理論
目前高技術的發展使得以前無法得到的極端物理條件(如極端強場、超低溫度和可控的介觀尺度)在實驗室中得以實現。在這些特殊條件下,物質與光場的相互作用過程會呈現出一系列全新的物理現象,使得人們能重新認識物理學基本問題,導致新興學科分支(如量子信息)的建立。
量子信息是以量子力學基本原理為基礎、充分利用量子相乾的獨特性質(量子並行和量子糾纏),探索以全新的方式進行計算、編碼和信息傳輸的可能性,為突破晶元元件尺度的極限提供新概念、新思路和新途徑。量子力學與信息科學結合,充分顯示了學科交叉的重要性,可能會導致信息科學觀念和模式的重大變革。該所本方向的研究將基於量子物理基本問題的理論和最新實驗的結合, 鼓勵學科間的交叉滲透。發揮理論物理對量子信息研究具有前瞻性和指導性的作用,瞄準國際前沿,立足思想創新、探索和解決當前量子信息前沿領域的關鍵理論性問題。
目前該所在此方向上的研究課題主要為:
1.量子測量和量子開系統的基本問題:包括量子系統與經典系統相互作用,量子到經典過渡的基本模型,微觀信息宏觀提取的理論機制,量子耗散和量子退相干理論;也包括發展和應用實際的量子測量理論,探討提高探測量子態效率的可能性。
2. 特殊量子態的基本特性。包括研究各種宏觀量子態(原子玻色-愛因斯坦凝聚和原子激光,介觀電流,微腔激子-極化子)的基本特性和運動規律,並探索它們作為量子信息載體的可能性.也包括超冷囚禁原子、分子系統與受限光場的相互作用,如腔量子電動力學和原子光學。
3.量子信息方案的物理基礎。包括演化過程的動力學控制、糾纏態的度量,多粒態的局域制備和純化、已知量子態遠程制備和未知量子態遠程傳輸。還包括提出新的量子演算法、量子編碼和量子糾錯的新型方案,研究量子信息中的計算復雜性理論和相應的各種數學物理問題。
4. 強場中的原子分子運動。主要興趣集中在強磁場和強激光場中原子分子的動力學行為,其中,許多全新的實驗現象要求發展處理非微擾問題的嶄新概念和方法。這方面的研究對揭示混沌體系的動力學和利用外場控制分子、原子過程有著重要意義。
(九)、計算物理
辛演算法和保結構演算法是我國著名數學家馮康及其學派在80年代中期系統提出、並完善和發展起來的。他們在這個領域的工作不僅一直領先,而且在計算數學領域佔有非常重要的地位並取得了國際上的公認。在計算數學和計算物理中,引入保持所計算的Hamilton系統的辛結構,或者對於接觸系統等保持系統有關的幾何結構的思想非常重要。最近,國際上沿著保結構的思想,有關領域又有新的進展。比如多辛演算法和李群演算法的提出等等,它們分別是保持無限維系統的多辛結構的演算法和系統李群對稱性的演算法。
該所在本研究方向上研究辛演算法、多辛演算法等各種保結構演算法 及其在物理中的應用。
H. 初中的物理理論與模型理論如何理解
物理理論主要就是概念,模型理論就是運行方式。
I. 數學模型,物理模型和概念模型的區別
★數學模型是指將現實問題歸結為相應的數學問題,並在此基礎上利用數學的概念、方法和理論進行深入的分析和研究,從而從定性或定量的角度來刻畫實際問題,並為解決現實問題提供精確的數據或可靠的指導.
一句話,就是把實際問題抽象成數學問題,並分析解答.
分類要有分類的標准,比如按實際問題所在的領域分類,可有:
醫學數學模型
氣象學數學模型
經濟學數學模型
社會學數學模型
等等.
要是按所用到的數學學科來分類,可有
幾何模型
方程模型
圖論模型
泛函模型
等等.
分類其實五花八門.
方程是一個數學概念,如果你的實際問題建立了方程,你的模型可以稱為一個方程模型.
★物理模型就是用物理學的概念和理論來描述抽象現實問題,特點是
舍棄次要因素,抓住主要因素,從而突出客觀事物的本質特徵,這就叫構建物理模型.構建物理模型是一種研究問題的科學的思維方法.
物理模型一般可分三類:物質模型、狀態模型、過程模型.
★數學模型與物理模型之間究竟有何區別?
這其實就是數學和物理的區別,數學和物理的聯系很緊密,很多模型你不能單純地說是物理還是數學模型.當然數學模型更純粹和抽象.自然科學的研究一般思路可以說是先建立物理模型,再抽象成數學模型,再由解算結果反過來反映物理意義,進而得出實際意義.
J. 從科學上來講,物理學理論的本質到底是什麼
當科學家說有東西存在時,他們是什麼意思?一直以來,總有人不相信科學發現,他們固執地認為,黑洞不存在,誇克不存在,引力波不存在,希格斯玻色子不存在,或者時間不存在。
科學家並非對宇宙中的一切做出無端的臆想,他們會根據實際做出合理的假設,並通過實驗加以證實。科學是關於事實,而非關於信不信存在的問題。
物理學理論的本質是數學框架
雖然這些看似都很好,但實在論是一種哲學。這是一種有關信不信的體系,科學無法告訴我們它是否正確。