A. 泰勒公式怎麼展開
如圖:(注意「麥克勞林級數」是「泰勒級數」的特殊形式,是展開位置為0的泰勒級數)。
一階導數,系數=1/(x+1)=1/(1+x0)。二階導數,系數=-1/(1+x)^2=-1/(1+x0)^2
數學中,泰勒公式是一個用函數在某點的信息描述其附近取值的公式。如果函數足夠平滑的話,在已知函數在某一點的各階導數值的情況之下,泰勒公式可以用這些導數值做系數構建一個多項式來近似函數在這一點的鄰域中的值。泰勒公式還給出了這個多項式和實際的函數值之間的偏差。
(1)大學物理怎麼用泰勒展開擴展閱讀
實際應用中,泰勒公式需要截斷,只取有限項,一個函數的有限項的泰勒級數叫做泰勒展開式。泰勒公式的余項可以用於估算這種近似的誤差。
泰勒展開式的重要性體現在以下五個方面:
1、冪級數的求導和積分可以逐項進行,因此求和函數相對比較容易。
2、一個解析函數可被延伸為一個定義在復平面上的一個開片上的解析函數,並使得復分析這種手法可行。
3、泰勒級數可以用來近似計算函數的值,並估計誤差。
4、證明不等式。
5、求待定式的極限。
B. 常用函數泰勒展開公式
常用泰勒展開公式如下:
1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞<x<∞)
4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
6、arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)
8、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)
9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)
10、arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)
11、arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)
(2)大學物理怎麼用泰勒展開擴展閱讀:
數學中,泰勒公式是一個用函數在某點的信息描述其附近取值的公式。如果函數足夠平滑的話,在已知函數在某一點的各階導數值的情況之下,泰勒公式可以用這些導數值做系數構建一個多項式來近似函數在這一點的鄰域中的值。泰勒公式還給出了這個多項式和實際的函數值之間的偏差。
泰勒公式得名於英國數學家布魯克·泰勒。他在1712年的一封信里首次敘述了這個公式,盡管1671年詹姆斯·格雷高里已經發現了它的特例。拉格朗日在1797年之前,最先提出了帶有餘項的現在形式的泰勒定理。
實際應用中,泰勒公式需要截斷,只取有限項,一個函數的有限項的泰勒級數叫做泰勒展開式。泰勒公式的余項可以用於估算這種近似的誤差。
泰勒展開式的重要性體現在以下五個方面:
1、冪級數的求導和積分可以逐項進行,因此求和函數相對比較容易。
2、一個解析函數可被延伸為一個定義在復平面上的一個開片上的解析函數,並使得復分析這種手法可行。
3、泰勒級數可以用來近似計算函數的值,並估計誤差。
4、證明不等式。
5、求待定式的極限。
C. x趨於無窮的極限如何用泰勒展開來求
泰勒公式是將一個在x=x0處具有n階導數的函數f(x)利用關於(x-x0)的n次多項式來逼近函數的方法。
根據ln(1+x)=x-x^2/2
得出ln(1+1/x)=1/x-1/x^2/2
得出極限=x-[x-1/2]=1/2
N的相應性
一般來說,N隨ε的變小而變大,因此常把N寫作N(ε),以強調N對ε的變化而變化的依賴性。但這並不意味著N是由ε唯一確定的:(比如若n>N使|xn-a|<ε成立,那麼顯然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在於其值的大小。
D. 泰勒公式展開的技巧
泰勒公式在x=a處展開為
f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+……+(1/n!)f(n)(a)(x-a)^n+……
設冪級數為f(x)=a0+a1(x-a)+a2(x-a)^2+……①
令x=a則a0=f(a)
將①式兩邊求一階導數,得
f'(x)=a1+2a2(x-a)+3a3(x-a)^2+……②
令x=a,得a1=f'(a)
對②兩邊求導,得
f"(x)=2!a2+a3(x-a)+……
令x=a,得a2=f''(a)/2!
繼續下去可得an=f(n)(a)/n!
所以f(x)在x=a處的泰勒公式為:
f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n+……
應用:用泰勒公式可把f(x)展開成冪級數,從而可以進行近似計算,也可以計算極限值,等等。
另外,一階泰勒公式就是拉格朗日微分中值定理
f(b)=f(a)+f(ε)(b-a),ε介於a與b之間。
.
不知道滿不滿意.
E. 泰勒展開式及其應用
展開是:f(x)在x=0。泰勒公式,應用於數學、物理領域,是一個用函數在某點的信息描述其附近取值的公式。如果函數足夠平滑的話,在已知函數在某一點的各階導數值的情況之下,泰勒公式可以用這些導數值做系數構建一個多項式來近似函數在這一點的鄰域中的值。
函數(function)的定義通常分為傳統定義和近代定義,函數的兩個定義本質是相同的,只是敘述概念的出發點不同,傳統定義是從運動變化的觀點出發,而近代定義是從集合、映射的觀點出發。函數的近代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示,函數概念含有三個要素:定義域A、值域B和對應法則f。其中核心是對應法則f,它是函數關系的本質特徵。
多元函數的泰勒公式
在討論一元函數的時候,我們給出了一元函數y=f(x)的點x處的
n階泰勒公式
f(x)=f(x)+f'(x)(x-x)+
( (x-x) '+..
2!
+()(x-x. + (+(x-xo) (x-x )1
n!
n+1
(其中0<0<1)
F. 十個常用的泰勒展開公式是什麼
十個常用的泰勒展開式分別包括:
1、x^a=x0^a+ax0^(a-1)(x-x0)+a(a-1)x0^(a-2)(x-x0)^2/2+…+a(a-1)…(a-n+1)(x-x0)^n/n!+o((x-x0)^n)。
2、(1+x)^a=(1+x0)^a+a(1+x0)^(a-1)(x-x0)+a(a-1)(1+x0)^(a-2)(x-x0)^2/2+…+a(a-1)…(a-n+1)(x-x0)^n/n!+o((x-x0)^n)。
3、1/x=1/x0-(x-x0)/x0^2+(x-x0)^2/x0^3-(x-x0)^3/x0^4+…+(-1)^n(x-x0)^n/x0^(n+1)+o((x-x0)^n)。
4、1/(1-x)=1/(1-x0)+(x-x0)/(1-x0)^2+(x-x0)^2/(1-x0)^3+(x-x0)^3/(1-x0)^4+…+(x-x0)^n/(1-x0)^(n+1)+o((x-x0)^n)。
5、e^x=e^x0+e^x0(x-x0)+e^x0(x-x0)^2/2+…+e^x0(x-x0)^n/n!+o((x-x0)^n)。
6、lnx=lnx0+(x-x0)/x0-(x-x0)^2/(2x0^2)+(x-x0)^3/(3x0^3)+…+(-1)^(n+1)(x-x0)^n/(nx0^n)+o((x-x0)^n)。
7、ln(1+x)=ln(1+x0)+(x-x0)/(1+x0)-(x-x0)^2/(2(1+x0)^2)+(x-x0)^3/(3(1+x0)^3)+…+(-1)^(n+1)(x-x0)^n/(n(1+x0)^n)+o((x-x0)^n)。
8、sinx=sinx0+(x-x0)sin(x0+π/2)+(x-x0)^2sin(x0+π)/2+…+(x-x0)^nsin(x0+nπ/2)/n!+o((x-x0)^n)。
9、cosx=cosx0+(x-x0)cos(x0+π/2)+(x-x0)^2cos(x0+π)/2+…+(x-x0)^ncos(x0+nπ/2)/n!+o((x-x0)^n)。
10、Tn(x)=f(x0)+f'(x0)(x-x0)/1!+f"(x0)(x-x0)^2/2!+…+f^(n)(x0)(x-x0)^n/n!
相關信息:
泰勒公式,是一個用函數在某點的信息描述其附近取值的公式。如果函數滿足一定的條件,泰勒公式可以用函數在某一點的各階導數值做系數構建一個多項式來近似表達這個函數。
泰勒公式得名於英國數學家布魯克·泰勒,他在1712年的一封信里首次敘述了這個公式。泰勒公式是為了研究復雜函數性質時經常使用的近似方法之一,也是函數微分學的一項重要應用內容。
G. 泰勒公式是怎麼展開的或者說展開的計算是怎麼得到的
a是你取得一個數,底下那個就是取a=0推出的,就是sinx的麥克勞林公式。
泰勒公式是用來彌補微分運算的不足--無法估計誤差。泰勒公式越往後面誤差越小,就比如e^x,你隨便取一個數代入公式,越往後算越接近e^x的真實值。
H. 常用泰勒公式展開是怎麼樣的
泰勒公式在x=a處展開為
f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+……+(1/n!)f(n)(a)(x-a)^n+……
設冪級數為f(x)=a0+a1(x-a)+a2(x-a)^2+……①
令x=a則a0=f(a)
將①式兩邊求一階導數,得
f'(x)=a1+2a2(x-a)+3a3(x-a)^2+……②
令x=a,得a1=f'(a)
對②兩邊求導,得
f"(x)=2!a2+a3(x-a)+……
令x=a,得a2=f''(a)/2!
繼續下去可得an=f(n)(a)/n!
所以f(x)在x=a處的泰勒公式為:
f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n+……
泰勒公式展開在物理學應用
物理學上的一切原理定理公式都是用泰勒展開做近似得到的簡諧振動對應的勢能具有x^2的形式,並且能在數學上精確求解。為了處理一般的情況,物理學首先關注平衡狀態,可以認為是「不動」的情況。為了達到「動」的效果,會給平衡態加上一個微擾,使物體振動。
在這種情況下,勢場往往是復雜的,因此振動的具體形式很難求解。這時,Taylor展開就開始發揮威力了!
I. 如何用泰勒展開求高階導數
解:
^利用sinx的Taylor展式sinx=x-x^3/3!+x^5/5!-x^7/7!+...,故
f(x)=x^4-x^6/3!+x^8/5!-x^10/7!+...
由此知道f^(6)(0)/6!=-1/3!,故
f^(6)(0)=-6!/3!=-120。
Taylor展式有唯一性:其表達式必定是這樣的:
f(x)=f(0)+f'(0)x+f''(0)x^2/2!+....+f^(n)(0)x^n/n!+...
即必有x^n的系數時f^(n)(0)/n!。
泰勒展開式的重要性體現在以下五個方面:
1、冪級數的求導和積分可以逐項進行,因此求和函數相對比較容易。
2、一個解析函數可被延伸為一個定義在復平面上的一個開片上的解析函數,並使得復分析這種手法可行。
3、泰勒級數可以用來近似計算函數的值,並估計誤差。
4、證明不等式。
5、求待定式的極限。